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Logistics

Office Hours
Instructor: 3-4pm Mondays (in person) or by appointment (in person or Zoom)

TA: 4-5pm Wednesdays (in person) or by appointment (in person or Zoom)
Presentation Sign-Up: Deadline Today (EOD)
First review due: \Wednesday 9:59pm (one review: Mask-RCNN or YOLO)

Student Self-Introduction
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Today’'s Agenda

e \What is Robot Perception?
e Robot Vision vs. Computer Vision
e |andscape of Robot Perception

e Quick Review of Deep Learning (if time permits)
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What is Robot Perception?

Making sense of the unstructured real world...

* Incomplete knowledge of objects and scene
« Imperfect actions may lead to failure

« Environment dynamics and other agents
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Robotic Sensors

Making contact of the physical world through multimodal senses
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Robotic Sensors

Making contact of the physical world through multimodal senses

2 Fisheye Cameras Multisense Head (3D Laser
Scanner & Stereo Camera)

Secure Wireless
Network Router

- Intel Core i7 Processor)

Perception Computer (3 ‘

3.7-kilowatt-hour
lithium-ion battery
pack

Inductive Proximity Sensor

Robotiq 3-Finger Adaptive
Robot Gripper

30 degrees of
freedom(DOF) — 24 |
hydraulic actuators

¢ Software — Linux Operating
& 6 electric motors System with ROS (Robot
Operating System)

Six-Axis Force/
Torque Sensor

Y Inertial Measurement Unit

$ (IMu)
b 4 L

Strain Gauge Pressure Sensor

[Source: HKU Advanced Robotics Laboratory]
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= The Limits and Potentials of Deep Learning for Robotics. Niko Siinderhauf, Oliver
Brock, Walter Scheirer, Raia Hadsell, Dieter Fox, Jiirgen Leitner, Ben Upcroft, Pieter
Abbeel, Wolfram Burgard, Michael Milford, Peter Corke (2018)

R O b O-t Vi S i O n VS . C O m p U -te r Vi S i O n o ﬁ:;?zsgg:;otor Account of Vision and Visual Consciousness. Kevin O'Regan and Alva

Robot vision is embodied, active, and environmentally situated.

[Detectron - Facebook Al Research] [Zeng et al., IROS 2018]
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Robot Vision vs. Computer Vision

Robot vision is embodied, active, and environmentally situated.

e Embodied: Robots have physical bodies and experience the world directly. Their
actions are part of a dynamic with the world and have immediate feedback on their
own sensation.

e Active: Robots are active perceivers. It knows why it wishes to sense, and chooses
what to perceive, and determines how, when and where to achieve that perception.

e Situated: Robots are situated in the world. They do not deal with abstract
descriptions, but with the here and now of the world directly influencing the behavior
of the system.

[Brooks 1991; Bajcsy 2018]
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The Perception-Action Loop

B

=

i “autonomousexecution
. ~

[Levine et al. JMLR 2016]
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The Perception-Action Loop

Perceive Perceive
Act
Act
é Act

Perceive

[Sa et al. IROS 2014] [Levine et al. JMLR 2016] [Bohg et al. ICRA 2018]
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The Perception-Action Loop

A key challenge in Robot Learning is to close the perception-action loop.

Perceive Perceive
Act

Perceive

[Sa et al. IROS 2014] [Levine et al. JMLR 2016] [Bohg et al. ICRA 2018]
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Robot Perception: Landscape

What you will learn in the chapter of Robot Perception

1. Modalities: neural network architectures designed for different sensory modalities
Representations: representation learning algorithms without strong supervision

Tasks: state estimation tasks for robot navigation and manipulation

I

Frontiers: embodied visual learning & synthetic data for visual Al
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Robot Perception: Modalities

What the computer sees

An image is just a big grid of
numbers between [0, 255]:

e.g. 800 x 600 x 3
i (3 channels RGB)

Pixels (from RGB cameras)

Reaching Alignment Insertion

FN)

Time (ms)

[Source: Lee*, Zhu*, et al. 2018]

Time series (from F/T sensors)
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(X1, Y1, Z1)

(X2, Y2, Z2)

[Source: PointNet++; Qi et al. 2016]

