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Motivation
Contact-rich manipulation tasks requires both haptic and visual feedback. 

Goal: propose a general/robust/generalizable approach that is applicable to wide class of tasks. For 

example peg insertion with different shapes.

Why this is important:

● Real environment is with full of uncertainty and is unstructured. The robot must be robust.

● As objects can be different in real world, it’s better to use one robot for everything.
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Key Challenge

Manual design of controller that combines modalities is very hard: seek for ML 

approach. However:

● Representation:
○ Haptic and visual feedback are quite different modals. How to do fusion?

● Learning:
○ Straightforward RL approach is sample inefficient.
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General Idea

Decompose the learning into two stages:

● First stage: use self-supervision to learn good representation that fuses the 

multiple modals.
○ No need human labeling.

○ Easy to generate training data.

○ Not an MDP problem: easy to train.

● Fix the learned representations, conducting policy learning based on small 

network 
○ Since number of trainable parameters is small, improved sample complexity.
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Problem Setting
Goal: Learn a policy on a robot for performing contact-rich manipulation tasks

● Model the manipulation task as a finite-horizon, discounted Markov Decision Process (MDP).

● Maximize the expected discounted reward:

● Represent tha policy by neural network parameterized by θ. Input: state; output: action.
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Related Work
Manipulation policies:

● Previous works often only reply on haptic feedback and force control but assume accurate state 

estimation (no visual input for state estimation) [1].

○ Usually one policy for one geometry [2]

○ or only limited a small range of shapes [3]

● [4] combines both vision and haptic but assuming known peg geometry.
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Related Work
Reinforcement learning approaches:

● Seldom studies the complementary natural of vision and touch. Most of them do not combine the 

two modalities and do not work on full manipulation tasks [4,5,6,7].

● [8] uses multiple modalities but require a pre-specified manipulation graph and only works for single 

task.
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Approach: Modality Encoders



CS391R: Robot Learning (Fall 2021) 9

Approach: Modality Encoders 6-layer Conv + MLP
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Approach: Modality Encoders
Last 32 readings 
from 6-axis F/T 
sensor
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Approach: Modality Encoders
5-layer causal conv
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Approach: Modality Encoders
Current position 
and velocity of the 
end-effector
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Approach: Modality Encoders
2-layer MLP
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Approach: Modality Encoders
Concat all the three 
vectors



CS391R: Robot Learning (Fall 2021) 15

Approach: Self-Supervised Tasks
Given action-conditional representation, we want to predict:

● Optical flow generated by the action

● Whether the end-effector will make contact with the environment in the next control cycle

● Whether two sensors streams are temporally aligned.

○ Previous literatures shows compelling evidence that the concurrency of different sensory 

streams aid perception and manipulation.
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Approach: Self-Supervised Tasks
Given action-conditional representation, we want to predict:

● Optical flow generated by the action

○ Annotations are automatically generated given proprioception and known robot kinematics and 

geometry.

● Whether the end-effector will make contact with the environment in the next control cycle

○ Applying simple heuristics on the F/T readings.

● Whether two sensors streams are temporally aligned.

○ Not aligned streams are created manually (random shift)and thus naturally has the label.
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Approach: Self-Supervised Training
endpoint error loss 
averaged over all 
pixels
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Approach: Self-Supervised Training
Cross-entropy
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Approach: Self-Supervised Training

● Training data

○ Obtain training data by applying heuristic algorithms for 
controlling the robot.
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Approach: Policy Learning
Model-free reinforcement learning.

● Policy network: 2-layer MLP takes multimodal representation → 3D displacement of the robot 

effector.

○ Small network has good sample efficiency

● Training: trust-region policy optimization. Representation model parameters are frozen during 

training policy network.
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Approach: Policy Learning
Reward Design:
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Approach: Controller Design
Input: end-effector displacement from the policy

Output: direct torque command to the robot.
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Approach: Controller Design
Input: end-effector displacement from the policy

Output: direct torque command to the robot.

