

End-to-End Object Detection with Transformers

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko

Presenter: Jay Liao

09/14/2021

Main Problem

- Robot vision use object detection to get object information in the environment
- Majority of the object detection models today use hand-designed components
 - Encodes prior knowledge about the object detection
- Prior end-to-end object detection works
 - Used other forms of prior knowledge
 - Used autoregressive decoding
 - Were not as competitive in results

Motivation

- DETR (DEtection TRansformer)
 - Try out transformer architecture for object detection
 - Transformer can predict multiple objects in parallel
- Bipartite Matching
 - Unique matching
 - Invariant to permutations of predicted objects
 - No more autoregressive decoding to avoid duplicates
 - Bypass the need for NMS or anchors

Problem Setting

- **Object Detection**: for each object in the image:
 - Identify the bounding box of the object in the image
 - Classify the object
- Panoptic Segmentation: Given a set of L semantic classes encoded
 - by S := $\{0, ..., L 1\}$, for each pixel i of an image:
 - Identify I_i of the pixel, where I_i ∈ S is the semantic class of pixel i
 - Identify z_i of the pixel, where z_i represents the pixel's instance id
 - Groups pixel of the same class into distinct segments

(b) semantic segmentation

(d) panoptic segmentation

Related Work

- Vinyals et al., 2016: Order Matters: Sequence to Sequence for Sets
 - General approach to set prediction but requires autoregressive decoding
- Thang et al., 2019: Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive
 <u>Training Sample Selection</u>
 - Shows that performance of object detectors using proposals or anchors are limited by the exact way those initial guesses are set
- Ren et al., 2017: End-to-End Instance Segmentation with Recurrent Attention
- Salvador et al., 2017: <u>Recurrent Neural Networks for Semantic Instance Segmentation</u>
 - Both used bipartite-matching loss with encoder-decoder but evaluated on small datasets, and both used autoregressive models (RNNs)

The DETR Model

Set Prediction Loss for Object Detection

- Infer a fixed-size set of N predictions, where N is much larger than the number of objects in an image
- Use Hungarian Algorithm to find a bipartite matching with the lowest matching cost:

$$\hat{\sigma} = \underset{\sigma \in \mathfrak{S}_N}{\arg\min} \sum_{i}^{N} \mathcal{L}_{\text{match}}(y_i, \hat{y}_{\sigma(i)})$$

Matching cost accounts for class probability and the predicted box:

$$-\mathbb{1}_{\{c_i\neq\varnothing\}}\hat{p}_{\sigma(i)}(c_i)+\mathbb{1}_{\{c_i\neq\varnothing\}}\mathcal{L}_{\mathrm{box}}(b_i,\hat{b}_{\sigma(i)})$$

Set Prediction Loss for Object Detection

Loss function: A Hungarian loss for all pairs matched in the previous step using NLL and bounding box loss:

$$\mathcal{L}_{\text{Hungarian}}(y,\hat{y}) = \sum_{i=1}^{N} \left[-\log \hat{p}_{\hat{\sigma}(i)}(c_i) + \mathbb{1}_{\{c_i \neq \varnothing\}} \mathcal{L}_{\text{box}}(b_i, \hat{b}_{\hat{\sigma}}(i)) \right]$$

Bounding box loss use a combination of the L1 loss and the generalized IoU loss that is scale-invariant:

$$\lambda_{\text{iou}} \mathcal{L}_{\text{iou}}(b_i, \hat{b}_{\sigma(i)}) + \lambda_{\text{L1}} ||b_i - \hat{b}_{\sigma(i)}||_1$$

Transformer Encoder:

- Reduce channel dimension (1x1 Convolution)
- Flatten features into a sequential feature map
- Add positional encodings to input of each attention layer
- A multi-head self-attention module and a feed forward network

- Use encoded representations, d x HW embeddings, from encoder as key and value
- Add N learnt positional encodings (object queries) to input of each attention layer
- Transforms N object queries into N output embeddings in parallel (non-autoregressive)
- Trained with auxiliary decoding loss to improve training

