

Exploring Simple Siamese Representation Learning

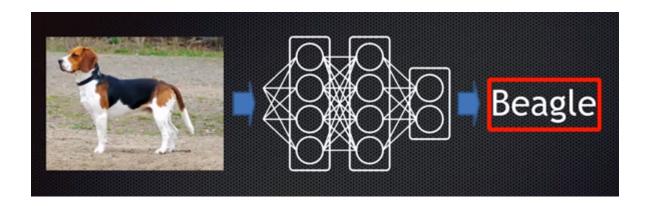
Presenter: Hanwen Jiang

09/16/2021

Motivation

Deep learning has achieved great success in many areas

• Under the supervised learning paradigm



[Image credit to Abhinav Gupta]

Motivation

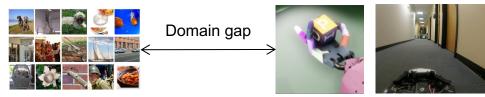
The problems of supervised learning

- Requires expensive manual labels
- Size of datasets are constrained, and learning cannot be scalable

14M images, 5 years

1B images, everyday

• Learning is passive and even biased, learned feature representations may not be generalizable



Motivation

What if we can learn representation without labels?

• Unconstrained and unlimited datasets

Unlabeled web-images

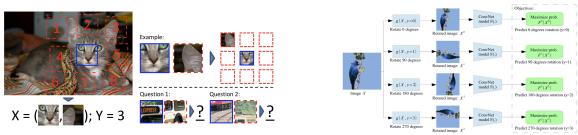
Observations during exploration

- More generalizable features (especially good for downstream robot learning tasks)
- Make it possible for active learning through perception-action loop

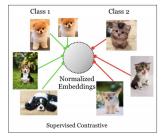
Self-supervised representation learning

How to get self-supervision signals?

• Learning via pre-text tasks: supervision comes from structure of the task



• Contrastive learning: supervision comes from structure of the data



What we learned from supervised learning?

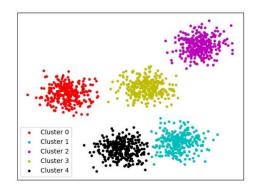
The features of different classes are in clusters

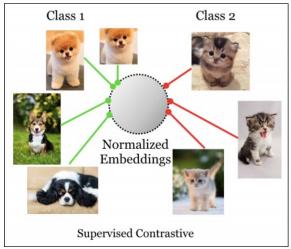
Inter-class variance

E.g. Features of 'cats' and 'dogs' should be far away

• Intra-class similarity

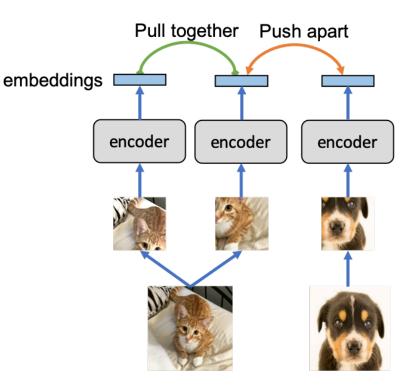
E.g. Different dog instances have similar features





Supervision comes from structure of the data

- Constructing positive and negative pairs via data augmentation
- Inter-class variance (Uniformity)
 Learned from pushing negative pairs far away
- Intra-class similarity (Alignment)
 Learned from pulling positive pairs together

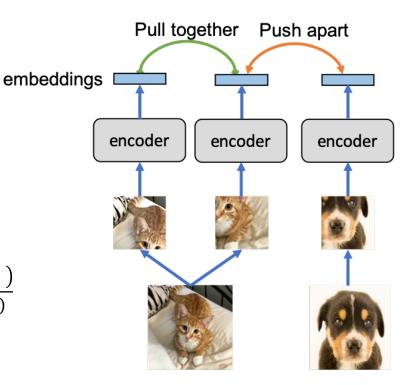


Problem formulation

Target: $d(f(x),f(x^+)) \ll d(f(x),f(x^-))$ or $s(f(x),f(x^+)) \gg s(f(x),f(x^-))$

