

Self-Supervised Learning of Pretext-Invariant Representations

Presenter: Rohan Nair

9/16/2021

Motivation and Main Problem

Modern vision systems learn semantics from large datasets

Predefined semantics tasks have long tails and do not model the problem well

- These models are brittle and not very robust, require defining the semantics in pretraining settings
- Poor generalizability means applications will not lend themselves to unseen situations well One solution is to transform image data, and have the model predict properties about the known transformation
- Does not learn an invariant representation of the image, model learns a covariance

Motivation and Main Problem

Key contributions of this paper:

- Invariant representations are much more useful than covariant ones for image tasks
- Want to learn representations that are similar to transformed images and dissimilar from other images
 + their transformations
- Benchmark invariant representations with other covariant techniques (Jigsaw)

Problem Setting

Problem Formulation

- Let our image dataset D = $\{I_1, \dots, I_{|D|}\}$ with $I_n \in \mathbb{R}^{H \times W \times 3}$
- Let T be our set of transformations.
 - Focus on Jigsaw in this paper (slice up image and rearrange the patches)
- Goal: construct neural network $\Phi_{\Theta}(\cdot)$ s.t. $\Phi_{\Theta}(1) = v_1$ is invariant to transformation t $\in T$
- Invariance loss function: Empirical risk minimization
 - p(T) is a distribution over the transformation
 - L is a similarity function between 2 representations

$$\ell_{inv}(\theta; \mathcal{D}) = \mathbb{E}_{t \sim p(\mathcal{T})} \left[\frac{1}{|\mathcal{D}|} \sum_{\mathbf{I} \in \mathcal{D}} L\left(\mathbf{v}_{\mathbf{I}}, \mathbf{v}_{\mathbf{I}^{t}}\right) \right]$$

Problem Setting

Problem Formulation

- Author contrast their loss against other papers:
 - z(t) is a function that measures some properties of of t
 - Encourages model to learn some information about the transformation itself
 - Results in covariant representations

$$\ell_{co}(\theta; \mathcal{D}) = \mathbb{E}_{t \sim p(\mathcal{T})} \left[\frac{1}{|\mathcal{D}|} \sum_{\mathbf{I} \in \mathcal{D}} L_{co}\left(\mathbf{v}_{\mathbf{I}}, z(t)\right) \right]$$

Problem Setting

Problem Formulation

- Defining L concretely:
 - Use Noise Contrastive Estimator (NCE) with distribution h
 - NCE models the probability that (I, I^T) come from distribution h
 - s is the cosine similarity function
- Finalized Loss Function:
 - Feed convolutional representation v through "head" function f and g
 - This encourages the model to learn representations of I to be close to transformations I^T but far away from I' or transformations of I'

$$h(\mathbf{v}_{\mathbf{I}}, \mathbf{v}_{\mathbf{I}^{t}}) = \frac{\exp\left(\frac{s(\mathbf{v}_{\mathbf{I}}, \mathbf{v}_{\mathbf{I}^{t}})}{\tau}\right)}{\exp\left(\frac{s(\mathbf{v}_{\mathbf{I}}, \mathbf{v}_{\mathbf{I}^{t}})}{\tau}\right) + \sum_{\mathbf{I}' \in \mathcal{D}_{N}} \exp\left(\frac{s(\mathbf{v}_{\mathbf{I}^{t}}, \mathbf{v}_{\mathbf{I}'})}{\tau}\right)}.$$

 $L_{ ext{NCE}}\left(\mathbf{I}, \mathbf{I}^{t}
ight) = -\log\left[h\left(f(\mathbf{v_{I}}), g(\mathbf{v_{I^{t}}})
ight)
ight] \ -\sum_{\mathbf{I}'\in\mathcal{D}_{N}}\log\left[1-h\left(g(\mathbf{v_{I}}^{t}), f(\mathbf{v_{I'}})
ight)
ight]$

