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Main Problem

+* Robot vision use object detection to get object information in the environment

«* Majority of the object detection models today use hand-designed components

o Encodes prior knowledge about the object detection
#* Prior end-to-end object detection works

o Used other forms of prior knowledge
o Used autoregressive decoding

o  Were not as competitive in results
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Motivation

«» DETR (DEtection TRansformer)

o Try out transformer architecture for object detection

o Transformer can predict multiple objects in parallel

0

%* Bipartite Matching
o Unique matching
m Invariant to permutations of predicted objects
m No more autoregressive decoding to avoid duplicates

o Bypass the need for NMS or anchors
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Problem Setting

«* Object Detection: for each object in the image:

o ldentify the bounding box of the object in the image

o Classify the object

** Panoptic Segmentation: Given a set of L semantic classes encoded (b) semantic segmentation

by S :={0, ..., L - 1}, for each pixel i of an image:
o ldentify | of the pixel, where = S is the semantic class of
pixel i
o Identify z of the pixel, where z represents the pixel's

instance id

m  Groups pixel of the same class into distinct segments n .
(d) panoptic segmentation
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Related Work

%* Vinyals et al., 2016: Order Matters: Sequence to Sequence for Sets

o General approach to set prediction but requires autoregressive decoding

% Zhang et al., 2019: Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive

Training Sample Selection

o Shows that performance of object detectors using proposals or anchors are limited by the

exact way those initial guesses are set

*%* Renetal., 2017: End-to-End Instance Segmentation with Recurrent Attention

%* Salvador et al., 2017: Recurrent Neural Networks for Semantic Instance Segmentation

o Both used bipartite-matching loss with encoder-decoder but evaluated on small datasets, and

both used autoregressive models (RNNs)
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https://arxiv.org/pdf/1511.06391.pdf
https://arxiv.org/pdf/1912.02424.pdf
https://arxiv.org/pdf/1912.02424.pdf
https://arxiv.org/pdf/1605.09410.pdf
https://arxiv.org/pdf/1712.00617.pdf
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Set Prediction Loss for Object Detection

** Infer a fixed-size set of N predictions, where N is much larger than the number of objects in an image

«* Use Hungarian Algorithm to find a bipartite matching with the lowest matching cost:

= arg min Z L match (yza ya(z))
cEGN i

«* Matching cost accounts for class probability and the predicted box:

~L¢,201P0() (€) + Liei20) Loox(bis b))
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Set Prediction Loss for Object Detection

«* Loss function: A Hungarian loss for all pairs matched in the previous step using NLL and bounding box

loss:
N A
EHungarian (y7 ?)) — Z [_ log ﬁ&(z’) (Cz) + ]l{ci;é@}ﬁbox(bia bs (7’))]
—1

«* Bounding box loss use a combination of the L1 loss and the generalized loU loss that is

scale-invariant:

AiouLiou(Dis bo(iy) + AL1|bi — oy
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DETR Architecture

'
backbone | encoder

I
set of image features::
|

__________________________________

class,

FFN > -

FFN |

transformer object

decoder

aoda

object queries

transformer
encoder

'class,
FFN > Bk

FFN (>

CS391R: Robot Learning (Fall 2021) 9




DETR Architecture
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DETR Architecture
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% Transformer Encoder:

— dx HxW
o Reduce channel dimension (1x1 Convolution) CXHXW—z €R

o Flatten features into a sequential feature map deIW
o Add positional encodings to input of each attention layer Positional Encoding

o A multi-head self-attention module and a feed forward network
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DETR Architecture
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%* Transformer Decoder:

o Use encoded representations, d x HW embeddings, from encoder as key and value

o Add N learnt positional encodings (object queries) to input of each attention layer

o Transforms N object queries into N output embeddings in parallel (non-autoregressive)
o Trained with auxiliary decoding loss to improve training
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DETR Architecture
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«* Prediction Feed-forward networks (FFNSs):

o For normalized center coordinates: 3-layer perceptron with ReLU activation, hidden dim d
o For class prediction: a linear projection layer with softmax

o Class prediction also predicts “no object”
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Panoptic Segmentation Head