Point cloud (from structure sensors)

[Source: Calandra et al. 2018]

Tactile data (from the GelSights sensors)




Robot Perception: Modalities

How can we design the neural network architectures that can effectively process

i i ?
raw sensory data in vastly different forms” More sensory modalities

in later weeks...

h 3D Location p
classification Occupancy Networks l 2?::2;.:3

(x1,y1,21)—| MLP. <cotes
(oo yar) > MLP ¥
Max — MLP —>| Table?
(X Y Zn) —» MLP =
(@)

h
classification

G yut)—>MLP e
(22, t2)—> MLP v g

. md  md FR
G Y ta) — MLP

(b)

Week 2: 2D Object Detection Week 3: 3D Data Processing Week 3: Implicit Neural Representations
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Robot Perception: Modalities

How can we design the neural network architectures that can effectively process

raw sensory data in vastly different forms?

Vision Transformer (ViT) Transformer Encoder

) \F °°°°°°°°°°°°°°°°°°°°°° 5 Iclsl:xlsr:]iar:'ﬁlg;ing [ Linear Projection of Flattened Patches ]
Y LY
FEATURE LEARNING CLASSIFICATION . . I I I n I I I _‘
o o ———~ 5 O
[Credit: Sumit Saha] ey

1

|

|

|

. |

= !

Transformer Encoder ’ :

g 3 F . 1

: ] E - )
O [ —eicyeie Patch + Position ‘ Multi-Head

Embedding > @ﬂ @ @ @ @ @é 1 Attention

FULLY I

1

|

|

|

1

Embedded
Patches

Week 4 (Tue): Attention Architectures
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Robot Perception: Representations

A fundamental problem in robot perception is to learn the proper representations

of the unstructured world.

° ° °
Things... Engineering Knowledge...
My heart beats as if the world is dropping, a=dv
you may not feel the love but i do its a heart dt V & dV f(x)
breaking moment of your life. enjoy the times
that we have, it might not sound good but
one thing it rhymes it might not be romantic .
but i think it is great,the best rhyme i've ever /
heard.
Representation
A a8 sct, ¢ =fa%s 81
" e ct-at. 8t ot-4:- a’-
a _H A
u‘. & HB ond £ gl
c a 8 sl
A= il
at=CxHB amd 82=cxH. 7
0 0 ot fz = cxHB-ocAﬂﬂscx(HBwW/)’C"
5 5 o+ f2= C"' smol= &~

chyot - & Gt F, c‘r”‘ =
[Source: Stanford CS331b]
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Robot Perception: Representations

“Solving a problem simply means representing it so as to make

the solution transparent.”

Herbert A. Simon, Sciences of the Artificial

- ICLR 202
O ur sec ret wea p on f? Lea r n I n g Cth Internatioonal Coonference Addis Ababa, Ethiopia
on Learning Representations April 26-30, 2bZO
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Robot Perception: Representations

“Solving a problem simply means representing it so as to make

the solution transparent.”

Herbert A. Simon, Sciences of the Artificial

What representations to learn”? How to learn them?
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Supervised Learning

s N
1. Feed Forward Neural Networks
Input: Network: output:
i > — » Representation Prediction
numbers Encoder
-
2. Convolutional Neural Networks
Input: g
p Network: Output:
An image R » Representation Prediction <~
Encoder
I\ J
s R
3. Recurrent Neural Networks
Input: Network:
Output:
Sequence Aozl » Representation Prediction <~
Encoder
\ J
e A
4. Encoder-Decoder Architectures
Input: Network: Network: Output:
Image, Image,
Text, — I —» Representation —» 0 —»  Text, (&t
Encoder Decoder
etc. etc.
. J
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Ground Truth:

Ground Truth:

Ground Truth:

Ground Truth:

Unsupervised Learning

e N
5. Autoencoder
Input: Network: Network:  Ground Truth:
Image, E
Text, —» al —»{ Representation — ] e Exaft copy ]
ote Encoder Decoder i ofinput |
N J
p
6. Generative Adversarial Networks
Throw away after training
Input: Network: Output: Network:
Noise Generator — ‘> Discriminator —¥ Prediction:
Image : Real or Fake
A
1
...... [ .
Real
i Image !
| et
Reinforcement Learning
7. Networks for Actions, Values, Policies, and Models
Input: Network: Output: Ground Truth:
World Any . .
State Sample o Encoder —» Representation —» Action [« Reward
[6.5094, MIT]
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Robot Perception: Representations

How can we learn representations of the world with limited supervision?

