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Problem: Deep 3D Perception on Point Clouds

● Point cloud is a natural form of 3D sensing, which is usually the output of many 3D sensors like LiDAR. 

Applications: indoor navigation, self-driving vehicles, etc..

● Deep point cloud processing outperforms traditional methods in various tasks, e.g., point cloud 

classification and semantic segmentation, but it is non-trivial.

● Challenge: Point clouds are fundamentally irregular

● Requires neural networks specially designed for point clouds!
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Existing Method: PointNet

● A pioneering work: designed specifically for point cloud processing

● Permutation invariant: global feature will not change if we change the order of the input points

● Drawback: works on individual points, ignores the geometric cues; cannot capture local information

𝑛 × 3
points
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Pooling
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Global feature

Qi C R, Su H, Mo K, et al. Pointnet: Deep learning on point sets for 3d classification and segmentation[C]
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Existing Method: PointNet++

● Improvement: capture local information by sampling and grouping with furthest point sampling 
Recall previous talk

● Still permutation invariant

● Drawback: still treat points independently in local scale because of using PointNet

Qi C R, Yi L, Su H, et al. Pointnet++: Deep hierarchical feature learning on point sets in a metric space
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Motivation of the Proposed Method

● Proposed Method: EdgeConv
Will elaborate later

● Motivation 1: The local structure itself is informative. It should be considered when processing each 
point 

● Motivation 2: Keep permutation invariance

● Motivation 3: Easy to implement
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EdgeConv
: Input point cloud / features in the intermediate layers

: A k-nearest neighbor graph (only nodes that are kNNs are connected)

: Edge features, where h is a nonlinear function with learnable parameters

EdgeConv:

: An aggregation function, can be sum or max

: The authors adopt this form of nonlinear function



CS391R: Robot Learning (Fall 2021) 7

EdgeConv: An illustration

• Concatenate the point features, pass the concatenated feature through a MLP to get edge features

• A symmetric aggregation function is applied upon the edge features to get new point feature
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EdgeConv: Properties

● EdgeConv extracts local information for every point

● EdgeConv is beyond the coordinate space, instead, it works in the feature space so that it can 
draw connection between semantically close points (In contrast, PointNet++ only works in the 
original coordinate space).

● EdgeConv is permutation invariant and easy to implement because it only involves kNN and 
symmetric operation
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Dynamic Graph CNN

● By simply plug in EdgeConvs into a network, we get Dynamic Graph CNN (DGCNN).

● Dynamic Graph!
The authors find it beneficial to recompute the graph using the nearest neighbors in the feature 

space produced by each layer.
A new graph, instead of a static graph for each layer ! 
A major difference from previous graph CNNs.
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Why Dynamic Graph?
Input layer layer 1 layer 2 layer 3

Dynamic Graph

Static Graph

Dynamic graph enables the network to choose which point to use from the global point set.

Static graph is too restrictive, can be a suboptimal choice for extracting local information.

In later stages, DGCNN learns to gather semantically similar points, despite the large distance in 
the original coordinate space
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Relationship to Transformers

DGCNN Transformers

Global Receptive Field Yes Yes

Distance Function Euclidean Distance Inner Product

Attention Score Binary (kNN) Softmax

Aggregation Function Max Pooling Linear Combination

A transformer-like network before transformer era.
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Empirical Evaluation: Point Cloud Classification

● Dataset: ModelNet40, which consists 12,311 meshed CAD models with 40 categories. 

9,843 models are used for training and 2,468 models are used for testing. 

1024 points are uniformly sampled to create the point clouds.

● Hyperparameters: k = 20. See the paper for others.

● Tested Methods:
Ours (Baseline):  Static graph computed from the input.

Ours:                    Dynamic graph.

Ours (2048):         Dynamic  graph with 2048 input points

and k = 40.

Outperforms previous SOTAs by a 0.6% on overall Acc!
0.7% improvement from dynamic graph.
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Empirical Evaluation: Part Segmentation
● Dataset: ShapeNet part dataset. 

Each point from a point cloud set is classified into one of the 50 predefined part labels. 

The dataset contains 16,881 3D shapes from 16 object categories. 

2,048 points are sampled from each training shape.

● Metric: Intersection-over-Union (IoU)

Yields comparable performance as previous methods
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Empirical Evaluation: Indoor Scene Segmentation
● Dataset: Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS)

Includes 3D scan point clouds for 6 indoor areas including 272 rooms in total. 

Each point belongs to one of 13 semantic categories.

● Evaluation Protocol: 

Each room is split into blocks with area 1m × 1m, and each point is represented as a 9D vector (XYZ, RGB, 

and normalized spatial coordinates). 

4,096 points are sampled for each block during training. All points are used for testing. 

Use 6-fold cross validation over the 6 areas, and the average evaluation results are reported. 

Beats all counterparts in overall accuracy
Ranks #2 in mean IoU
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Qualitative Results
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Conclusion from the Empirical Evidence

● DGCNN is a powerful structure, yielding state-of-the-art performance on popular benchmarks 

including ModelNet40, ShapeNet Part segmentation and S3DIS semantic segmentation.

● Strengths: Simple yet powerful 

Very high performance on ModelNet40

● Weaknesses: No clear advantage over PointNet++ on part segmentation (85.2 mIOU v.s. 85.1 mIOU)

Lack comparison with baselines on the small accessory experiments
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Limitations

● GPU Memory Consumption: Construct the graph requires to compute all pairwise distances between 

all the points --- very high GPU memory consumption

● Varying Density: Point clouds can have varying density

at different positions; 

a fixed k may be not flexible enough

● Large-scale Point Cloud: DGCNN does not compress the 

number of points during forward pass 
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Possible Future Directions

● From the ablation study, larger k do not always bring better performance
Possible direction: design a strategy (or by learning) to automatically find appropriate k for each point

● How to decrease the memory consumption?

Possible direction: Combing the grouping module in PointNet++ with DGCNN

● Faster computation?
Possible direction: Maintain an octree for constructing graph
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Existing Future Direction: KPConv

● DGCNN has high computational cost

● KPConv adopts convolution to gather local 

information

● Extracts local information for every point; 

saves computation by only considering a local 

ball

● Yields better results on segmentation tasks

Thomas H, Qi C R, Deschaud J E, et al. Kpconv: Flexible and deformable convolution for point clouds
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Extended Readings: Point Cloud Processing

● 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks, CVPR 2019
High performance point cloud processing with sparse convolution on voxelized point clouds

● 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks, CVPR 2018
Another great work on point cloud processing with sparse convolution

● RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds, CVPR 2020

Fast processing on large-scale point clouds by simple random sampling
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Summary

v Problem: point cloud processing with deep networks

v A fundamental part of robot perception

v Point clouds are irregular, asking for specially designed neural networks

v Previous works fail to leverage the geometric structure in point clouds

v This paper proposes EdgeConv, and builds Dynamic Graph CNN with this module

v EdgeConv extracts local information for each point with dynamic graph

v DGCNN yields state-of-the-art performance on point cloud classification and segmentation
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Thank You!
Questions?