Context / Related Work / Limitations of Prior Work

- Compare their approach primarily to the model from Jigsaw (Nozoori and Favaro 2016)
- Previous works have learned representations of images covariant with their transformations
 - This is undesirable for semantic learning tasks
 - Images are transformed in a way that defeats the semantic understanding portion of the task

Context / Related Work / Limitations of Prior Work

Summary of other approaches:

- 2 Highly related works:
 - NPID: Maximally distance out learned features using NCE, doesn't use any transformations
 - Jigsaw: Predict permutation of jigsaw pieces, does not optimize distancing image representations
- Reconstruction based approaches:
 - Autoencoders
 - GANs
 - Sparse Coding
- Image-based Pretext Tasks:
 - Affine Transformation
 - Colorization
 - Orientation Prediction

- Use a ResNet-50 as the convolutional model
- f and g are 128 dimensional representations
 - f is obtained by extracting res5 features, average pooling, and a linear projection
 - g is obtained by:
 - extracting nine patches from image I
 - computing an image representation for each patch separately by extracting activations from the res5 layer of the ResNet-50 and average pooling the activations
 - applying a linear projection to 128 dimensions
 - concatenating the patch representations in random order and apply a second linear projection to 128 dimensions

- Practical limitation: NCE requires a large number of negative samples
 - A large number of samples is infeasible to compute while keeping batch size reasonably small
 - Solution: keep a memory bank of average representations of $f(v_1)$
 - Exponential moving average kept in a cache
 - Representations only computed on I, not I^T
 - Final Loss function with memory bank:
 - First term is NCE from before with $f(v_1)$ and $f(v_2)$ swapped with m_1 and m_2 .
 - Second term encourages $f(v_i)$ to be similar to memory representation m_i and for $f(v_i)$ and $f(v_i)$ to be dissimilar

 $L\left(\mathbf{I},\mathbf{I}^{t}\right) = \lambda L_{\mathrm{NCE}}(\mathbf{m}_{\mathbf{I}},g(\mathbf{v}_{\mathbf{I}^{t}}))$

+ $(1 - \lambda)L_{\text{NCE}}(\mathbf{m_I}, f(\mathbf{v_I})).$

Experimental Setup

PIRL evaluated on the task of transfer learning

- Pretrain on large corpus of image data
- Learn generalized representations of Images
- Transfer to domain with limited data available

Dataset used to evaluate was ImageNet

1.28 M Images

Experimental Setup

3 Downstream Tasks Evaluated

- Object Detection (VOC07)
- Image Classification with Linear Models (ImageNet, VOC07, Places205, and iNaturalist2018)
- Semi-supervised Image Classification (ImageNet)

1 Other Pretraining Domain evaluated:

Pretraining on Uncurated Data (YFCC)

Task 1: Object Detection

Method	Network	$ \mathbf{AP}^{\mathbf{all}} $	AP^{50}	AP^{75}	ΔAP^{75}
Supervised	R-50	52.6	81.1	57.4	=0.0
Jigsaw [19]	R-50	48.9	75.1	52.9	-4.5
Rotation [19]	R-50	46.3	72.5	49.3	-8.1
NPID++ [72]	R-50	52.3	79.1	56.9	-0.5
PIRL (ours)	R-50	54.0	<u>80.7</u>	59.7	+2.3
CPC-Big [26]	R-101	-	70.6*	-	
CPC-Huge [26]	R-170	-	72.1*	-	
MoCo [24]	R-50	55.2*†	81.4*†	61.2*†	