 \mathbf{x}

Prediction Feed-forward networks (FFNs):

- For normalized center coordinates: 3-layer perceptron with ReLU activation, hidden dim d
- For class prediction: a linear projection layer with softmax
- Class prediction also predicts "no object"

Panoptic Segmentation Head

Predicts a binary mask of the predicted bounding boxes

- Compute multi-head attention heatmap of decoder output over encoder output
- Use an FPN-like architecture to increase the resolution of the mask
- Mask is supervised independently using DICE/F-1 loss and Focal loss

Experimental Setup

Tasks and Datasets

- Object Detection and Panoptic Segmentation
- COCO 2017 detection and panoptic segmentation datasets
 - 118k training images and 5k validation images
 - Each image is annotated with bounding boxes and panoptic segmentation
 - Average 7 instances per image; up to 63 instances in a single image in training dataset
 - Panoptic annotations of 53 stuff categories and 80 things categories

Detection Baselines

- Faster R-CNN
 - Features explored: Dilated C5 (DC5), Feature Pyramid Network (FPN), and ResNet-101
 backbone with FPN (R101-FPN)
 - Stronger Faster R-CNN baselines:
 - Longer training (like for transformers)
 - Same random crop augmentation
 - Add generalized IoU to the box loss
- Can DETR perform comparably to ResNet under similar settings?

Detection Metrics

- AP (Average Precision)
 - Precision: True Positives / (True
 - Positives + False Positives)
 - Correct predictions out of all predictions
 - Recall: True Positives / (True
 Positives + False Negatives)
 - Correct predictions out of all objects in ground truth
 - Average Precision: area beneath the precision-recall curve

Image Source

Detection Metrics

- AP (Average Precision)
 - Intersection-over-Union (IoU): Area of Overlap / Area of Union
 - Measures how much bounding box prediction intersects with ground truth
 - \circ AP: Average AP at IoU = 50%, 5%, and 95%.
 - AP_{50} : Only bounding box with IoU = 50% is counted as true positive
 - Similarly for AP₇₅
 - \circ AP_S, AP_M, AP_I: AP based on objects of different sizes
 - Refer to: <u>https://cocodataset.org/#detection-eval</u>

Panoptic Segmentation

- Baselines
 - UPSNet
 - Panoptic FPN
 - Same data augmentation as DETR
 - Longer training schedule

Panoptic Segmentation Metrics

- Mask AP for things classes
- Panoptic Quality
 - PQth: PQ for things
 - PQst: PQ for stuff

or things
or stuff
$$PQ = \frac{\sum_{(p,g)\in TP} IoU(p,g)}{|TP| + \frac{1}{2}|FP| + \frac{1}{2}|FN|}$$

$$PQ = \underbrace{\frac{\sum_{(p,g)\in TP} IoU(p,g)}{|TP|}}_{\text{segmentation quality (SQ)}} \times \underbrace{\frac{|TP|}{|TP| + \frac{1}{2}|FP| + \frac{1}{2}|FN|}}_{\text{recognition quality (RQ)}}$$

Experimental Results

Detection Results

-								
Model	$\operatorname{GFLOPS}/\operatorname{FPS}$	#params	AP	AP_{50}	AP_{75}	AP_{S}	AP_{M}	AP_{L}
Faster RCNN-DC5	320/16	166M	39.0	60.5	42.3	21.4	43.5	52.5
Faster RCNN-FPN	180/26	42M	40.2	61.0	43.8	24.2	43.5	52.0
Faster RCNN-R101-FPN	246/20	60M	42.0	62.5	45.9	25.2	45.6	54.6
Faster RCNN-DC5+	320/16	166M	41.1	61.4	44.3	22.9	45.9	55.0
Faster RCNN-FPN+	180/26	42M	42.0	62.1	45.5	26.6	45.4	53.4
Faster RCNN-R101-FPN+	246/20	60M	44.0	63.9	47.8	27.2	48.1	56.0
DETR	86/28	41M	42.0	62.4	44.2	20.5	45.8	61.1
DETR-DC5	187/12	41M	43.3	63.1	45.9	22.5	47.3	61.1
DETR-R101	152/20	60M	43.5	63.8	46.4	21.9	48.0	61.8
DETR-DC5-R101	253/10	60M	44.9	64.7	47.7	23.7	49.5	62.3

