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How do we represent signals ?

’WIM'IFWW"m

1. Image - Discrete pixels

2. 3D shape - Voxels, point clouds, meshes

. . . 3D Representations
3. Sound wave - Discrete samples of intensity

Lose details when representing signals in N /

discrete manner!!
= = &

» Traditional Explicit Representations = Discrete
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Neural Implicit Representation

Instead of representing signals in a discrete manner, new approach has been
studied called neural implicit representation.

Shapes

Explicit representation Implicit representation
Spatial coordinate (x, y, z) in N &= Spatial coordinate (x, y, z) in R
- Occupancy - Occupancy

1. Explicit way tends to lose details
2. Memory expensive (scales with resolution)
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Why is it important?

Neural implicit representation is applicable to a variety of scientific fields:

Images Shapes Audio Quantities defined by a

differential equation

: : : 1 —~\
1. ImageIV|deoIauo!|o proce.ssmg. | H e HHWH
- Image/video/audio reconstruction . 71 N—l

ReLU MLP

2. 3D shape parts, objects, and scenes generation.
—> Signed distance functions / occupancy networks.
- Encode object appearances (from multi-view 2D images — Neural rendering)

3. Solving differential equation for inverse problems.
- Solving the Poisson Equation.
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Why is it important?

Covers a family of problem setup that can be expressed as below:

find ®(x) subjectto C,, (a(x) Bl ) VO] sase) =B EE s 0= Ty M

Optimize for > £ = / 219 ) Com (a(x), B(x), VB(x), ...)||dx,

1. Image fitting Limg —/II<I> x)|| dx
2. Gradient / Laplacian fitting v = [ 1986 = Vsl dx, Lt :/QIIM(x)—Af(x)II dx.
3. Signed Distance Functions (SDFs)

Csdf:/QH|Vx‘I>(x)|—1HdX—I—/Q||<I>(X)||+(1—(Vx¢(x),n(x)))dx-|—/ ¥ (D(x))dx

Q\Qo
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What is the problem?

ReLU (one of the most common activation functions) based implicit neural

representations lack the capacity to represent fine details in the underlying

signals. Images Shapes Buidio Quantities defined by a

differential equation

7
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What is the problem?

ReLU-based network is incapable of representing the derivatives since ReLU is

piecewise linear (high order derivative 0 everywhere).
Why is derivative important?
- Solving PDE (example below: solving Poisson equation for image fitting)

o — /ﬂ IVe®(x) — Vi f(x)|| dx, of Liap = /Q 1AD(x) — AF(x)]| dx.

RelLU P.E. Tanh
FittingV f (x) _ Ground truth FittingV f (x) Fitting A f (x)
NG e 2

Gradients
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What is the problem?

[— Output Implicit Formulation
2 supervised by Find @& that minimizes £
Task: Image fitting cw  joew Lune = [ 009 — S0 x
spatial coords. RGB values “

_ Ground Truth _ Tanh e RELUPE._____ RBF-ReLU Softplus ELU ) ReLUPE. (L=4,)q

Not just ReLU, but no activation functions can preserve output / first / second order derivatives
closely to the ground truth.
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Solution: Use periodic activations !

d (X) = NN (Cbn—l oF ) ITE o S (b()) (X) + b,, X;— ¢; (Xz) = Sin (szz + bl) ;

Sine function has a unique property: any derivative of a sine function is sine
function itself (a phase-shifted). > SIREN (Sinusoidal representation network).

We can supervise any derivative of SIREN with “complicated” signals, which is
crucial in solving boundary value problems.
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Simple, but ...

We need a particular initialization that preserves the distribution of activations
through its layers.

- Keep input and the output distribution for each layer to be the same.
- If we don’t preserve the distribution, the output of each layer diffuses.
- Due to the periodicity of the activation, the output mixes together.
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Activation Distribution Activation Spectrum Gradient Distribution
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Experiment 1: Image Fitting e = [ 1960 - £60) i

Ground Truth ReLU _“ Tanh ) ReLUPE. _____ RBF-ReLU SIREN @

===Tanh
RelU P.E.

=== RBF-ReLU

—=SIREN

T
6’;__.""':—" ———
,1;

R ", 5,000 10,000 15,000
", Iterations

-_———‘—'/

Iterations 500
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Experiment 1: Image Fitting

- Output Implicit Formulation
[ supervised by Find & that minimizes £
Setup: :
2 3
x € R fx) € B Line = [ 1200 = fx)] dx
Q

spatial coords. RGB values

___Ground Truth - ReLU Tanh " ReLUPE. RBF-ReLU - SIREN
¥ [ 3 k. 5

Input (x, y) coordinate, and output RGB / BW value for a
particular image X.
e.g.) f((1, 1)) = u where u is the value of pixel 1, 1.

