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• Introduce dense descriptors as a representation useful for 
robotic manipulation.

• Self-supervised dense visual descriptor learning can be applied 
to a wide variety of non-rigid object and classes.

• It can be learned quickly (20 min).
• Enables new manipulation tasks.
• Provided general training techniques for dense descriptors with 

good performance in practice

Contributions



Background: learner descriptors

• Combination of global descriptors framework. This is described with ResNet-
50 backbone. Each of the n global descriptor branch outputs a k-dimensional 
vector that is concatenated into the combined descriptor loss. 

Jun, H., Ko, B., Kim, Y., Kim, I., & Kim, J. (2019). Combination of multiple global descriptors for image retrieval. arXiv preprint 
arXiv:1903.10663.



Self-supervised learning of robots

• Limitations?



Robot learning for specific tasks

• Robosuite: simulation framework for robot learning powered by 
MuJoCo physics engine. It provides a modular design for creating 
robotic tasks.

Zhu, Y., Wong, J., Mandlekar, A., & Martín-Martín, R. (2020). robosuite: A modular simulation framework and benchmark for robot 
learning. arXiv preprint arXiv:2009.12293.



Methods: Self-supervised pixelwise contrastive loss 

• The loss function is intended to reduce the sum of matches and non-matches 
descriptors. It tries to minimize the distance between descriptors corresponding 
to a match, while non-matching descriptors should be at least a M distance 
apart.

• Training is performed in a Siamese fashion. A pixel that is the best match from 
image Ia (that is sampled from an RGBD video) is a true match of a pixel in 
image Ib if they correspond to the same vertex. f() is the dense descriptor 
mapping and D() is the L2 distance between a pair of pixel descriptors. D() is 
defined as:



Training for object and multi object descriptors 

• Overview of the data collection and training: a) automated 
collection with an arm robot. b) change detection using the 
dense 3D reconstruction. c) – f) matches depicted in green, non-
matches depicted in red.



Training for multi object descriptors 
• Object masking via 3D change detection: training test showed that 

models focused on the objects rather than the background were more 
efficient.

• Background domain randomization: learned descriptors were enforced 
to don’t be reliant on the background for cross-scene consistency.

• Hard negative scaling: 

• Data diversification and augmentation: diversity was strongly 
considered, and data augmentation was achieved by using random end-
effector rotations and varying light conditions.



Multi object dense descriptors 
• Cross-object loss: it was implemented to ensure that different objects 

occupy different subsets of a descriptor space.
• Direct training on multi-object scenes: pixelwise contrastive loss provide 

the ability to directly train on multi-object cluttered scenes without any 
individual object masks.

• Synthetic multi-object scenes: this can be created by layering masks 



Experiment setup 
• Raw data was collected with an RGDB 

video of an object. 
• 7 DoF robot arm Kuka IIWA LBR.
• TDSF was used for dense reconstruction 

and SLAM method was used to collect 
data that not require a calibrated robot.

• Training dense descriptors followed the 
single object within scene, different object 
across scene, multi object within scene 
and synthetic multi object.



Results: single-object dense descriptors 
• Learned object descriptors can 

be consistent across 
deformation, b)-d) and across 
object classes.

• For each a) and b)-d) RGB 
images are in the top and the 
descriptor images at the 
bottom.

• e)-f) shows that we can learn 
descriptors from for low 
texture objects.



Results: multi-object dense descriptors 

a) Description of the different types of networks. 
b) Plots the class descriptor of the L2 pixel distance between the best 
match and the true match. In 93% of image pairs the normalized pixel 
distance is less than 13%.
c) Plots the class descriptor of the fraction of the best match pixels that 
are closer in descriptor space than the true match.  



Results: selective class generalization 

• Comparison of training without any distinct object loss (a) vs. using cross-
object loss (b).

• In a) 100% of training iterations applied cross-object loss and single-object 
scene loss. For b) 50% of the training iterations applied object loss.

• c) shows the L2 pixel distance between a best match and a true match for 
different number of descriptors.



Results: selective class generalization 

• Depiction of “grasp specific point” demonstrations. For each the user 
specifies a pixel, and the robot automatically grasps the best match in test 
configuration. “Right ear” is an example of the ability to break symmetry 
on symmetrical objects.    



Limitations 
• The performance of dense objects nets were not compared 

with any other learned dense visual object descriptors 
algorithm, either for learned descriptors, self-supervised visual 
learning robots and robot learning for specific tasks.

• The result are biased.
• The M distance parameter for a non match can be 

misinterpreted and lead to an error amplification, considering 
that you are squaring both terms of the cost function.

• Grasping tasks should be also evaluated with target achieving 
performance and precision and point targeting.
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