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Contributions

* |Introduce dense descriptors as a representation useful for

robotic manipulation.
* Self-supervised dense visual descriptor learning can be applied

to a wide variety of non-rigid object and classes.

* |t can be learned quickly (20 min).

* Enables new manipulation tasks.

* Provided general training techniques for dense descriptors with
good performance in practice
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Background: learner descriptors
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- FC: Fully connected layer ‘9‘ . 3 1

- BN: Batch normalization layer FC{n) Iy

- {2 Iz-normalization layer Gl:(n)

 Combination of global descriptors framework. This is described with ResNet-
50 backbone. Each of the n global descriptor branch outputs a k-dimensional
vector that is concatenated into the combined descriptor loss.

Jun, H., Ko, B., Kim, Y., Kim, |., & Kim, J. (2019). Combination of multiple global descriptors for image retrieval. arXiv preprint
arXiv:1903.10663.
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Self-supervised learning of robots

e Limitations?

CS391R: Robot Leaming (Fall 2021)




Robot learning for specific tasks

* Robosuite: simulation framework for robot learning powered by
MuloCo physics engine. It provides a modular design for creating

robotic tasks.

Zhu, Y., Wong, J., Mandlekar, A., & Martin-Martin, R. (2020). robosuite: A modular simulation framework and benchmark for robot
learning. arXiv preprint arXiv:2009.12293.
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Methods: Self-supervised pixelwise contrastive loss

Training is performed in a Siamese fashion. A pixel that is the best match from
image la (that is sampled from an RGBD video) is a true match of a pixel in
image |b if they correspond to the same vertex. f() is the dense descriptor

mapping and D() is the L2 distance between a pair of pixel descriptors. D() is
defined as:

D(Iqta Ty, up) = || f (Ia) (wa) — f (1) (us) |2
The loss function is intended to reduce the sum of matches and non-matches
descriptors. It tries to minimize the distance between descriptors corresponding

to a match, while non-matching descriptors should be at least a M distance
apart.
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Training for object and multi object descriptors
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* Overview of the data collection and training: a) automated
collection with an arm robot. b) change detection using the
dense 3D reconstruction. c) — f) matches depicted in green, non-
matches depicted in red.

CS331R: Robot Leaming (Fall 2021)



Training for multi object descriptors

* Object masking via 3D change detection: training test showed that
models focused on the objects rather than the background were more
efficient.

* Background domain randomization: learned descriptors were enforced
to don’t be reliant on the background for cross-scene consistency.

* Hard negative scaling:

Noartnegatves= Y L(M —D(Ia,uq,Ip,up) >0)

Lon-matches(LaIp) = = maz(0,M —D(1,u,.,I 1,.-u,b))2

N hard-negatives »
4V non-matches

* Data diversification and augmentation: diversity was strongly
considered, and data augmentation was achieved by using random end-
effector rotations and varying light conditions.
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Multi object dense descriptors

* Cross-object loss: it was implemented to ensure that different objects
occupy different subsets of a descriptor space.

* Direct training on multi-object scenes: pixelwise contrastive loss provide
the ability to directly train on multi-object cluttered scenes without any

individual object masks.
* Synthetic multi-object scenes: this can be created by layering masks
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Experiment setup

 Raw data was collected with an RGDB
video of an object.

7 DoF robot arm Kuka [IWA LBR.

 TDSF was used for dense reconstruction
and SLAM method was used to collect
data that not require a calibrated robot.

* Training dense descriptors followed the
single object within scene, different object
across scene, multi object within scene
and synthetic multi object.
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Results: single-object dense descriptors

e 8N, Learned object descriptors can

..y TR be consistent across
deformation, b)-d) and across
object classes.

 For each a) and b)-d) RGB
images are in the top and the
descriptor images at the
bottom.

e ¢e)-f) shows that we can learn
descriptors from for low
texture objects.

Objects used
* 47 objects total
*« 275 scenes

8 hats

15 shoes
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Results: multi-object dense descriptors
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a) Description of the different types of networks.
b) Plots the class descriptor of the L2 pixel distance between the best

match and the true match. In 93% of image pairs the normalized pixel

distance is less than 13%.
c) Plots the class descriptor of the fraction of the best match pixels that
are closer in descriptor space than the true match.
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Results: selective class generalization

without cross-object loss with cross-object loss
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 Comparison of training without any distinct object loss (a) vs. using cross-
object loss (b).

* Ina)100% of training iterations applied cross-object loss and single-object
scene loss. For b) 50% of the training iterations applied object loss.

* ¢)shows the L2 pixel distance between a best match and a true match for

different number of descriptors.
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Results: selective class generalization
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* Depiction of “grasp specific point” demonstrations. For each the user
specifies a pixel, and the robot automatically grasps the best match in test
configuration. “Right ear” is an example of the ability to break symmetry
on symmetrical objects.
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Limitations

 The performance of dense objects nets were not compared
with any other learned dense visual object descriptors
algorithm, either for learned descriptors, self-supervised visual
learning robots and robot learning for specific tasks.

 The result are biased.

 The M distance parameter for a non match can be
misinterpreted and lead to an error amplification, considering
that you are squaring both terms of the cost function.

* Grasping tasks should be also evaluated with target achieving
performance and precision and point targeting.
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Related work
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Collaboration between Maestro team and CNBI Lab for EEG Control of Exoskeleton
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