The University of Texas at Austin
Computer Science ;[‘EWXAS

Differentiable Particle Filters: End-to-End
Learning with Algorithmic Priors

Presenter; Gerardo Riano

9-28-2021

CS391R: Robot Learning (Fall 2021) 1




Differentiable Particle Filters
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Robots take noisy Belief ovevr states
measurements (from - .,
cameras, LiDAR, radar), "
while exploring their Measurement M | - " - e
environment to estimate o
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system states (e.g.,
position) and accomplish
goals (e.g., planning,
mapping)

% Prediction

Observation

Jonschkowski, R., Rastogi, D., & Brock, O. (2018). Differentiable particle filters: End-to-end learning with algorithmic priors. arXiv preprint
arXiv:1805.11122.
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Motivation and Main Problem

State Estimation and Planning - robot localization, pose estimation, sensor fusion

Tamar, A., Wu, Y., Thomas, G., Levine, S., & Abbeel, P. (2016). Value iteration networks. arXiv preprint arXiv:1602.02867.
Deng, X., Mousavian, A., Xiang, Y., Xia, F., Bretl, T., & Fox, D. (2021). PoseRBPF: A Rao—-Blackwellized Particle Filter for 6-D Object Pose
Tracking. IEEE Transactions on Robotics.
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DPF embeds Bayesian filter priors in an
end-to-end differentiable neural network

Haarnoja, T., Ajay, A., Levine, S., & Abbeel, P. (2016). Backprop kf: Learning discriminative deterministic state
estimators. In Advances in neural information processing systems (pp. 4376-4384).

Karl, M., Soelch, M., Bayer, J., & Van der Smagt, P. (2016). Deep variational bayes filters: Unsupervised learning
of state space models from raw data. arXiv preprint arXiv:1605.06432.

Nonlinear dynamics, arbitrary noise distribution,
intractable problem (High-computational cost)

Nonlinear dynamics, Gaussian noise

Assumes linear dynamics




Problem Setting

From Bayesian Inference to Particle Filtering

s: states
a: actions
0: observations
@ @ @ Prediction Step
© © © ol
MotiorTModeI

Belief of being in Sy

Measurement Update

bel(st) =S p(3t|a1:ta Olit) Particles

(Samples) — bel(st) = np(ot | St)@(st)‘ Monte Carlo

Simulation
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Particle Filtering

Models can be nonlinear and noise is not necessarily Gaussian
requires
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1. Sample action

2. Prediction

3. Measurement Update
4. Resampling
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Differentiable Particle Filtering (DPF)

1. Belief: modeled by » particles in ~ bel(s¢) = (5S¢, wy)

d-dimensional state space S € Rnxd
2. Prediction step N i
fo action sampler a; = a; + fo(ar, € ~N),
g dynamics model sgz] _ Sz[tqil L] g(si[il,dgz]),

el noise vector

3. Measurement Update e: = hg(0t),
he obsgrvahon encoder sl = ko(es, 61 ~ B),
ke particle proposer (il il
lo likelihood estimator wy = lo(er, st),

4. Particle Proposal & Resampling (Exponential samples around the current observation)
Stochastic Universal Sampling
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Supervised Learning

fe:
ge:
he:

ko:

lg:

2 x fc(32, relu), fc(3) + mean centering across particles
3 x fc(128, relu), fc(3) + scaled by E¢[abs(st — s¢—1)]

conv(3x3, 16, stride 2, relu), conv(3x3, 32, stride 2, relu), conv(3x3,
64, stride 2, relu), dropout(keep 0.3), fc(128, relu)

fc(128, relu), dropout™(keep 0.15), 3 x fc(128, relu), fc(4, tanh)
2 x fc(128, relu), fe(1, sigmoid scaled to range [0.004, 1.0])

fc: fully connected, conv: convolution, *: applied at training and test time

0O : model parameters

1. Individual learning of the motion model 07 = argming, — logp(s; | si_y,a1;04)

2. Individual learning of the measurement 6, = argming, |

model

—log(Ex[lo(he(0y), s7)]) —1og(1 — Ey, 1, [le(he(0r,), s7,)])

3. End-to-end learning
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0" = argmin, — log E;[bel(s;; 0)]




Limitations and Future Work

- End-to-end gradient by backpropagation from the DPF output through the filtering loop only
- The gradient neglects the effects of previous prediction and update steps on the current belief

(resampling is not differentiable)

The authors propose alternative differentiable resampling methodologies:
- Partial resampling:
keep n-m particles from the previous time step, operate backpropagation with those
- Proxy gradients:

proxy gradient for the weight of a resampled particle that is tied to the particle it was sampled from
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Experiments

- Baseline: LSTMs, and Backprop Kalman Filters (BKF)