Panoptic Segmentation Results

schedule,	UPSNet-M	is the	version	with	multiscale	test-time	augmentations.
-----------	----------	--------	---------	------	------------	-----------	----------------

Model	Backbone	PQ	\mathbf{SQ}	\mathbf{RQ}	$ \mathrm{PQ^{th}} $	$\rm SQ^{th}$	$\mathrm{RQ}^{\mathrm{th}}$	$ \mathrm{PQ}^{\mathrm{st}} $	$\mathrm{SQ}^{\mathrm{st}}$	$\mathrm{RQ}^{\mathrm{st}}$	AP
PanopticFPN++	R50	42.4	79.3	51.6	49.2	82.4	58.8	32.3	74.8	40.6	37.7
UPSnet	R50	42.5	78.0	52.5	48.6	79.4	59.6	33.4	75.9	41.7	34.3
UPSnet-M	R50	43.0	79.1	52.8	48.9	79.7	59.7	34.1	78.2	42.3	34.3
PanopticFPN++	R101	44.1	79.5	53.3	51.0	83.2	60.6	33.6	74.0	42.1	39.7
DETR	R50	43.4	79.3	53.8	48.2	79.8	59.5	36.3	78.5	45.3	31.1
DETR-DC5	R50	44.6	79.8	55.0	49.4	80.5	60.6	37.3	78.7	46.5	31.9
DETR-R101	R101	45.1	79.9	55.5	50.5	80.9	61.7	37.0	78.5	46.0	33.0

Panoptic Segmentation Example

Ablations

- More encoder layers improve AP overall
 - Without encoder layers, AP drops by 3.9 with a significant drop of 6.0 AP in large objects

Ablations

- AP and AP₅₀ improve after every decoder layer trained with auxiliary loss, totalling +8.2/9.5 in AP
- Latter layers of decoder inhibits duplicate predictions

Ablations

- Removing FFN decreased AP by 2.3
- Removing positional encodings decreased AP by 7.8
- Using just L1 without the generalized IoU loss decreased AP by 4.8

Critique and Summary

Critique

- DETR requires a long training time
 - \circ Self-attention is has a quadratic complexity of O(n²d)
 - Baseline model took 3 days to train on 16 GPUs (4 image per GPU) for 300 epochs
- Faster R-CNN outperforms DETR in AP_s for object detection
 - AP increase by 1.4 comes at the expense of more GFLOPS and half (10 FPS) the FPS of the best Faster R-CNN model (20 FPS)

Extended Readings

Han et al., 2021: A Survey on Vision Transformers

- Addresses that DETR has a slow convergence and other limitations of DETR.
- Proposed several papers that improved DETR's training time and AP.
- Zhu et al., 2021: Deformable DETR: Deformable Transformers for End-to-End Object Detection
 - Use a deformed attention module instead of self-attention, which attends to a small sample of feature maps instead of all, and this improves both time complexity and AP.
- Chen et al., 2021: Points as Queries: Weakly Semi-supervised Object Detection by Points
 - Encode object centers (points) as object queries to DETR instead of learnt positional encodings. This is done by using a point encoder on predicted points on an image.
- Wang et al., 2021: Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions
 - A backbone that uses a transformer to generate feature pyramids, and the features are compatible with DETR. (Pure Transformers!)

Summary

- DETR: End-to-end object detection using transformers by modeling object detection as a set prediction problem
- Need to remove prediction duplicates without using hand-designed components
 - These components encoded prior knowledge about the task and impacted performance
- Training objective need to be invariant to permutations of predictions
 - Prior works used autoregressive decoding, which takes up inference time
- Bipartite matching allowed training objective to be permutation invariant
- Transformers attended to more information and can predict objects in parallel
- DETR models beat comparable Faster R-CNN models in AP and AP, but lose in AP

Thank You