“self-supervised learning”

Supervision comes from the unlabeled data themselves

babies learning by playing

CS391R: Robot Learning (Fall 2021) 20




Robot Perception: Representations

How can we learn representations of the world with limited supervision?

___________

1 1
1 1
1 ]
| source image o3 s
i 8 N stop
----I ----I i gg 1\ grad
. 1 1 i 3
Example: .: :: : | i (@) 2 (1-Ha(e,) (1= Hu (@) B(@s) + Hu () B0
BN - | i
E9 8 O F ] z 1
g 4 [ :
|

RefineNet
. . . z
z
£ 7

Set d(x ) m Add B(z
keypoi o from tar g \mag 3
from both images keypoints Tt

K
- 1 i
e ii *[ ‘ }*.
-1 -

KeyNet [Jakab and Gupta et al]

transport

Week 4 (Thu): Self-Supervised Visual Learning: Data Week 5 (Tue): Self-Supervised Visual Learning: Motion

CS391R: Robot Learning (Fall 2021)
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Robot Perception: Representations

How can we learn representations that fuse multiple sensory modalities together?

[The McGurk Effect, BBC]

Is seeing believing?

https://www.youtube.com/watch?v=2k8fHR9jKVM
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https://www.youtube.com/watch?v=2k8fHR9jKVM

Robot Perception: Representations

How can we learn representations that fuse multiple sensory modalities together?

Alignment Insertion Week 5 Thu: Multimodal Sensor Fusion

Reaching

Fz (N)

.

time (ms)

[Lee*, Zhu*, et al. 2018]

combining vicion and force for manipulation
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Robot Perception: Tasks

Noisy Sensory Data

Physical State

Perception & Robot Control &
Computer Vision Decision Making
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Robot Perception: Tasks

Localization

\ s o 5
\ .
i

Pose Estimation

Noisy Sensory Data

Physical State

Perception & Robot Control &
Computer Vision Decision Making
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Robot Perception: Tasks

’ ’ R
7 Y
:‘dCT = (1,5, T,)" b
camera coordinate
l‘ O X

L
L
~
~
0
L0
L
~
"

object coordinate

Noisy Sensory Data

Physical State

NS
L% *Probabilistic

OBOTICS

SEBASTIAN THRUN
WOLFRAM BURGARD
DIETER FOX

Perception & Robot Control &
Computer Vision Decision Making

http://www.probabilistic-robotics.org/
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Robot Perception: Tasks

State estimation methods: Bayes Filtering

Algorithm 1 The general algorithm for Bayes filtering
1: for each z; do

2: bel(zy) = [ p(z|ug, 1) bel(zi—1) dzy—1 > transition update

3: bel(z;) = np(z|z,) bel (z;) > measurement update
4: end for each

Tt:state Zt:observation Ug:action  bel(xy): belief
p(a:t |ut, CUt—l) : transition model (motion model)

p(zt |xt) . measurement model (observation model)

CS391R: Robot Learning (Fall 2021)
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Week 6 Recursive State Estimation
Tue, Sept 28
« Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors. Rico
Jonschkowski, Divyam Rastogi, Oliver Brock (2018)

] » Particle Filter Networks with Application to Visual Localization. Peter Karkus, David
Robot Perception: Tasks
.

o Differentiable Algorithm Networks for Composable Robot Learning. Peter Karkus, Xiao
Ma, David Hsu, Leslie Pack Kaelbling, Wee Sun Lee, Tomas Lozano-Perez (2019)

o Backprop KF: Learning Discriminative Deterministic State Estimators. Tuomas
Haarnoja, Anurag Ajay, Sergey Levine, Pieter Abbeel (2016)

State estimation methods: Bayes Filtering

Tt:state Zt:observation Ut:action  bel(xy): belief

p(a:t |ut, CUt—l) . transition model (motion model)

p(zt |:Ct) . measurement model (observation model)

What if models are hard to specify? Learning

Example: Particle Filter Localization

CS391R: Robot Learning (Fall 2021)
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Robot Perception: Embodiment

Input-Output Picture (Susan Hurley, 1998)

CS391R: Robot Learning (Fall 2021)

Conventional View of Perception

* Perception is the process of building an internal
representation of the environment

* Perception is input from world to mind, and action

is output from mind to world, thought is the
mediating process.