Encoded image Resnet features
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«* Predicts a binary mask of the predicted bounding boxes

I

[ uonuepe pesy BN |

BHEN

o Compute multi-head attention heatmap of decoder output over encoder output
o Use an FPN-like architecture to increase the resolution of the mask

o Mask is supervised independently using DICE/F-1 loss and Focal loss
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Tasks and Datasets

«* Object Detection and Panoptic Segmentation

«* COCO 2017 detection and panoptic segmentation datasets

o 118k training images and 5k validation images
o Eachimage is annotated with bounding boxes and panoptic segmentation
o Average 7 instances per image; up to 63 instances in a single image in training dataset

o Panoptic annotations of 53 stuff categories and 80 things categories
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Detection Baselines

% Faster R-CNN
o Features explored: Dilated C5 (DC5), Feature Pyramid Network (FPN), and ResNet-101

backbone with FPN (R101-FPN) classifier
o Stronger Faster R-CNN baselines: ”pooling
m Longer training (like for transformers) pmpo
m Same random crop augmentation

Region Proposal Network

m Add generalized IoU to the box loss

feature maps

#* Can DETR perform comparably to ResNet under

similar settings?

Figure 2 of Ren et al., 2016

CS391R: Robot Learning (Fall 2021) 17



https://arxiv.org/pdf/1506.01497.pdf

Detection Metrics

«* AP (Average Precision)

o Precision: True Positives / (True

0.8

Positives + False Positives)

0.7

Precision

| Correct predictions OUt Of a” 06 ‘I;x precision to the right
predictions
04 W il
o Recall: True Positives / (True '

Recall

Positives + False Negatives) Imade Source
m Correct predictions out of all
objects in ground truth
o Average Precision: area beneath

the precision-recall curve
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https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173

Detection Metrics

«* AP (Average Precision)
o Intersection-over-Union (loU): Area of Overlap / Area of Union
m Measures how much bounding box prediction intersects with ground truth
o AP:Average AP at loU = 50%, 5%, and 95%.
o AP, Only bounding box with loU = 50% is counted as true positive
m  Similarly for AP_,
o APS, APM, APL: AP based on objects of different sizes

m Refer to: https://cocodataset.org/#detection-eval
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https://cocodataset.org/#detection-eval

Panoptic Segmentation

& Baselines

o UPSNet
o Panoptic FPN
m Same data augmentation as DETR

m Longer training schedule
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Panoptic Segmentation Metrics

% Mask AP for things classes

«* Panoptic Quality

o PQW": PQ for things bo > (p.gyerp 1oU(D, 9)
o PQ®: PQ for stuff — |TP| n %|FP| i %|FN|

T

TP TP| + 5|FP| + 3| FN]|
segmentatio;quuality (SQ) recognition?qruality (RQ)
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Experimental Results
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Detection Results

T T W werewe— s aew. -

Model GFLOPS/FPS #params AP APs;y AP75 APs APm APL
Faster RCNN-DC5 320/16 166M 39.0 60.5 42.3 21.4 43.5 52.5
Faster RCNN-FPN 180/26 42M  40.2 61.0 43.8 24.2 43.5 52.0
Faster RCNN-R101-FPN 246/20 60M  42.0 62.5 459 25.2 45.6 54.6
Faster RCNN-DC5+ 320/16 166M 41.1 61.4 44.3 22.9 459 55.0
Faster RCNN-FPN-+ 180/26 42M  42.0 62.1 45.5 26.6 45.4 53.4
Faster RCNN-R101-FPN+ 246/20 60M  44.0 63.9 47.8 27.2 48.1 56.0
DETR 86/28 41M  42.0 62.4 44.2 20.5 45.8 61.1
DETR-DC5 187/12 41M  43.3 63.1 459 22.5 47.3 61.1
DETR-R101 152/20 60M  43.5 63.8 46.4 21.9 48.0 61.8
DETR-DC5-R101 253/10 60M  44.9 64.7 47.7 23.7 49.5 62.3
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Panoptic Segmentation Results

schedule, UP5Net-M 1s the version with multiscale test-time augmentations.