Learn with infoNCE loss

 $z = f_{\theta}(x)$ $s(z_i, z_j) = \frac{z_i^T z_j}{||z_i||_2 ||z_j||_2}$ $L = -\frac{\log(\exp(s(z, z^+)))}{\sum_{j=0}^N \exp(s(z, z_j^-))}$



Biggest problem of CL: Model collapse to a sub-optimal

I. e. All samples are encoded to a same representation

$$L = -\frac{log(\exp(s(z, z^+)))}{\Sigma_{j=0}^{N} \exp(s(z, z_j^-))}$$

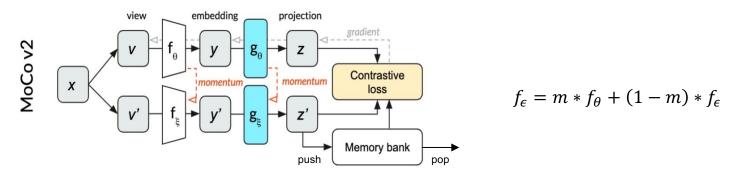
Solutions:

- Adding more 'contrastive' (negative pairs)
- Learning without any negative pairs

Adding more 'contrastive': use larger number of negative samples

MoCo: Use memory bank (A queue contains tons of negative sample features)

Contrast with each negative sample in the bank



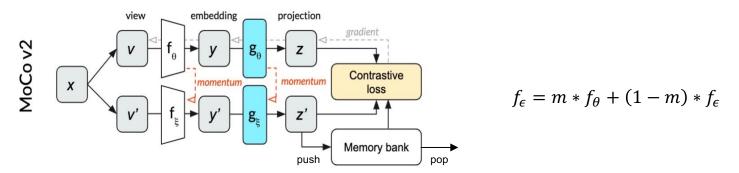
Momentum encoder is designed for a continuous update of memory bank

- Embedding space of negative samples in bank are changing continuously

Adding more 'contrastive': use larger number of negative samples

MoCo: Use memory bank (A queue contains tons of negative sample features)

Contrast with each negative sample in the bank



Stop gradient: The compute graph of previous negative samples in the bank is lost

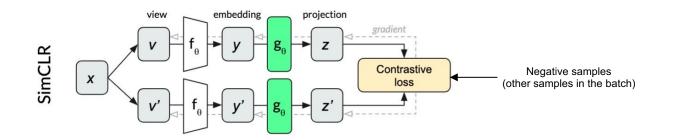
Adding more 'contrastive': use larger number of negative samples

SimCLR: Use very large batchsize on TPU, contrastive with each other in the batch

A brute-force method, but have contributions on:

(1) exploring the data augmentations

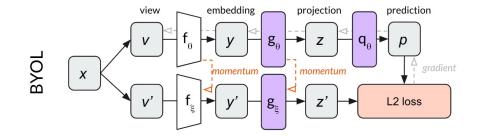
(2) using Projector to get rid of augmentation-related information



Learning without any negative samples

BYOL: Reason for collapse: enforcing the similarity between z and z^+ with infoNCE $L = -\frac{log(exp(s(z, z^+))))}{\Sigma_{j=0}^{N} exp(s(z, z_j^-))}$

Solution: Add a predictor to predict the z^+ (target feature) from $p = q_{\theta}(z)$



Reason for stop-gradient of the momentum encoder is different from MoCo!

