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Differentiable Particle Filters

Jonschkowski, R., Rastogi, D., & Brock, O. (2018). Differentiable particle filters: End-to-end learning with algorithmic priors. arXiv preprint 
arXiv:1805.11122.

SLAM

Robots take noisy 
measurements (from 
cameras, LiDAR, radar), 
while exploring their 
environment to estimate 
system states (e.g., 
position) and accomplish 
goals (e.g., planning, 
mapping)
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Motivation and Main Problem
State Estimation and Planning - robot localization, pose estimation, sensor fusion 

Tamar, A., Wu, Y., Thomas, G., Levine, S., & Abbeel, P. (2016). Value iteration networks. arXiv preprint arXiv:1602.02867.
Deng, X., Mousavian, A., Xiang, Y., Xia, F., Bretl, T., & Fox, D. (2021). PoseRBPF: A Rao–Blackwellized Particle Filter for 6-D Object Pose 
Tracking. IEEE Transactions on Robotics.

SLAM
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State Estimation

Particle 
Filtering

Kalman Filter (KF)

Learning and 
Particle Filters (NN)

1960

1990s

1993 - 2018

2016-2018

Assumes linear dynamics

Nonlinear dynamics, Gaussian noise

Nonlinear dynamics, arbitrary noise distribution, 
intractable problem (High-computational cost)

DPF embeds Bayesian filter priors in an 
end-to-end differentiable neural network
Haarnoja, T., Ajay, A., Levine, S., & Abbeel, P. (2016). Backprop kf: Learning discriminative deterministic state 
estimators. In Advances in neural information processing systems (pp. 4376-4384).

Karl, M., Soelch, M., Bayer, J., & Van der Smagt, P. (2016). Deep variational bayes filters: Unsupervised learning 
of state space models from raw data. arXiv preprint arXiv:1605.06432.
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Problem Setting
From Bayesian Inference to Particle Filtering

s: states
a: actions
o: observations

Prediction Step

Measurement UpdateBelief of being in 

Motion Model

Monte Carlo 
Simulation
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Particle Filtering
Models can be nonlinear and noise is not necessarily Gaussian

Importance Sampling & Resampling 

requires
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1. Sample action
2. Prediction
3. Measurement Update
4. Resampling
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Differentiable Particle Filtering (DPF)

1. Belief: modeled by n particles in 
d-dimensional state space

2. Prediction step 
      action sampler
      dynamics model
      noise vector

3. Measurement Update
      observation encoder
      particle proposer
      likelihood estimator

4. Particle Proposal & Resampling (Exponential samples around the current observation)
Stochastic Universal Sampling
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Supervised Learning

1. Individual learning of the motion model

2. Individual learning of the measurement
model

3. End-to-end learning

: model parameters
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Limitations and Future Work
- End-to-end gradient by backpropagation from the DPF output through the filtering loop only

- The gradient neglects the effects of previous prediction and update steps on the current belief 

(resampling is not differentiable)

The authors propose alternative differentiable resampling methodologies:

- Partial resampling: 

keep n-m particles from the previous time step, operate backpropagation with those

- Proxy gradients: 

proxy gradient for the weight of a resampled particle that is tied to the particle it was sampled from



CS391R: Robot Learning (Fall 2021) 11

Experiments
- Baseline: LSTMs, and Backprop Kalman Filters (BKF)

- Description: the authors evaluated a) the effect of end-to-end learning (e2e) compared to individual 

learning (ind) and b) the influence of algorithmic priors encoded in DPFs (comparison with generic 

LSTM, policy generalization)

- Metrics: error rates

GLOBAL LOCALIZATION VISUAL ODOMETRY

DeepMind Lab

RGB-D (with 
noise)

Hand-coded 
policies (10% 
random)

1000 trajectories

KITTI dataset

Ground Truth 
provided

RGB camera

1st order 
dynamics
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Global Localization
- End-to-end learned DPFs 

(orange line) consistently 
outperform individually trained 
DPFs (red line) across all mazes

- Performance improves even 
more when we sequence 
individual and end-to-end 
learning (green line in Fig. 8a-c)

- The error rate of DPF (ind+e2e) 
is lower than for LSTM for all 
mazes and all amounts of 
training data

- Knowing the dynamics model is 
helpful but not essential for 
DPF’s performance
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Global Localization

- DPFs relative performance to LSTMs improves 
with more data and converges to about 1/10 to 
1/3

- The priors from the Bayes filter algorithm reduce 
variance without adding bias

- All methods have low error rates when tested on 
their training policy

- The LSTM baseline is not able to generalize to 
new policies
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Visual Odometry
Infer location based on camera observations

DPFs outperform BKFs, in particular for short sequences where they reduce the error by ∼30%
Authors claim that improvement over BKFs is due to particles being able to model long-tailed distributions
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Critique / Limitations / Open Issues 

- Even though authors claim that knowing the dynamics of the model is not essential for 

performance, other works in robotics and safe learning show the opposite

- DPFs might outperform the proposed baselines but results show the methodology might be 

impractical and requires further research

- It would be interesting to see this approach operating with sensor fusion to further reduce 

error rates as it is the strength of particle filtering
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Further Reading

❖ Tamar, A., Wu, Y., Thomas, G., Levine, S., & Abbeel, P. (2016). Value iteration networks. arXiv 
preprint arXiv:1602.02867.

❖ Deng, X., Mousavian, A., Xiang, Y., Xia, F., Bretl, T., & Fox, D. (2021). PoseRBPF: A 
Rao–Blackwellized Particle Filter for 6-D Object Pose Tracking. IEEE Transactions on Robotics.

❖ Ma, X., Karkus, P., Hsu, D., & Lee, W. S. (2020, April). Particle filter recurrent neural networks. In 
Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 5101-5108)

❖ ICRA18 Keynote: Machine Learning for Safe High-performance Control of Mobile Robots 
(https://www.youtube.com/watch?v=-Lp_ckvzhrk)
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Summary

❖ Differentiable particle filters are introduced to demonstrate the advantages of combining end-to-end 

learning with algorithmic priors

❖ End-to-end learning optimizes models for performance while algorithmic priors enable explainability 

and regularize learning, which improves data-efficiency and generalization

❖ The use of algorithms as algorithmic priors will help to realize the potential of deep learning in robotics

❖ DPFs outperform baseline network architectures such as LSTMs and BKFs in terms of error reduction