Model Backbone| PQ SQ RQ |PQ™ SQ™ RQ™ |PQ** SQ* RQ*| AP
PanopticFPN++ R50 424 79.3 51.6|49.2 824 58.8 |32.3 74.8 40.6 | 37.7
UPSnet R50 425 78.0 52.5|48.6 794 59.6 |33.4 759 41.7|34.3
UPSnet-M R50 43.0 79.1 52.8| 489 79.7 59.7 | 34.1 782 42.3 | 34.3
| PanopticFPN++  R101 | 44.1 79.5 53.3|51.0 83.2 60.6 | 33.6 74.0 42.1 [39.7|
DETR R50 43.4 79.3 53.8|48.2 79.8 595 |36.3 785 453 | 31.1
DETR-DC5 R50 44.6 79.8 55.0| 49.4 80.5 60.6 [37.3 78.7 46.5| 31.9
| DETR-R101 R101 45.1 79.9 55.5| 50.5 80.9 61.7]37.0 78.5 46.0 | 33.0 |
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Panoptic Segmentation Example

cabinet S
. —
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Ablations

¢ More encoder layers improve AP overall

o  Without encoder layers, AP drops by 3.9 with a significant drop of 6.0 AP in large objects

self-attention(430, 600) self-attention(450, 830)

self-attention(520, 450) o p . self-attention(440, 1200)
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Ablations

% AP and AP improve after every decoder layer trained with auxiliary loss, totalling +8.2/9.5 in AP

«¢ Latter layers of decoder inhibits duplicate predictions
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Ablations

< Removing FFN decreased AP by 2.3

«* Removing positional encodings decreased AP by 7.8

#¢* Using just L1 without the generalized loU loss decreased AP by 4.8
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Critigue and Summary
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Critique

«* DETR requires a long training time

o Self-attention is has a quadratic complexity of O(n%d)
o Baseline model took 3 days to train on 16 GPUs (4 image per GPU) for 300 epochs
«* Faster R-CNN outperforms DETR in AP for object detection

o AP increase by 1.4 comes at the expense of more GFLOPS and half (10 FPS) the FPS of the
best Faster R-CNN model (20 FPS)
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Extended Readings

#* Han et al., 2021: A Survey on Vision Transformers

o Addresses that DETR has a slow convergence and other limitations of DETR.

o  Proposed several papers that improved DETR’s training time and AP.

«* Zhu et al.. 2021: Deformable DETR: Deformable Transformers for End-to-End Object Detection
o Use a deformed attention module instead of self-attention, which attends to a small sample of feature maps
instead of all, and this improves both time complexity and AP.
#* Chen et al.. 2021: Points as Queries: Weakly Semi-supervised Object Detection by Points
o  Encode object centers (points) as object queries to DETR instead of learnt positional encodings. This is done
by using a point encoder on predicted points on an image.
«* Wang et al.. 2021: Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions

o  Abackbone that uses a transformer to generate feature pyramids, and the features are compatible with
DETR. (Pure Transformers!)
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https://arxiv.org/pdf/2012.12556v4.pdf
https://arxiv.org/pdf/2010.04159.pdf
https://arxiv.org/pdf/2104.07434.pdf
https://arxiv.org/pdf/2102.12122.pdf

Summary

** DETR: End-to-end object detection using transformers by modeling object detection as a set
prediction problem

** Need to remove prediction duplicates without using hand-designed components
O  These components encoded prior knowledge about the task and impacted performance
%* Training objective need to be invariant to permutations of predictions
O  Prior works used autoregressive decoding, which takes up inference time
*%* Bipartite matching allowed training objective to be permutation invariant
%* Transformers attended to more information and can predict objects in parallel

+* DETR models beat comparable Faster R-CNN models in AP and AP, but lose in AP
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Thank You
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