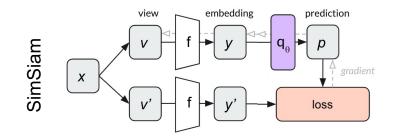
- Without negative samples, BYOL doesn't suffer from the gradient lost problem
- It is a special design in BYOL

SimSiam

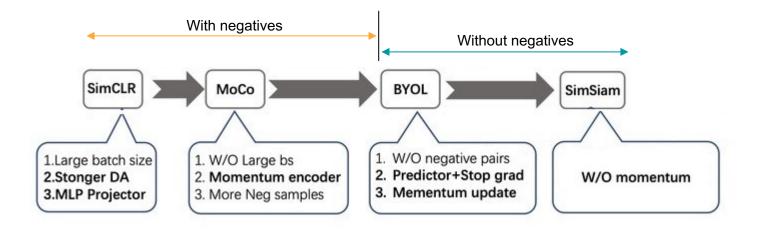
Learning without any negative samples

SimSiam ≈ BYOL without Momentum encoder

- The authors found the stop gradient is the key of preventing collapse
- Also, add symmetric learning



Comparison



Experimental Setup

Self-supervised pre-training on ImageNet

Downstream tasks and datasets:

- Image classification on ImageNet
- Object detection on VOC 07 and COCO (tranfer ability)

Experimental Results

ImageNet classification

- Linear classification: Freeze the trained encoder (Res50) via SSL, add a linear layer

method	batch size	negative pairs	momentum encoder	100 ep	200 ep	400 ep	800 ep	
SimCLR (repro.+)	4096	~		66.5	68.3	69.8	70.4	
MoCo v2 (repro.+)	256	\checkmark	~	67.4	69.9	71.0	72.2	
BYOL (repro.)	4096		~	66.5	70.6	73.2	74.3	
SwAV (repro.+)	4096			66.5	69.1	70.7	71.8	
SimSiam	256			68.1	70.0	70.8	71.3	

Table 4. Comparisons on ImageNet linear classification. All are based on ResNet-50 pre-trained with two 224×224 views. Evaluation is on a single crop. All competitors are from our reproduction, and "+" denotes *improved* reproduction vs. original papers (see supplement).

- Simple design, good performance
- 100 epoch is good enough
- Momentum encoder benefits performance

Experimental Results

Object Detection

	VOC	VOC 07 detection		VOC 07+12 detection		COCO detection			COCO instance seg.			
pre-train	AP ₅₀	AP	AP ₇₅	AP ₅₀	AP	AP ₇₅	AP ₅₀	AP	AP ₇₅	AP ₅₀ ^{mask}	APmask	AP ₇₅ AP
scratch	35.9	16.8	13.0	60.2	33.8	33.1	44.0	26.4	27.8	46.9	29.3	30.8
ImageNet supervised	74.4	42.4	42.7	81.3	53.5	58.8	58.2	38.2	41.2	54.7	33.3	35.2
SimCLR (repro.+)	75.9	46.8	50.1	81.8	55.5	61.4	57.7	37.9	40.9	54.6	33.3	35.3
MoCo v2 (repro.+)	77.1	48.5	52.5	82.3	57.0	63.3	58.8	39.2	42.5	55.5	34.3	36.6
BYOL (repro.)	77.1	47.0	49.9	81.4	55.3	61.1	57.8	37.9	40.9	54.3	33.2	35.0
SwAV (repro.+)	75.5	46.5	49.6	81.5	55.4	61.4	57.6	37.6	40.3	54.2	33.1	35.1
SimSiam, base	75.5	47.0	50.2	82.0	56.4	62.8	57.5	37.9	40.9	54.2	33.2	35.2
SimSiam, optimal	77.3	48.5	52.5	82.4	57.0	63.7	59.3	39.2	42.1	56.0	34.4	36.7

- Transfer learning: initiate encoder with pre-trained weights, and finetune

Table 5. **Transfer Learning**. All unsupervised methods are based on 200-epoch pre-training in ImageNet. *VOC 07 detection*: Faster R-CNN [32] fine-tuned in VOC 2007 trainval, evaluated in VOC 2007 test; *VOC 07+12 detection*: Faster R-CNN fine-tuned in VOC 2007 trainval + 2012 train, evaluated in VOC 2007 test; *COCO detection* and *COCO instance segmentation*: Mask R-CNN [18] (1× schedule) fine-tuned in COCO 2017 train, evaluated in COCO 2017 val. All Faster/Mask R-CNN models are with the C4-backbone [13]. All VOC results are the average over 5 trials. **Bold entries** are within 0.5 below the best.