[Action in Perception, Alva Noé 2004]
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Robot Perception: Embodiment

Embodied View of Perception

* Asthe active cat (A) walks, the other cat (P) moves
and perceives the environment passively.

* Only the active cat develops normal perception
through self-actuated movement.

* The passive cat suffers from perception problems,
such as 1) not blinking when objects approach,
and 2) hitting the walls.

Kitten Carousel (Held and Hein, 1963)
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Robot Perception: Embodiment

ol Y
A e
W &

Pebbles (James J. Gibson 1966)

CS391R: Robot Learning (Fall 2021)

Embodied View of Perception

Subjects asked to find a reference object among a
set of irregularly-shaped objects

Three groups

a. Passive observers of one static image (49%)
b. Observers of moving shapes (72%)
c. Interactive observers (99%)

« The ability to condition input signals with actions is
crucial to perception.
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Robot Perception: Embodiment

Take-home messages

» Perceptual experiences do not present the sense in the way that a photograph does.

» Perception is developed by an embodied agent through actively exploring in the

physical world.

« “We see in order to move; we move in order to see.” — William Gibson
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Robot Perception: Embodiment

Week 6 (Thu) — Active Perception: How can embodied agents (robots) improve perception

based on visual experiences through active exploration?

4 scene observation completion h
Whereto : \ )
Iooker::x'?? ) a g
L O™ £ | @)
€ am e . 4
% ] E e —$ ﬁ
. (& S = y'l-l' 2
View @ " Amodal
SeleCtion 4 object observation completion h ReCOgnition
How t = e— -
man?;\l,JI:te? E, .. // %\ E Dp
tod | Vwol (@
R Y i
$ ° == ° [Yang et al. 2019]

-
\

[Jayaraman and Grauman 2017]
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Robot Perception: Synthetic Data

Week 7 (Tue) — Synthetic Data for Robot Perception: where robot perception meets

computer graphics.

By 2030, Synthetic Data Will letely Overshadow Real Data in Al Models

« Artificially Generated Data
« Generated From Simple

Future Al Rules, Statistical Modelling,
Data Used Simul nd Other
for Al Today's Al Techniqy

+ Obtained From Direct

Measurements
«+ Constrained by Cost, Logistics,
Privacy Reasons

2020 2030
Time

Gartner

[Source: Gartner]

Microsoft Flight Simulator

Apple HyperSim

CS391R: Robot Learning (Fall 2021)



Research Frontier: Closing the Perception-Action Loop

v NN

Perception Robots Action
How robots develop better perception How robots’ intelligent behaviors
from embodied sensorimotor are guided by their interactive
experiences perception
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Visual Processing Methods

monkey?

B ik ()]0
s 1 '

[monkey, dog, tree, ...]

Staged Visual Recognition Pipeline

CS391R: Robot Learning (Fall 2021)

What is new since 1980s?

1980S-ERA NEURAL NETWORK DEEP LEARNING NEURAL NETWORK

Hidden Multiple hidden layers
layer process hierarchical features

Output:
‘George’
AN 417‘/2&&
& /94 SN2 é
TSN N / Identif
Identi //‘\\:/ l:i:altiyons
light/dark or features
pixel value Identify Identify Identify
Links carry signals \ edges combinations features
from one node ~——3 of edges
to another, boosting - -a -
damping th
ke e 2.t HEF "Hs JE0 ﬂl
ks weight. e HEl ~R* BE

End-to-end Deep Learning




Quick Review of Deep Learning: Artificial Neurons

Biological Neuron versus Artificial Neural Network

impulses carried
towa:d cell body

branches
dendrites of axon
\é_//‘ axon Inputs ~

L —

nucleus -\ terminals Output
| |
mpulses carried Sum Activation
away from cell body Function
cell body
Biological Neuron Artificial Neuron
Computational building block for the brain Computational building block for the neural network

Note: Many differences exist — be careful with the brain analogies!