- Description: the authors evaluated a) the effect of end-to-end learning (e2e) compared to individual
learning (ind) and b) the influence of algorithmic priors encoded in DPFs (comparison with generic
LSTM, policy generalization)

- Metrics: error rates

DeepMind Lab
KITTI dataset
= RGB-D (with
=Ip J{é noise) : _ Ground Truth
) | o e Kot provided
(a) Maze 1 (10x5)  (b) Maze 2 (15x9) (¢) Maze 3 (20x13) Hand-coded
| | : . policies (10% RGB camera
b NN N o o
(d) Maze 1 observations (e) Maze 2 observations (f) Maze 3 observations g > \ . - 1 St Ord er
GLOBAL LOCALIZATION 1000 trajectories | VISUAL ODOMETRY dynamics
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Global Localization
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Fig. 8: Learning curves in all mazes (a-c), also relative to LSTM baseline (d-f). ind: individual learning, e2e: end-to-end
learning. Shaded areas denote standard errors.
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End-to-end learned DPFs
(orange line) consistently
outperform individually trained
DPFs (red line) across all mazes
Performance improves even
more when we sequence
individual and end-to-end
learning (green line in Fig. 8a-c)
The error rate of DPF (ind+e2e)
is lower than for LSTM for all
mazes and all amounts of
training data

Knowing the dynamics model is
helpful but not essential for
DPF’s performance




Global Localization
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Fig. 9: Generalization between policies in maze 2. A: heuris-
tic exploration policy, B: shortest path policy. Methods were
trained using 1000 trajectories from A, B, or an equal mix of
A and B, and then tested with policy A or B.
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DPFs relative performance to LSTMs improves
with more data and converges to about 1/10 to
1/3

The priors from the Bayes filter algorithm reduce
variance without adding bias

All methods have low error rates when tested on
their training policy

The LSTM baseline is not able to generalize to
new policies




Visual Odometry

Infer location based on camera observations

‘."
— \

(a) Visual input (image and difference
image) at time steps 100, 200, and 300
(indicated in (b) by black circles)

y (m)
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—400 A

— Predicted pos.
—— Ground truth
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(b) Trajectory 9; starts at (0,0)

Test 100

Test 100/200/400/800

Translational error (m/m)
BKF*

0.2062

0.1804

DPF (ind) 0.1901 +£ 0.0229 0.2246 £ 0.0371
DPF (e2e) 0.1467 + 0.0149 0.1748 £ 0.0468
DPF (ind+e2e) 0.1559 £ 0.0280 0.1666 + 0.0379
Rotational error (deg/m)

BKF* 0.0801 0.0556

DPF (ind) 0.1074 £ 0.0199 0.0806 £ 0.0153
DPF (e2e) 0.0645 £ 0.0086 0.0524 £ 0.0068
DPF (ind+e2e) 0.0499 £+ 0.0082 0.0409 + 0.0060

Means + standard errors; * results from [7]

DPFs outperform BKFs, in particular for short sequences where they reduce the error by ~30%
Authors claim that improvement over BKFs is due to particles being able to model long-tailed distributions
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Critique / Limitations / Open Issues

- Even though authors claim that knowing the dynamics of the model is not essential for

performance, other works in robotics and safe learning show the opposite

- DPFs might outperform the proposed baselines but results show the methodology might be

impractical and requires further research

- It would be interesting to see this approach operating with sensor fusion to further reduce

error rates as it is the strength of particle filtering
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Further Reading

’:’ Tamar, A., Wu, Y., Thomas, G., Levine, S., & Abbeel, P. (2016). Value iteration networks. arXiv
preprint arXiv:1602.02867 .

’:’ Deng, X., Mousavian, A., Xiang, Y., Xia, F., Bretl, T., & Fox, D. (2021). PoseRBPF: A
Rao—-Blackwellized Particle Filter for 6-D Object Pose Tracking. IEEE Transactions on Robotics.

’:’ Ma, X., Karkus, P., Hsu, D., & Lee, W. S. (2020, April). Particle filter recurrent neural networks. In
Proceedings of the AAAI Conference on Atrtificial Intelligence (Vol. 34, No. 04, pp. 5101-5108)

*%* ICRA18 Keynote: Machine Learning for Safe High-performance Control of Mobile Robots
(https://www.youtube.com/watch?v=-Lp_ckvzhrk)
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Summary

+* Differentiable particle filters are introduced to demonstrate the advantages of combining end-to-end
learning with algorithmic priors
+* End-to-end learning optimizes models for performance while algorithmic priors enable explainability

and regularize learning, which improves data-efficiency and generalization

7
%®

The use of algorithms as algorithmic priors will help to realize the potential of deep learning in robotics

0
%
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DPFs outperform baseline network architectures such as LSTMs and BKFs in terms of error reduction




