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State Estimation

Object Tracking Robot Localization

Image Sources:
https://github.com/yehengchen/Object-Detection-and-Tracking

https://github.com/carlosmccosta/dynamic_robot_localization

https://github.com/yehengchen/Object-Detection-and-Tracking
https://github.com/carlosmccosta/dynamic_robot_localization
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State Estimation: Traditional Approaches

● Bayes Filter
○ Broad class of approaches for sequential state estimation

○ Belief at time t computed recursively from belief at t-1

○ Information from control data and sensor observations

● Kalman Filter
○ Bayes filter with Gaussian belief

● Particle Filter
○ Bayes filter represented by samples

○ Need observation model                       and transition model 

■ Observation model hard to craft for complex systems
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State Estimation: Machine Learning

Tang, Jiexiong, et al. "Self-supervised 3d keypoint learning for ego-motion estimation." arXiv preprint arXiv:1912.03426(2019).
Rabiee, Sadegh, and Joydeep Biswas. "IV-SLAM: Introspective vision for simultaneous localization and mapping." CoRL (2020).

Deng, Xinke, et al. "PoseRBPF: A Rao–Blackwellized Particle Filter for 6-D Object Pose Tracking." IEEE Transactions on Robotics (2021).
Wang, Sen, et al. "Deepvo: Towards end-to-end visual odometry with deep recurrent convolutional neural networks." 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017.

Zak Murez, Tarrence van As, James Bartolozzi, Ayan Sinha, Vijay Badrinarayanan, and Andrew Rabinovich. Atlas: End- to-End 3D Scene Reconstruction from Posed Images. In European Conference on Computer 
Vision (ECCV), 2020.

● Often, individual components of a system use an learned component

○ Learned Keypoints: SuperPoint

○ Feature Matching Noise: IV-SLAM

○ Learned representations: PoseRBPF

● Growing interest in training systems end-to-end  

○ Atlas: End-to-End 3D Scene Reconstruction from Posed Images

○ DeepVO: Towards End-to-End Visual Odometry with Deep Recurrent Convolutional 
Neural Networks

https://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w9/DeTone_SuperPoint_Self-Supervised_Interest_CVPR_2018_paper.pdf
https://arxiv.org/pdf/2008.02760
https://ieeexplore.ieee.org/document/9363455/
https://arxiv.org/pdf/2003.10432.pdf
https://ieeexplore.ieee.org/document/7989236
https://ieeexplore.ieee.org/document/7989236
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Particle Filter Networks with Application to Visual 
Localization
● Neural network architecture with:

○ Embedded particle filter structure

○ Observation and transition models

● Differentiable approximation for sampling

● Enables end-to-end learning
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Related Work

● Histogram filter network
○ Discrete state space

○ Doesn’t scale with large environments or high-dimensional state spaces

● Kalman filter network
○ Limited application to problems where belief can be approximated by a Gaussian

 R. Jonschkowski and O. Brock. End-to-end learnable histogram filters. In Workshop on Deep Learning for Action and Interaction at NIPS, 2016.
 T. Haarnoja, A. Ajay, S. Levine, and P. Abbeel. Backprop kf: Learning discriminative deterministic state estimators. In Advances in Neural Information Processing Systems, pages 4376–4384, 2016.
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Related Work

● Conventional particle filters
○ Observation model hard to construct for sensors more complicated than 2D LiDAR

● Differentiable particle filters
○ Don’t have differentiable resampling step

● Learned generative models for particle filter proposal
○ Observation space is complex for many robotics applications → learning a generative model is 

hard

 R. Jonschkowski, D. Rastogi, and O. Brock. Differentiable particle filters: End-to-end learning with algorithmic priors. arXiv preprint arXiv:1805.11122, 2018.
 C. A. Naesseth, S. W. Linderman, R. Ranganath, and D. M. Blei. Variational sequential monte carlo. arXiv preprint arXiv:1705.11140, 2017.

 C. J. Maddison, J. Lawson, G. Tucker, N. Heess, M. Norouzi, A. Mnih, A. Doucet, and Y. Teh. Filtering variational objectives. In Advances in Neural Information Processing Systems, pages 6576–6586, 2017.
 T. A. Le, M. Igl, T. Rainforth, T. Jin, and F. Wood. Auto-encoding sequential monte carlo. In Proceedings of the 6th International Conference on Learning Representations (ICLR), 2018.