[Dendritic Computation, Michael London and Michael Hausser 2015]
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Quick Review of Deep Learning: Convolutional Networks

AlexNet
CONV 1
[ max
R -m» E— E—
11 x 11 3x3 5x5 .’
l s=4 s=2 same
227X227X3 55X 55X 96 27X27X96 27X27X256 13X13 X256

same

13X 13 x 384 13X13Xx384 13X 13X 256 6x6Xx256 0216 4096 4096 e

1000

https://indoml.com
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Quick Review of Deep Learning: Fully-Connected Layers

32x32x3 image -> stretch to 3072 x 1

input activation
) Wax )
1] ) —> —> 1 [O [
3072 . 10
weights
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

What is the dimension of W/?

[Source: Stanford CS231N]
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Quick Review of Deep Learning: Convolutional Layers

32x32x3 image -> preserve spatial structure

4

32 height

3 depth

[Source: Stanford CS231N]
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Quick Review of Deep Learning: Convolutional Layers

32x32x3 image

/ 5x5x3 filter

32

Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”
A

=

[Source: Stanford CS231N]
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Quick Review of Deep Learning: Convolutional Layers

Filters always extend the full

— e depth of the input volume
32x32x3 image /

/ 5x5x3 filter

32

Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”
A

w |

[Source: Stanford CS231N]
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Quick Review of Deep Learning: Convolutional Layers

32x32x3 image

o
/ V 5x5x3 filter w

-

t ™~ 1 number:

the result of taking a dot product between the
A filter and a small 5x5x3 chunk of the image

(i.e. 5*5*3 = 75-dimensional dot product + bias)

Sl

wlz +b

[Source: Stanford CS231N]
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Quick Review of Deep Learning: Convolutional Layers

activation map

32x32x3 image

e

/ 5x5x3 filter
=

¢>O convolve (slide) over all

spatial locations
A

Wl

[Source: Stanford CS231N]
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Quick Review of Deep Learning: Convolutional Layers

consider a second, green filter

e 32x32x3 image activation maps

/ 5x5x3 filter
=
@>® convolve (slide) over all

spatial locations
A 28

28

o
-_—

[Source: Stanford CS231N]
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Quick Review of Deep Learning: Convolutional Layers

For example, if we had 6 5x5 filters, we’'ll get 6 separate activation maps:

/ >
Convolution Layer
A A
LA NN NN

3 6

activation maps

28

We stack these up to get a “new image” of size 28x28x6!

[Source: Stanford CS231N]
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Quick Review of Deep Learning: Pooling Operations

Max Pooling Avg Pooling
“ 2 5 2|5
n 2 | 4 5 . 2 | 4 3.3
2 | 4 4 6 | 8 2|1 4|5 |4 43 | 53
6

https://indoml.com
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Quick Review of Deep Learning: Activation Functions

Sigmoid 1 Leaky RelLU )

o(z) = i max(0.1z, x)

tanh Maxout

tanh(x) = - max(w{ x + b1, wd x + b)

RelLU | / ELU N_/V
ax(0 T a2 f)

m X( 7w) " ) {a(em — 1 G20 - - "
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Quick Review of Deep Learning: CNN Architectures

LeNet

Layer o -
Digit image LeNet -5
CONV1
CONV 2
avg _ rc d re
| — —> >0y
5x5 sxs H
snd softmax
10 labels.
32x32x1 28x28x6 14X14X6 10x10Xx16 5x5x16 120 84
g
D
|/ 1) iy
v +v ¥ + v + v
s i s = i Faten Dense
Bumne nEanza DYV asan: wrn 0 e
i 30 3 = . Dense oropent
e 33 20Coaveition 343 20 Conveletion oropsat
e wntarie wazane RS e

