

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Presenter: Kevin Black

9/9/2021

Robot Grasping

Robot Grasping: Considerations

- Geometric vs. data-driven
- Object model: known vs. unknown
- Sensor data:
 - RGB vs. RGB-D
 - Single-view vs. multi-view
- Open-loop vs. closed-loop
- Human-supervised vs. self-supervised learning

Robot Grasping: Considerations

- Geometric vs. data-driven
- Object model: known vs. unknown
- Sensor data:
 - RGB vs. **RGB-D**
 - Single-view vs. multi-view
- Open-loop vs. closed-loop
- Human-supervised vs. self-supervised

Prior Work

- Efficient grasping from RGBD images: Learning using a new rectangle representation (ICRA 2011)
 - Introduces the hand-labeled Cornell grasping dataset, which became widely used
- Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics (RSS 2017)
 - A continuing line of work that has explored multiple gipper types (e.g. suction)
- Deep Object Pose Estimation for Semantic Robotic Grasping of Household Objects (CoRL 2018)
 - Performs pose estimation on known objects in order to geometrically compute grasps
- Grasping in the Wild: Learning 6DoF Closed-Loop Grasping from Low-Cost Demonstrations (ICRA 2020)
 - Learns from real human demonstrations, uses reinforcement learning for closed-loop feedback

Problem Formulation

Input: single-view RGB-D image

[Fu et al. 2015]

Output: grasp affordance

 $oldsymbol{t} \in \mathbb{R}^3$ Grasp center $w \in [0, w_{max}]$ Gripper width $oldsymbol{r} \in SO(3)$ Gripper rotation $q \in [0, 1]$ Grasp quality (success probability)

Performance measured using grasp success rate

Target Scenarios

Packed objects (more occlusion)

Piled objects (less occlusion)

Primary Contribution

Grasp Detection via Implicit Geometry and Affordance (GIGA)

- Takes a single side view RGB-D image as input
- Network architecture which utilizes implicit neural representations
- Also learns 3D reconstruction as an auxiliary task

- Key insight: learning grasp detection and 3D reconstruction in tandem will synergize to improve overall performance in both tasks
- 3D reconstruction will especially help to reason about occluded regions

Truncated Signed Distance Function (TSDF)

Implicit Neural Representations

Represent data as a function from spatial coordinates to values, i.e.

 $f:\mathbb{R}^n\to\mathcal{Y}$

Usually conditioned on additional input:

 $f:\mathbb{R}^n\times\mathcal{X}\to\mathcal{Y}$

Advantages:

- "Infinite resolution" (no discretization)
- Memory-efficient

[Skorokhodov et al. 2020]

Implicit Representations for 3D Reconstruction

[Mescheder et al. 2019]

GIGA: Grasp Detection + 3D Reconstruction

GIGA Architecture

*Backbone architecture largely based on prior work: Convolutional Occupancy Networks (2020) by Peng et al.

GIGA Architecture

*Backbone architecture largely based on prior work: Convolutional Occupancy Networks (2020) by Peng et al.

GIGA Architecture

*Backbone architecture largely based on prior work: Convolutional Occupancy Networks (2020) by Peng et al.

Training Details

- Trained in simulation
- Grasps randomly sampled around surface of objects
- Grasp width and rotation only trained on successful grasps
- Data must be balanced by eliminating extra unsuccessful grasps
- 3D reconstruction trained using uniformly sampled points
- Noise added to images to aid with sim2real transfer

Closest Existing Approach: Volumetric Grasping Network (VGN)

- Predicts grasp affordance for each voxel rather than using an implicit neural representation
- Does not learn 3D reconstruction

GIGA Grasping Results

Method	Packed		Pile	
	GSR (%)	DR (%)	GSR (%)	DR (%)
SHAF [13] GPD [16] VGN [4]	$56.6 \pm 2.0 \\ 35.4 \pm 1.9 \\ 74.5 \pm 1.3$	$58.0 \pm 3.0 \\ 30.7 \pm 2.0 \\ 79.2 \pm 2.3$	50.7 ± 1.7 17.7 ± 2.3 60.7 ± 4.2	42.6 ± 2.8 9.2 ± 1.3 44.0 ± 4.9
GIGA-Aff GIGA GIGA (HR)	77.2 ± 2.3 83.5 ± 2.4 87.9 ± 3.0	78.9 ± 1.7 84.3 ± 2.2 86.0 ± 3.2	67.8 ± 3.0 69.3 ± 3.3 69.8 ± 3.2	49.7 ± 1.9 49.8 ± 3.9 51.1 ± 2.8

GIGA-Aff: without the reconstruction component **GIGA (HR)**: high resolution (60x60x60 sampled grasp candidates rather than 40x40x40)

GSR: grasp success rate **DR**: declutter rate (proportion of items removed after running until failure)

GIGA Grasping Results

GIGA 3D Reconstruction Results

Method	IoU (%)	IoU-Grasp (%)	$\Delta\%$ (IoU-Grasp-IoU)
GIGA-Detach GIGA-Geo	53.2 70.0 80.0	68.8 78.1 84 0	+15.6 +8.1 +4.0

GIGA-Detach: features trained for grasping, weights frozen, final layers trained for reconstructionGIGA-Geo: end-to-end trained for reconstruction only

IoU: intersection-over-union of reconstructed object

IoU-Grasp: the IoU around graspable regions only

GIGA 3D Reconstruction Results

Real Robot Experiments

Method	Packee	d
	GSR (%)	DR (%)
VGN [4]	77.2 (61/79)	81.3
GIGA	83.3 (65/78)	86.6
Method	Pile	
	GSR (%)	DR (%)
VGN [4]	79.0 (64/81)	85.3
GIGA	86.9 (73/84)	97.3

Limitations/Future Work

- Currently throws away reconstructed 3D information at test time
 - Could be used for closed-loop control
- Assumes a single static viewpoint
 - Not generalizable to a mobile robot or camera system
- sim2real transfer not very thoroughly evaluated
 - A real out-of-laboratory setting would be much more noisy and likely hurt performance significantly
- Could possibly be extended to other manipulation tasks?

Summary

- Grasping arbitrary objects is a very hard but fundamentally useful task
- GIGA does not rely on known object models, multiple views, or uncluttered/unoccluded scenes
- Key insights:
 - Implicit neural representations work well for efficiently representing grasp affordance
 - Learning 3D reconstruction synergizes with grasping, especially for occluded objects
- GIGA demonstrates state-of-the-art results on cluttered grasping from a single view

Thank you!

Extended Reading

- <u>A Survey on Learning-Based Robotic Grasping</u>
- Volumetric Grasping Network
- <u>Occupancy Networks</u>
- <u>Convolutional Occupancy Networks</u>