 S. Gu, Z. Ghahramani, and R. E. Turner. Neural adaptive sequential monte carlo. In Advances in Neural Information Processing Systems, pages 2629–2637, 2015.
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● Sequential state estimation should provide 
○ Belief

○ Maximum likelihood state estimate 

● Particle filter approach
○  --                            - Belief represented by set of particles (weighted samples)

■       - particle state

■       - particle weight

■ Transition model:

■ Observation model: 

○                            Maximum likelihood state estimate given by weighted mean

Problem Setting
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● States      are robot poses

● Observation     is a camera or lidar observation

●       is odometry

●       is 2D floor map     

Problem Setting: Visual Localization
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Approach: PF-net
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1. Belief represented by set of particles                                

2. Particle states updated by sampling from transition model

3. Compute likelihood from observation model

4. Particle weights updated with likelihood

5. Particles resampled with probability proportional to weight

6. Weights updated according to uniform distribution

11

Particle Filter
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● Idea: Embed particle filter steps in neural network

○ Allows end to end training of observation and transition models in context of estimation

○ Requires all steps to be differentiable

PF-net
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1. Belief represented by set of particles                                

2. Particle states updated by sampling from transition model

3. Compute likelihood from observation model

4. Particle weights updated with likelihood

5. Particles resampled with probability proportional to weight

6. Weights updated according to uniform distribution

13

PF-net
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1. Belief represented by set of particles                                

2. Particle states updated by sampling from transition model Neural network

3. Compute likelihood from observation model Neural network

4. Particle weights updated with likelihood

5. Particles resampled with probability proportional to weight

6. Weights updated according to uniform distribution

14

PF-net

Observation model and transition model represented by neural networks

Still need differentiable way to sample from transition model 
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1. Belief represented by set of particles                                

2. Particle states updated by sampling from transition model Neural network

3. Compute likelihood from observation model Neural network

4. Particle weights updated with likelihood

5. Particles resampled with probability proportional to weight

6. Weights updated according to uniform distribution
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PF-net

Take noise vector as input and express transition model as function of noise vector
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1. Belief represented by set of particles                                

2. Particle states updated by sampling from transition model Neural network

3. Compute likelihood from observation model Neural network

4. Particle weights updated with likelihood

5. Particles resampled with probability proportional to weight

6. Weights updated according to uniform distribution
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PF-net

Uniform particle weights produce zero gradients → non-differentiable

Replace with soft-resampling
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1. Belief represented by set of particles                                

2. Particle states updated by sampling from transition model Neural network

3. Compute likelihood from observation model Neural network

4. Particle weights updated with likelihood

5. Particles resampled with probability proportional to weight

6. Weights updated according to uniform distribution

17

PF-net

Sample from a combination of uniform distribution and     s 
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1. Belief represented by set of particles                                

2. Particle states updated by sampling from transition model Neural network

3. Compute likelihood from observation model Neural network

4. Particle weights updated with likelihood

5. Particles resampled with probability proportional to weight

6. Weights updated according to uniform distribution
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PF-net

New weights computed by based on resampling likelihood and particle weight
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1. Belief represented by set of particles                                

2. Particle states updated by sampling from transition model Neural network

3. Compute likelihood from observation model Neural network

4. Particle weights updated with likelihood

5. Particles resampled with probability proportional to weight

6. Weights updated according to uniform distribution

19

PF-net

Resampling not helpful in low uncertainty settings
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PF-net 



CS391R: Robot Learning (Fall 2021) 21

● State representation

● Loss function

● Network architecture for transition model and observation model

PF-net Specialization
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● State representation      = 

● Loss function: mean squared error
○                   Estimated robot pose 

○                   True robot pose 

PF-net: Visual Localization
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● Network architecture for transition model and observation model
○ Transition model: Combines previous particle, odometry, and Gaussian noise 

○ Observation model:

■ Takes map, particle state, and observations as input, produces particle likelihood

■ Obtain local map through affine transformation network

■ Extract features from map and observation using CNNs and combine using fully 

connected layers

PF-net: Visual Localization
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Experiments



CS391R: Robot Learning (Fall 2021) 25

Experimental Setup

● House3D Simulator

○ Simulates multi-room residential buildings with furniture

○ Known 2D schematic known for each building

● Tasks

○ Tracking - approximate initial robot pose is known

○ Global localization - initial belief is spread over entire environment

○ Semi-global localization - initial belief spread over 1 or more rooms

● Sensors: Monocular RGB, Depth, RGB-D, Simulated LIDAR, LIDAR-W
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Experimental Setup

