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Problem Setting

e Object representation in computer vision is primarily focused on image
classification, object detection or segmentation.

e Not very useful for reinforcement learning tasks involving control of an agent.

e For reinforcement learning and control you require precise spatial geometric
representation of the object.

e Also, feature representation are usually task-specific which makes it difficult

to re-purpose the learnt knowledge to unseen domains/objectives
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Motivation - How’s it important?

e Object representations are vital for robots to perceive the world around them.

e Precise geometric representations of objects would enable robots to make
better decisions.

e Understanding of keypoints of an object are critical in control and RL
domains.

e Improvement in this domain directly impacts and closes the gap between

sim2real transfer for robotics.
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Research Objectives

e To find object representations in that are useful for control and reinforcement
learning.

e Discover keypoints of an object in a task-agnostic manner for accurate
geometric representation.

e Track the keypoints consistently and accurately over long-time horizons or
multiple frames.
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Unsupervised Learning

Algorithm is not provided with any pre-labeled data for training.

During training will sort the data according to similarity of features and
learning patterns within the dataset.

e Ultilized for applications with an abstract objective/target.

Unsupervised Learning in ML

Inpul Data
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Q-Learning

e Off-policy reinforcement learning algorithm to learn the value of an action
given the current state.
e Learns a policy that maximizes the total reward.

e Provides a balance between exploring and exploiting.

import numpy as np
4

# Initialize g-table values to O

Q = np.zeros((state_size, action _size))
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Q-Learning

import random

# Set the percent you want to explore

epsilon = 0.2

if random.uniform(0, 1) < epsilon:

Explore: select a random action

mwon

else:

Exploit: select the action with max value (future reward)
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Q-Learning

# Update g values

Q[state, action] = Q[state, action] + lr * (reward + gamma *
np.max (Q[new_state, :]) — Q[state, action])
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Related work: Conditional image generation

e In their paper, Jakab and Gupta et al. propose an encode-decoder
architecture to extract keypoints by introducing a bottleneck to distil geometry
related features without supervision.

e Keypoints are extracted from two example pictures with an object with
different viewpoint or deformation.

e Bottleneck architecture is applied by the authors for this paper’'s proposed
method.

e Limitations

o Not as consistent over long-term tracking
o Can learn non-spatial latent embedding.
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https://arxiv.org/pdf/1806.07823.pdf

Related work: Conditional image generation

Model architecture as proposed by Jakab and Gupta et al.
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Related work: Autoencoder for keypoint discovery

e Zhang et al. in their paper propose an unsupervised, autoencoding method to
discover keypoints or “landmarks” from a single-image.

e Outputs semantically meaningful keypoint coordinates as an explicit structure
representation.

e Limitations
o Requires temporal information between frames in the form of optical flow.
o Multiple loss and regularization terms for convergence.
o Poor long-term performance in tracking keypoints over frames.
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https://arxiv.org/pdf/1804.04412.pdf

Proposed Method: Transporter

e Authors propose “Transporter”, a neural network architecture to detect
keypoints for object representations that useful for the control and RL domain.

e Ultilizes unsupervised learning and learns using a source and a target frame,
given only raw videos.

e The keypoints generated, consistently and accurately track the object as it
undergoes deformation.

e Goal - Extract K number of 2D locations or “keypoints” which correspond to

object or moving entities of an object without any manual labels.
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Keypoint and feature extraction

S R U g

e Feature CNN to extract features

e Keynet to predict keypoints
H'xW'xD —
o Features- 2(®s)@(x)€R B
. g Kx2 A

e Keypoints - V(zs),U(z) €R L

target image
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Transporter

e The features in the source image at the target positions are replaced with
the features from the target image.

e The features at the source position are set to zero.
®(xy,x:) £ (1-Hu(w,)) (1~ Hu(ay) (@) +Ha @) 2(x:)

RefineNet
/
Source and ~
Target > Z
Frame I/P (&)
Set ®(z,) = 0for Add P (a)
keypoint locations from target image -
from both images keypoints T Lt
reconstructed
transport target
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RefineNet

e |npaint the missing features at the source position.
e Clean up the image around the target positions.

~ 112
e Loss Function = |z — 4[5 (pixel-wise squared-L2 reconstruction error)

RefineNet
/

Transporter [~

CNN

reconstructed
target
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Application: Data-efficient reinforcement learning

e Task-agnostic learning of keypoints enables faster learning of a policy.

