
CS391R: Robot Learning (Fall 2021)

Self-Supervised Learning of 
Pretext-Invariant Representations

1

Presenter: Rohan Nair

9/16/2021



CS391R: Robot Learning (Fall 2021) 2

Motivation and Main Problem
Modern vision systems learn semantics from large datasets

Predefined semantics tasks have long tails and do not model the problem well

❖ These models are brittle and not very robust, require defining the semantics in pretraining settings

❖ Poor generalizability means applications will not lend themselves to unseen situations well

One solution is to transform image data, and have the model predict properties about the known 

transformation

❖ Does not learn an invariant representation of the image, model learns a covariance
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Motivation and Main Problem
Key contributions of this paper:

❖ Invariant representations are much more useful than covariant ones for image tasks

❖ Want to learn representations that are similar to transformed images and dissimilar from other images 

+ their transformations

❖ Benchmark invariant representations with other covariant techniques (Jigsaw)
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Problem Setting
Problem Formulation

● Let our image dataset D = {I1, … I|D|} with In∊ RH x W x 3

● Let T be our set of transformations. 

○ Focus on Jigsaw in this paper (slice up image and rearrange the patches)

● Goal: construct neural network ΦӨ(・) s.t. ΦӨ( I ) = vI is invariant to transformation t ∊T

● Invariance loss function: Empirical risk minimization 

○ p(T) is a distribution over the transformation

○ L is a similarity function between 2 representations
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Problem Setting
Problem Formulation

● Author contrast their loss against other papers:

○ z(t) is a function that measures some properties of of t

○ Encourages model to learn some information about the transformation itself

■ Results in covariant representations



CS391R: Robot Learning (Fall 2021) 6

Problem Setting
Problem Formulation

● Defining L concretely:

○ Use Noise Contrastive Estimator (NCE) with distribution h

○ NCE models the probability that (I, IT) come from distribution h

■ s is the cosine similarity function

● Finalized Loss Function:

○ Feed convolutional representation v through “head” function f 

and g

○ This encourages the model to learn representations of I to be 

close to transformations IT but far away from I’ or 

transformations of I’ 
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Context / Related Work / Limitations of Prior Work

❖ Compare their approach primarily to the model from Jigsaw (Nozoori and Favaro 2016)

❖ Previous works have learned representations of images covariant with their transformations

○ This is undesirable for semantic learning tasks

○ Images are transformed in a way that defeats the semantic understanding portion of the task
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Context / Related Work / Limitations of Prior Work

Summary of other approaches:
● 2 Highly related works: 

○ NPID: Maximally distance out learned features using NCE, doesn’t use any transformations
○ Jigsaw: Predict permutation of jigsaw pieces, does not optimize distancing image 

representations
● Reconstruction based approaches:

○ Autoencoders
○ GANs
○ Sparse Coding

● Image-based Pretext Tasks:
○ Affine Transformation
○ Colorization
○ Orientation Prediction
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Proposed Approach / Algorithm / Method
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Proposed Approach / Algorithm / Method
● Use a ResNet-50 as the convolutional model

● f and g are 128 dimensional representations

○ f is obtained by extracting res5 features, average pooling, and a linear projection

○ g is obtained by:

■  extracting nine patches from image I

■ computing an image representation for each patch separately by extracting activations 

from the res5 layer of the ResNet-50 and average pooling the activations

■ applying a linear projection to 128 dimensions

■ concatenating the patch representations in random order and apply a second linear 

projection to 128 dimensions 
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Proposed Approach / Algorithm / Method
● Practical limitation: NCE requires a large number of negative samples

○ A large number of samples is infeasible to compute while keeping batch size reasonably small

○ Solution: keep a memory bank of average representations of f(vI)

■ Exponential moving average kept in a cache

■ Representations only computed on I, not IT

○ Final Loss function with memory bank:

■ First term is NCE from before with f(vI) and f(vI’) swapped with mI and mI’

■ Second term encourages f(vI) to be similar to memory representation mI and for f(vI) and 

f(vI’) to be dissimilar
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Proposed Approach / Algorithm / Method
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Experimental Setup
PIRL evaluated on the task of transfer learning

❖ Pretrain on large corpus of image data

❖ Learn generalized representations of Images

❖ Transfer to domain with limited data available

Dataset used to evaluate was ImageNet

❖ 1.28 M Images
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Experimental Setup
3 Downstream Tasks Evaluated

❖ Object Detection (VOC07)

❖ Image Classification with Linear Models (ImageNet, VOC07, Places205, and iNaturalist2018)

❖ Semi-supervised Image Classification (ImageNet)

1 Other Pretraining Domain evaluated:

❖ Pretraining on Uncurated Data (YFCC)
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Experimental Results
Task 1: Object Detection
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Experimental Results
Task 2: Image Classification
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Experimental Results
Task 3: Semi Supervised Learning
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Experimental Results
Unsupervised Pretraining Results
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Discussion of Results
1-2 slides

What conclusions are drawn from the results by the authors?

❖ Quantitatively, PIRL outperforms all other similar methods

○ PIRL is also reasonably efficient with the number of parameters as compared to SOTA models 

❖ However, supervised learning still performs the best

Are the stated conclusions fully backed by the results and references?

❖ Pretrain task performance is supported by these experiments

○ End task is a whole other metric + experiment, further analysis will need to be conducted to 

back up that this is a better pretrained model
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Analysis on Model

Authors ran 4 analyses on model performance:
● Visualizing aggregate distances between representations of model
● Analyzing performance of several layers on image classification (testing 

against Jigsaw’s model)
● Setting lambda to different values in the loss function
● Increasing the number of patches to permute to demonstrate scale of 

transformations handled
● Performance improvement with increasing the number of negative samples 
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Ablation Results
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Analysis Results
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Analysis Results
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Analysis Results
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Analysis Results
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Critique / Limitations / Open Issues 
Key Limitations

● The framework is not ideal for images that may be quite closely related semantically

○ Contrastive loss may be too strong

● No metrics provided on training speed 

● Limited in scope in that they only really have one set of transformations

○ Future survey paper for performance on a larger set of transformations could provide even 

better results
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Future Work for Paper / Reading

❖ Paper could be extended to other transformations

❖ Clustering based approaches for images that are visually very similar

○ Currently the model penalizes against all images that aren’t the original input

○ Perhaps other visually similar images need not be distanced
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Summary

❖ We want better more robust representations for visual semantics

❖ Leads to more robust and generalizable models

❖ Prior work trains models that have covariant representations with transformations

❖ Want invariant representations

❖ This can lead to more robust pretrained vision models


