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Problem Setting

% Self-attention based architectures (ex: Transformers) have become
SOTA in NLP and ASR and can scale up to 100+ billion parameters

% Unfortunately, neither ResNet-style CNNs (the previous Vision SOTA)
nor CNNs combined with self-attention scale as well

% The authors experiment with applying a standard Transformer directly
to images with the fewest possible modifications
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Motivation: Why Do We Care?

% Robots need to be able to perceive their surroundings; ex: What
objects are around them?

% To do this, they will need human-level perception capabilities at the
lowest possible computational cost

% In NLP and ASR, Transformers have a lower computational cost than
CNNs for the same level of performance and have thus replaced
them. Can the same be true for vision tasks like object detection?
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Related Work: Attention

< English: “| have a dog”, Spanish: “Yo tengo un perro”

% Keys: Our inputs -> “| have a dog”

% Queries: Our outputs -> “Yo tengo un perro”

% Values: The combination of our inputs that equal the outputs

% Trained with a feedforward network using backpropagation

Bahdanau et al., 2014
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Related Work: Attention
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Related Work: Scaled-Dot Product Attention

Multi-Head Attention

Scaled Dot-Product Attention
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Related Work: Multi-Head Self-Attention
QKT

Vdy
% Q= Queries, K = Keys, V = Values

% d_k s the dimension of the key matrix. This is used for normalization
to minimize the chance of vanishing/exploding gradients.

Attention(Q, K, V) = softmax( )1

% Multiple heads are used to reduce peaking and to capture additional
distributions (e.g. local vs global self-attention)

Vaswani et al., 2017
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Context: A Self-Attention Network (Transformer)

Vision Transformer (ViT)
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Proposed Approach: Vision Transformer

< How is this different from a standard Transformer?

o First, we convert H x W x C dimensional images into N x (P*2 x
C)

m H x W is resolution of the original image, C is the number of
channels, P x P is the resolution of the patch, N is the
resultant number of patches

o We have N patches because self-attention is quadratic ->
previous papers struggled to make images work with this due
to computational cost
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Proposed Approach: Vision Transformer
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Proposed Approach: Vision Transformer

7

% We flatten the patches into D dimensions to get our embeddings

o Alternatively, can use a ResNet (CNN + skip connections) to generate
features (hybrid setup)

 We use supervised pre-training (classification) over semi-supervised
training. Unlike in NLP and speech, supervised pre-training performs better
(~84% vs ~80% in ViT-B/16 trained on ImageNet)

% During fine-tuning, we replace the classification head with a zero-initialized
linear layer. We ultimately optimize for Topl ImageNet accuracy.

He et al., 2015
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Proposed Approach: A Self-Attention Network (Transformer)

Vision Transformer (ViT)
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Experimental Setup: ViT Training Details

Model Layers Hiddensize D MLP size Heads Params
ViT-Base 12 768 3072 12 86M

ViT-Large 24 1024 4096 16 307"M
ViT-Huge 32 1280 5120 16 632M

% Pre-training: Adam optimizer, batch size 4096, weight decay 0.1
% Fine-tuning: SGD with momentum, batch size 512

% Baselines: ResNet 152x4, EfficientNet-L2

% Metrics: ImageNet Top-1 Accuracy
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Experimental Results

Ours-JFT Ours-JFT Ours-121k BiT-L Noisy Student

(ViT-H/14)  (ViT-L/16)  (ViT-L/16) (ResNet152x4) (EfficientNet-L2)
ImageNet 88.55+0.04 87.76+0.03 85.30+002  87.54+0.02 88.4/88.5*
ImageNet Real 90.72+0.05 90.54+0.03 88.62+0.05 90.54 90.55
CIFAR-10 99.50+0.06 99.42+0.03 99.15+0.03 99.37 +0.06 —
CIFAR-100 94.55+0.04 93.90+0.05 93.25+0.05 93.51 +0.08 —
Oxford-IIIT Pets 97.56 +0.03 97.32+0.11 94.67+0.15 96.62 +0.23 -
Oxford Flowers-102  99.68 +0.02 99.74+0.00 99.61 +0.02 99.63 +0.03 —
VTAB (19 tasks) 77.63+0.23 76.28+046 72.72+0.21 76.29 +1.70 —
TPUv3-core-days 2.5k 0.68k 0.23k 9.9k 12.3k
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Discussion of Results