_________________________________________________________________________________________

ht — 1 Recurrent state

Q(x¢,a;hi—1) :
O :
pa LSTM O - At |
< e-greedy :

policy
Lt
Observation ht
Transporter pre-trained offline Recurrent agent trained with a variant of

Neural Fitted Q-iteration
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Application: Keypoint-based options for efficient
exploration

e Action space to explore is significantly made smaller with the use of

keypoints.

e Transporter performs well with long temporal consistency.
e K x 4 intrinsic reward functions using the keypoint locations:

rin = Uh(@psr) — Uh(e), ri = Wi(@y) — Uh(@ppr), 1ig = W (1) — W (), it = V(@) — U (Tes1)

e Learn K x 4 Q functions {Qi,j |i € {1,...,K},j € {1,2,3,4}} to maximise each of the
reward functions :

1
. .. TQgp(s)=argmax — » max @Q; ;j(s:a)—min Q; ;(s:a).
e Most controllable keypoint: = *** 4; a J a W
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Experimental Setup

e Dataset - Atari ALE and Manipulator
(1) For evaluating long-term tracking of object keypoints section — pong, frostbite,
ms_pacman, and stack 4 (manipulator with blocks)
(2) For data-efficient reinforcement learning — random exploration on the Atari game.
(3) For keypoints based efficient-exploration; one of the most difficult exploration game —

montezuma revenge, along with ms_pacman and seaquest.

e The source and target frames are sampled randomly within a temporal offset of 1 to 20

frames.
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Results: Evaluating Object Keypomt Predlctlons
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Results: Data-efficient Reinforcement Learning on
Atari

Game KeyQN (ours) SimPLe Rainbow PPO (100k) Human Random

breakout 19.3 (4.5) 12.7 (3.8) 3.3 (0.1) 5.9 (3.3) 31.8 1.7
frostbite 388.3 (142.1) 254.7 (4.9) 140.1 (2.7) 174.0 (40.7) 4334.7 65.2
ms_pacman (999.4 (145.4) 762.8 (331.5) 364.3 (20.4) 496.0 (379.8) 15693.0 307.3
pong 10.8 (5.7) 5.2 (9.7) -19.5 (0.2)  -20.5 (0.6) 9.3 -20.7
seaquest 236.7 (22.2) 370.9 (128.2) 206.3 (17.1) 370.0 (103.3) 20182.0 -20.7

CS391R: Robot Learning (Fall 2021) 20




3000 - 1 1 1 SeaqueSt 1 1 1

random controllable
2500 keypoint option
7 e== random actions {mean/std)

2000 -

1500 -

episodic returns
=
o
o
1}

500 -

i
2.5

i
15

1
2.0 3.0

frames

35

1e9‘

3000 - 1 | Seaque$t 1 !
mmm random controllable keypoint option

_ mmm random actions

percentile episodic return
- [ ~N ~N
& 8 & 8 2
o o o o o
1 1 1 1

0-

20 40 60 80 100

percentile rank

CS391R: Robot Learning (Fall 2021)

|

4.0

3000 . ,montezuma_revenge, ,

2500 - -

- o N

g & 8

=} =} =]

] 1 1
1

episodic returns

=500 | ' I ' 1 | I r
20 25 3.0 35 4.0

frames 1e9

000 , montezuma_rgvenge , .

2500 - -

— - [

w f= w (=3

o o o =3

o o < (=

1 ] 1 1
U

il
80 100

percentile episodic return

o
|

1 T U
20 40 60

percentile rank

Results: Efficient Exploration with Keypoints
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Results: Efficient Exploration with Keypoints
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Overview of Results

e Transporter outperforms state-of-the-art keypoint generation model.

e Able to learn stable-keypoints without task-specific reward functions.

e Accurately track objects over long-temporal sequences.

e By efficiently reducing the action space by learning using keypoints, the authors
demonstrated drastic reduction in search complexity and thus, efficient

exploration.
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Limitations

e Cannot handle moving backgrounds.

e No experimentation or analysis for real-world scenarios, which is essential for robotics.

e In games like ms_packman and frostbite the model did showcase a decrease in
tracking keypoints over time. The model is not immune against temporal issues, and
there is potential for further improvement.

e Lack of detail regarding real-time inference speed for detecting and tracking keypoints,

which again, is a critical component of robotics.
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Future work

e Improvement of performance with moving background.
e Transfer of method to real-world application.
e Research to integrate attention-based architecture like Transformer, to

extrapolate more relevant keypoints over long temporal periods.
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Extended readings

[1] Burgess, C.P., Matthey, L., Watters, N., Kabra, R., Higgins, ., Botvinick, M., &
Lerchner, A. (2019). MONet: Unsupervised Scene Decomposition and
Representation. ArXiv, abs/1901.11390. - 3D reconstruction of images using
recurrent attention network

[2] Jakab, T., Gupta, A., Bilen, H., & Vedaldi, A. (2020). Self-Supervised Learning
of Interpretable Keypoints From Unlabelled Videos. 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 8784-8794. - Learn the
pose of an object from a single image using unlabelled videos.

[3] Kipf, T., Pol, E.V., & Welling, M. (2020). Contrastive Learning of Structured
World Models. ArXiv, abs/1911.12247. - Contrastive approach for representation
learning in environments with compositional structure.
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Summary

e Problem Setting - Accurate object representation for control and RL
e Prior Limitations - Usually task-specific, focussed on classification and segmentation.

For RL and control domains, precise geo-spatial representation of an object is required.

Key Insights of Proposed Method -
Accurate over long-temporal sequences when compared to contemporary methods.

Task-agnostic. Take input of keypoints for formulation of policies.

w nh =

Using keypoints provides an efficient action-space for exploration.

Result - SOTA performance, much better than baseline in almost all comparison

metrics.
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THANK YOU
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