Learned representations transfer well!

Experimental Results

Abaltion: stop gradient and symmetric training

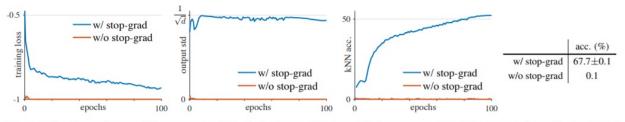


Figure 2. SimSiam with *vs.* without stop-gradient. Left plot: training loss. Without stop-gradient it degenerates immediately. Middle plot: the per-channel std of the ℓ_2 -normalized output, plotted as the averaged std over all channels. Right plot: validation accuracy of a kNN classifier [36] as a monitor of progress. Table: ImageNet linear evaluation ("w/ stop-grad" is mean±std over 5 trials).

- Stop gradient is the key for preventing collapse
- Symmetric training can boost performance

Critique / Limitations / Open Issues

SimSiam is a simple but effective contrastive learning method

- Contribution: Find the key for model collapse, and simplify the designs
- Kaiming's Philosophy: Only simple designs can capture the essence, and transfer well

However, the method cannot be explained in a thermotical way

- In the paper, their hypothesis is that, SimSiam is doing Expectation-Maximization (EM)

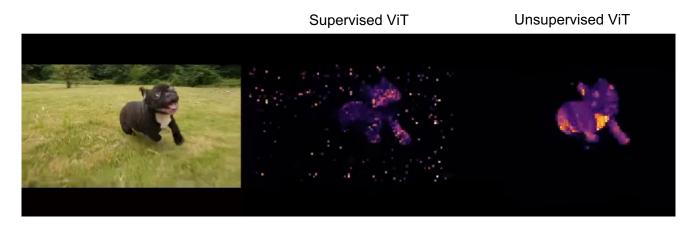
Moreover, can the model transfer to other downstream tasks? Especially for robot learning

- Data augmentation make the model get many invariance, e.g. rotation invariance
- This may hurt when you transfer it as a pose estimation backbone

Future Work for Paper / Reading

Three trends in self-supervised learning

1. Exploring the transformer architecture for self-supervised learning



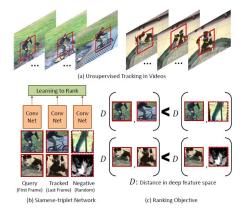
- Performance is better
- Good properties emerge

[1] Caron et al., Emerging Properties in Self-Supervised Vision Transformers, 2021[2] Chen et al., An Empirical Study of Training Self-supervised Vision Transformers, 2021

Future Work for Paper / Reading

Three trends in self-supervised learning

2. Exploring spatial-temporal information

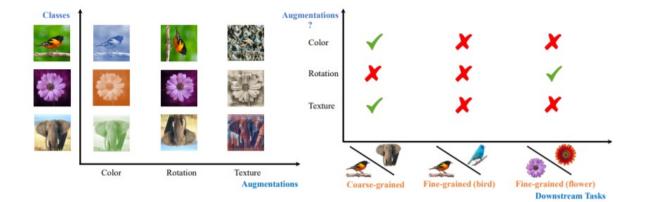


Wang et al., Unsupervised Learning on Visual Representations using Videos, 2016
 Feichtenhofer et al., A Large-Scale Study on Unsupervised Spatiotemporal Representation Learning, 2021
 Qian et al., Spatial-temporal Contrastive Video Representation Learning, 2020

Future Work for Paper / Reading

Three trends in self-supervised learning

3. Exploring the invariance (data augmentation) and its influence on downstream tasks



Xiao et al., What Should Not Be Contrastive in Contrastive Learning, 2021

Summary

SimSiam

- Target: Explore the reason for model collapse
- Key insight: stop gradient of one side of the Siamese network
- Momentum encoder is not the key for preventing collapse
- Also validate many other designs, e.g. momentum encoder, predictor
- Limitation: theoretically hard to understand