1. No activation function is capable of outputting all 3.

S

Hex

2. SIREN (sinusoidal representation network) . PSNR: Peak Siq‘hal-to-Noise Ratio
converges a lot faster | mel s
| MSE=——" " "[I(i,5) — K(i, )’
3. For each one of output/ first/ second order mmn %= im0 L\ where | s original input, K is the
derivatives, SIREN produces the closest to ground PSNR = 10 - log,, [ 2FAX1 | network output, and MAX s the
truth. 0\ MSE | max possible value inI. (e.g., 255

in 8bits).
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Experiment 2: Representing Shapes

ReLU (baseline) - SIREN (ours)

% 5
Inout Output Implicit Formulation
P supervised by Find @ that minimizes £
x € R? f(x) €R cEikonaF/ B(x)| + (1 — (VO(x), VF(x))) dx
Qo
spatial coord. signed distance A, / [|[Ve(x)| — 1] dx
Q
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Experiment 2: Representing Shapes

Definition |edit]

Signed diStance fU nCtion (SDF) If Qis a subset of a metric space, X, with metric, d, then the signed distance function, f,
is defined by
- How we model the 3D shape. fa) = {d(z,an) ifz € O
- Measures the distance from a point to a shape ~dle; oY) i zve il
Surface (+ inside. - outside). where 92 denotes the boundary of (). Forany z € X,

d(z,09) := ir‘la%d(m, Y)
Just like we train a neural network to model a metric "
space that represents visual/semantic similarity, we
learn our neural network to model a specific kind of Properties in Euclidean space |edit)
metric space where the distance is defined as SDF.

ivhere inf denotes the infimum.

If Qis a subset of the Euclidean space R" with piecewise smooth boundary, then the
signed distance function is differentiable almost everywhere, and its gradient satisfies

Why’) the eikonal equation
Think about the “boundary” of a set in this metric IVF =1
space as the surface. Then, if an arbitrary (x,v.z)—7 If the boundary of Qis C for k=2 (see differentiability classes) then dis C* on points
point lies on a surface. then the distance s mlnlmal sufficiently close to the boundary of Q.18] In particular, on the boundary f satisfies
] v L V) .
The surface has to be smooth, so restrict the loca! - V(@) =N,

change. Finally, the orientation-siiould match.
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Experiment 2: Representing Shapes

ReLU (basehne) SIREN (ours) ReLU (baseline) SIREN (ours)
~ 3 S i —

We represent shape with differentiable
signed distance functions (SDFs).

Signed distance function of a set X determines the distance of a given point x from the boundary of the set X.

Luar= [ 1920911t | 861+ (1= (V200N i+ [ 0(®0x))ax,

t 0 I Q\Qo t

Points on the shape has distance = 0 by

“Eikonal term” to make the  the definition of SDF and zero-level set. Constrains off-surface
function SDF (smooth points.
surface) Also constrains the gradient to be equal to

the normal of the shape (gradient at any
point is perpendicular to the level set).

* }br(x)_ — e_Xp(—_Oé' |(I)(X>|)7

« (2o Zero-level set.

= {(x,y)_ I. ¢(z,y) = 0},
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TL;DR: Accurate Representation for Reconstruction

Ground Truth RelLU MLP SIREN
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Discussions & Critiques

1. (+) Simple but effective that can impact a variety of different scientific fields (more than
what | showed in this ppt).

2. (+) Well-analyzed experiments and justifications with abundant qualitative evaluations.

3. (-) Lack of quantitative evaluations, especially for the shape estimation.
4. (-) Despite the extensive experiments for validation, the fact that the model will be

inherently dependent on initialization (e.g., condition dependent on input dimension n)

may limit its practicality for the future research.
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Future Work & Extended Readings

Related concurrent works:

Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains

(https://arxiv.org/abs/2006.10739)
—> TL.DR: "The” Fourier Mapping is 7(v) = [cos(27Bv),sin(27Bv)]" where B is Gaussian sampled with tuned std.

- Inspired by positional encoding (“ReLU + PE” in this paper for an example).
- Only requires this transformation for the input.

Both works are for learning better neural implicit representations.

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
(https://arxiv.org/abs/2003.08934)

- A really cool image-based novel view synthesis paper using neural implicit representation.
- SIREN could be used together here.
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https://arxiv.org/abs/2006.10739
https://arxiv.org/abs/2003.08934

Summary

1. Implicit neural representations with periodic activation functions.
2. |Initialization scheme for training these representations.

3. Applications to multiple problems.
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Question?

Thank you !
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