Generate trajectory 
(position/velocity/acceleration) via 
lnterpolating between start and end 
position
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Approach: Controller Design
Input: end-effector displacement from the policy

Output: direct torque command to the robot.

PD impedance controller compute 
task space acceleration commend
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Approach: Controller Design
Input: end-effector displacement from the policy

Output: direct torque command to the robot.

Calculate the force needed
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Experimental Setup
Key questions to answer:

● What’s the value of using all modalities instead of using part of them?

● Is policy learning on the real robot practical with a learned 

representation?

● Does the learned representation generalize over task variations and 

recover from perturbations?
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Experimental Setup
● Tasks

○ Peg insertion task with five different types of pegs and holes fabrication.
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Experimental Setup
● Robot Environment Setup

○ Kuka LBR IIWA, a 7-DoF torque-controlled robot for both simulation and real robot experiment.
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Experimental Setup
● Evaluation Metrics



CS391R: Robot Learning (Fall 2021) 30

Experimental Results
What’s the value of using all modalities instead of using part of them?

Design: ablation study on using different modalities. (Simulation)
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Experimental Results
Is policy learning on the real robot practical with a learned representation?

Design: showing it works on real robot with reasonable training time.

TRPO policies are trained for 300 episodes: roughly 5 hours of wall-clock time

---- Pretty reasonable time

Works well according to the video in supplementary material. 

https://sites.google.com/view/visionandtouch
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Experimental Results
Does the learned representation generalize over task variations and recover from perturbations?

Design: Transfer learning and showing robust to external perturbation (see video).

* * Representations are easier to transfered
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Discussion of Results
The goodness:

● Experiment results gives good support for the three main questions that this paper want to answer.

● The design is very suitable for answering the question.

● The results are very solid!
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Discussion of Results
The weakness:

● Evidence for transfer learning seems not that strong. Only limited pairs are provided. And all the 

results uses triangle as source.

● The representation learning pipeline is not discussed in the paper? We train the representation 

using the simulation or real robot?

● Seems the learned algorithm is only able to plug a certain shape of peg. Is it possible to train the 

robot so that it can handle multiple shapes of peg? Would such training gives a even more robust 

solution with better generalization ability?

● Sample complexity is not studied, while this is one motivation of the paper. What will happen if we 

increase/decrease the sample for representation/robot learning? How the two-stage learning 

benefits over the end-to-end learning?
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Future Work
● How to train the network so that it is able to handle many geometries.

○ A single network trained with multiple geometrics?

○ A multi-task network that first detect the shape and then choose a subnet?

● What task (geometry) would be the one that gives the best generalization ability?

○ Parameterize the task and use meta-learning?

● What is the auxiliary task to improve the performance?

○ 2D detection so that the model is more aware of the location of the hole? Or use the 2D 

detection to localize the hole first to reduce the time for plugging?
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Extended Readings
Many of the follow up works focus on building a more robust robot:

● Dealing with uncertain holes: https://arxiv.org/pdf/1902.09157.pdf

● Studying the robustness of multi-modal fusion. https://www.mdpi.com/2079-9292/9/7/1152, 

https://www.merl.com/publications/docs/TR2020-110.pdf

● Scalability: how to train so that the model is able to learn to insert with many different shapes 

https://arxiv.org/pdf/2104.14223.pdf

https://arxiv.org/pdf/1902.09157.pdf
https://www.mdpi.com/2079-9292/9/7/1152
https://www.merl.com/publications/docs/TR2020-110.pdf
https://arxiv.org/pdf/2104.14223.pdf
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Summary
Contributions:

● Whether/How to fuse the vision and haptic to enhance the peg plug performance.

● Use self-supervision and two-stage training to reduce the sample complexity for policy learning

● Showing the solution practical in real world robot.

Limitation:

● Generality of the functionality can be improved? More robust/ solve more task with one algorithm?

Key insight:

● Self-supervision is able to learn good representation and effectively reduce sample complexity.

● Multi-modal fusion is very useful
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