Task 2: Image Classification

Method	Parameters	Ti	ransfer	Dataset	
		ImageNet	VOC07	Places205	iNat.
ResNet	t-50 using eva	luation set	up of [1	9]	
Supervised	25.6M	75.9	87.5	51.5	45.4
Colorization [19]	25.6M	39.6	55.6	37.5	
Rotation [18]	25.6M	48.9	63.9	41.4	23.0
NPID++ [72]	25.6M	59.0	76.6	46.4	32.4
MoCo [24]	25.6M	60.6	-	-	-
Jigsaw [19]	25.6M	45.7	64.5	41.2	21.3
PIRL (ours)	25.6M	63.6	81.1	49.8	34.1
Differe	nt architecture	e or evalua	tion setu	ıp	
NPID [72]	25.6M	54.0	-	45.5	-
BigBiGAN [12]	25.6M	56.6	—	-	-
AET [76]	61M	40.6	—	37.1	-
DeepCluster [6]	61M	39.8	-	37.5	-
Rot. [33]	61M	54.0	_	45.5	-
LA [80]	25.6M	60.2†	10-02	50.2†	
CMC [64]	51M	64.1	-	-	-
CPC [51]	44.5M	48.7	1 <u>1</u> 10	<u></u>	-
CPC-Huge [26]	305M	61.0		-	-
BigBiGAN-Big [12]	86M	61.3	—	-	-
AMDIM [4]	670M	68.1	1 <u>-</u> 17	55.1	

Task 3: Semi Supervised Learning

	Data fraction \rightarrow	1%	10%	
Method	Backbone	Top-5 Accuracy		
Random initialization [72]	R-50	22.0	59.0	
NPID [72]	R-50	39.2	77.4	
Jigsaw [19]	R-50	45.3	79.3	
NPID++ [72]	R-50	52.6	81.5	
VAT + Ent Min. [20, 45]	R-50v2	47.0	83.4	
S ⁴ L Exemplar [75]	R-50v2	47.0	83.7	
S ⁴ L Rotation [75]	R-50v2	53.4	83.8	
PIRL (ours)	R-50	57.2	83.8	
Colorization [36]	R-152	29.8	62.0	
CPC-Largest [26]	R-170 and R-11	64.0	84.9	

Unsupervised Pretraining Results

Method	Dataset	Transfer Dataset			
		ImageNet	VOC07	Places205	iNat.
Jigsaw [19]	YFCC1M	-	64.0	42.1	-
DeepCluster [6, 7]	YFCC1M	34.1	63.9	35.4	_
PIRL (ours)	YFCC1M	57.8	78.8	51.0	29.7
Jigsaw [19]	YFCC100M	48.3	71.0	44.8	-
DeeperCluster [7]	YFCC100M	45.6	73.0	42.1	-

Discussion of Results

1-2 slides

What conclusions are drawn from the results by the authors?

- Quantitatively, PIRL outperforms all other similar methods
 - PIRL is also reasonably efficient with the number of parameters as compared to SOTA models
 - However, supervised learning still performs the best

Are the stated conclusions fully backed by the results and references?

- Pretrain task performance is supported by these experiments
 - End task is a whole other metric + experiment, further analysis will need to be conducted to back up that this is a better pretrained model

Analysis on Model

Authors ran 4 analyses on model performance:

- Visualizing aggregate distances between representations of model
- Analyzing performance of several layers on image classification (testing against Jigsaw's model)
- Setting lambda to different values in the loss function
- Increasing the number of patches to permute to demonstrate scale of transformations handled
- Performance improvement with increasing the number of negative samples

Ablation Results

Figure 8: Effect of varying the number of negative samples. Top-1 accuracy of linear classifiers trained to perform ImageNet classification using PIRL representations as a function of the number of negative samples, N.

Critique / Limitations / Open Issues

Key Limitations

- The framework is not ideal for images that may be quite closely related semantically
 - Contrastive loss may be too strong
- No metrics provided on training speed
- Limited in scope in that they only really have one set of transformations
 - Future survey paper for performance on a larger set of transformations could provide even better results

Future Work for Paper / Reading

- Paper could be extended to other transformations
- Clustering based approaches for images that are visually very similar
 - Currently the model penalizes against all images that aren't the original input
 - Perhaps other visually similar images need not be distanced

Summary

- We want better more robust representations for visual semantics
- Leads to more robust and generalizable models
- Prior work trains models that have covariant representations with transformations
- Want invariant representations
- This can lead to more robust pretrained vision models