Ours-JFT Ours-121k BiT-L

(ViT-H/14)  (ViT-L/16) (ResNetl152x4)
ImageNet 88.55+0.04 85.30+0.02 87.54 +0.02
ImageNet Real 90.72 +0.05 88.624+0.05 90.54
CIFAR-10 99.50 +0.06 99.15+0.03 99.37 +0.06
CIFAR-100 94.55 +0.04 93.25+0.05 93.51 +0.08
Oxford-IIIT Pets 97.56 +0.03 94.67+0.15 96.62 +0.23
Oxford Flowers-102  99.68 +0.02  99.61 +0.02 99.63 +0.03
VTAB (19 tasks) 77.63+0.23 72.72+0.21 76.29 +1.70
TPUv3-core-days 2.5k 0.23k 9.9k
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ViT is far more computationally
efficient than ResNet and
EfficientNet (in terms of FLOPs and
memory), but you still shouldn’t be
training this at home

When pre-trained on large
datasets (e.g. JFT-300M), ViT is the
new state-of-the-art. This is due to
the higher receptive field of
self-attention vs convolutions.

On the other hand, it trails
CNN-based models when
pre-trained on smaller datasets
due to lack of inductive bias




More Experimental Results
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More Experimental Results
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Input  Attention : .
More Discussion of Results

-

% Position embeddings are fairly good at
learning what part of the image a patch is in
despite not being given this information
beforehand

% Attention becomes effective very early on ->
some heads attend to most of the image
already in the lowest layers, although the
highly localized nature decreases in hybrid
models that apply a ResNet first

% Model ultimately attends to image regions
semantically relevant for classification
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Limitations

* Hard to reproduce from scratch: JFT-300 is a private Google dataset and
ImageNet is too small to train ViT from a randomly initialized checkpoint

* 0(n”2) self-attention layer will punish models inputting a large amount of
patches (major problem for object detection and segmentation)

o Paper showed this started to be a problem at size 384 x 384 for larger
models (also when ViT inference times began to diverge from ResNet)

o Solutions exist to this in NLP, ex: Longformer
(https://arxiv.org/pdf/2004.05150.pdf) and FNet
(https://arxiv.org/pdf/2105.03824.pdf), but we’ll have to wait for
Brain/FAIR/MSR/etc. to train us a model with these benefits
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https://arxiv.org/pdf/2004.05150.pdf
https://arxiv.org/pdf/2105.03824.pdf

Future Work/Challenges

* At the time of writing, ViT was only applied to classification and not other
computer vision tasks like detection and segmentation

s Are there other ways to make self-supervised pre-training work? No real
reason for vision to be unique here.

*¢ Further scaling of the model to billions of parameters like its NLP brethren
GPT-3, T5, and the Switch Transformer
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Extended Readings

% ConViT: Improving Vision Transformers With Transformer With Soft
Convolutional Inductive Biases: https://arxiv.org/pdf/2103.10697.pdf

« Vision Transformers for Dense Prediction:
https://arxiv.orq/pdf/2103.13413.pdf

% Towards Transformer-Based Object Detection:
https://arxiv.org/pdf/2012.09958.pdf

% Transformers in Vision: A Survey: https://arxiv.org/pdf/2101.01169.pdf
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Summary

* Problem: Can Transformers be directly applied to image recognition? If so, how
do they perform compared to traditional CNNs?

¢ Previous Limitations: Neither vanilla CNNs nor CNNs with self-attention scale as
well as Transformers do in NLP and ASR

e Importance: If this experiment succeeds, we can get the same (or better)
performance at lower computational cost - instrumental for mobile robots

e Key Insights: ViT is more computationally efficient for the same results than
ResNet, but require large datasets to become state-of-the-art

e Demonstrated a new SOTA in image classification
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