● Training

○ Tracking only

○ 45,000 randomly generated trajectories from 200 buildings

○ Backpropagation limited to 4 timesteps

● Comparison approaches

○ Histogram filter network

○ LSTM network

○ Conventional particle filter

○ Odometry only
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Experimental Setup

● Evaluation

○ 820 trajectories in 47 unseen buildings

○ Tracking, semi-global localization, global localization

■ Varying numbers of particles

○ Resampling only for semi-global/global localization

● Metrics

○ Tracking - average root mean squared error

○ Semi-global/global localization - success rate

■ Estimation error below 1m for last 25 steps of 100 step trajectory
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Experimental Results: Tracking
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Experimental Results: Semi-global Localization
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Experimental Results: Global Localization
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Experimental Results: Semantic Labels
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Experimental Results: Ablation

● Resampling in training
Percent Success on Semi-global Localization

● Backpropagation steps

● Loss function

No resampling Resampling Alternate Step 
Resampling

Low uncertainty 79% 75% -

High uncertainty 39% 42% 54%
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Experimental Results: Ablation

● Resampling

● Backpropagation steps

● Loss function

Number of steps 1 2 4

Percent success 73% 79% 79%



CS391R: Robot Learning (Fall 2021) 34

Experimental Results: Ablation

● Resampling

● Backpropagation steps

● Loss function
Percent Success on Semi-global Localization

Original Loss Function Probabilistic Loss Function

Low Uncertainty 79% 74%

High Uncertainty 39% 67%
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Discussion and Conclusion
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Discussion of Results

● Differentiable algorithmic priors are useful

○ LSTM performs worse due to lack of inductive bias
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Discussion of Results

● Differentiable algorithmic priors are useful

● End-to-end learning increases robustness

○ Test on very similar environments to training - unclear how well it 

generalizes

○ Additional possible tests: more datasets/domains, real robot 
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Discussion of Results

● Differentiable algorithmic priors are useful

● End-to-end learning increases robustness

● PF-net is effective with various sensors

○ Computation time

■ Effectiveness includes if computation time is tractable

■ Additional tests: Compare computation time for other approaches

○ Convergence details

■ Different thresholds, time to convergence
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Limitations

● Only supports sequential optimization

○ Many modern SLAM/localization systems optimize the full trajectory

● Requires ground truth poses from many trajectories

○ Only feasible to train in simulation

○ Unclear how well this will generalize to different types of environments 

(other simulations or real world)
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Future Work

● Learn noise parameters

● Real-world deployment

○ How to adapt sim-trained approach to real world

○ Study balance of training data needed vs. accuracy

● Self-supervised or sparse training signals

● Test on applications other than visual localization
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Extended Readings
● Differentiable SLAM-net: Learning Particle SLAM for Visual Navigation

○ Embeds FastSLAM algorithm (Rao-Blackwellized particle filter) in differentiable computation 

graph

● End-To-End Semi-supervised Learning for Differentiable Particle Filters

○ Reduces demand for annotated data by enabling end-to-end optimization using sparse ground 

truth

● Towards Differentiable Resampling

○ Replaces resampling approximation with learned resampler

● Differentiable Mapping Networks: Learning Structured Map Representations for Sparse 

Visual Localization
○ Integrates differentiable particle filter with learned map representation

https://openaccess.thecvf.com/content/CVPR2021/papers/Karkus_Differentiable_SLAM-Net_Learning_Particle_SLAM_for_Visual_Navigation_CVPR_2021_paper.pdf
https://arxiv.org/abs/2011.05748
https://arxiv.org/pdf/2004.11938.pdf
https://ieeexplore.ieee.org/document/9197452
https://ieeexplore.ieee.org/document/9197452
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Summary
● PF-net proposes an end-to-end learned model for sequential state estimation 

● End-to-end learning enables training of observation models that can be hard to 

hand-craft

● Prior works either lose the benefits of the particle filter structure or fail to make the 

network fully differentiable

● PF-net combines benefits of particle filter structure and end-to-end learning 

through algorithmic prior and differentiable approximations to particle filter steps

● Achieved improved localization performance compared to other deep-learned 

approaches and traditional particle filter
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Thank you!

Questions?