VGG-16
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ResNet

50 layers

101 lagers

152 tayers

H H ! i
] ’ Yo | ( 11! 1
H 8 H : ® | « @
f2c0 !l age || 28 23! 283 23! S08 | oy o
$ .38 | 338|538 £83i 88y || 8% | 888|888 g&s HEEETHIEEE M g
2 | e ol | [ e S g T ) s s I3
2 z 222 22z 223 22z, 22z 222222101323 223
&> §§ s% §§§ 22z b 22 b zZ § LN g s EZrWmzeEz W ZEZ LE®
ik : §85 7533 "333 7388/ 333/ 738§ "853 B33 Esiis
% 8% E2F  ¥&¥ %% %% x%x %%z |=¥% (E¥%z (%% =%y |x&:
& 0 e oe LR - Eos - coe - o e -0 e o o o e
& & T =l T 5 0 — 1 ]
R ofsl0] blocks kg ofgl1] blocks @ ofsl2] blocks @ ofsl3] blocks
CONV Oveﬂapomg ) Overlapping
CONV CONV
o smd‘e‘.a 3x3 5*5-9'“? ;:; PO s 3x3,pad=1
96 kernels stride=2 256 kernels, stride=2 384 kemels
e ‘mm (27:22175111 . @z & gz
° 27 13

3x3 paa-

384 kemels

ey

AlexNet

Overlapping

Max POOL
:«xz pnd-l
256 kernels

uJ KAL)

23 [0
3/%!z!ﬂ
w O] O

1000
Softmax



Quick Review of Deep Learning: Optimization

s Backpropagation

Stochastic Gradient Descent (SGD)

learning rate

f

0 =0 —nVyJ(0;2D;yD)

. Y N\

b 2 are local gradients h weights input label
ox oy

s’:’: YA
22
Q\*\:::’o? p
.Q O e V% 9,

S

RO,

a_L is the loss from the previous layer which
9z has to be backpropagated to other layers
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Quick Review of Deep Learning: Features

Low-Level| |Mid-Level| [High-Level Trainable
Feature Feature Feature Classifier

4

[Source: Stanford CS231N]
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Quick Review of Deep Learning: Implementation

[ ] import torch
from torch import nn

class MNISTClassifier(nn.Module):

" ' def __ init_ (self):
) 4

super (MNISTClassifier, self)._ init_ ()

# mnist images are (1, 28, 28) (channels, width, heig
self.layer 1 = torch.nn.Linear(28 * 28, 128)
self.layer 2 = torch.nn.Linear(128, 256)

self.layer 3 = torch.nn.Linear(256, 10)

def forward(self, x):
batch_size, channels, width, height = x.size()

# (b, 1, 28, 28) -> (b, 1%28%28)
X = x.view(batch _size, -1)

# layer 1
= self.layer 1(x)

F TensorFlow

x = self.layer_ 2(x)
= torch.relu(x)

# layer 3
x = self.layer 3(x)

I

probability distribution over labels

PyTorch tutorial on September 29th x = torch.log softmax(x, din=1)

return x
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Quick Review of Deep Learning: Resources

Online Courses
« (CS231N: Convolutional Neural Networks for Visual Recognition

http://cs231n.stanford.edu/

«  MIT 6.5191: Introduction to Deep Learning

http://introtodeeplearning.com/

Textbooks:

* Deep Learning. lan Goodfellow, Yoshua Bengio, Aaron Courville

http://www.deeplearningbook.org/
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http://cs231n.stanford.edu/
http://introtodeeplearning.com/
http://www.deeplearningbook.org/

Resources

Related courses at UTCS
o (CS342: Neural Networks

« (CS 376: Computer Vision

« (S 378 Autonomous Driving

» (S 393R: Autonomous Robots

» (CS394R: Reinforcement Learning: Theory and Practice

Extended readings:

» Action-based Theories of Perception, Stanford Encyclopedia of Philosophy

e Action in Perception, Alva Noé
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https://philkr.github.io/cs342
https://www.cs.utexas.edu/~huangqx/CS376_Computer_Vision.html
https://amrl.cs.utexas.edu/CS378-F1Tenth-Autonomous-Driving/
http://www.cs.utexas.edu/~pstone/Courses/393Rfall18/
http://www.cs.utexas.edu/~pstone/Courses/394Rfall19/
https://plato.stanford.edu/entries/action-perception/
https://mitpress.mit.edu/books/action-perception

