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The challenge: learning to look around

Problem:
How to autonomously capture good observations?
Why important?
e fixed observation — passive perception algorithm running on disembodied
stationary machines
e embodied agent — active exploration and perception
Motivating tasks:
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Proposed work

Motivation: infants’ abilities to actively manipulate and inspect objects correlate
with learning to complete 3D shapes [Soska et al. 2010]

Unsupervised learning based on Active observation completion
e small set of observations — all other possible observations
e the agent continuously updates its internal model of a target, and choose
actions that lead to new views that will efficiently complete the internal model
Advantages:
e (generality — policy can transfer to unseen tasks and environments

e |ow cost (label-free) data
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Related work (and their limitations)

e Saliency and attention: find most salient regions of already captured
image/video data; predict the gaze of human observer. Access to observation
of the entire environment — to look for a new observation.

e Optimal sensor placement: how to place sensors so that they provide
maximum coverage. Sensors are static — Active completion, reacting to past
observations.

e Active perception: active object localization, action detection in video, object
recognition. Pre-defined recognition tasks — general data acquisition strategy
in perception; manually labeled data — unlabeled observations.
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Related work (and their limitations)

e Active visual localization and mapping: to limit samples needed to densely
reconstruct a 3D environment geometrically. Purely geometric methods
require dense observations — infer missing content with semantic and
contextual clues.

e Learning to reconstruct: one-short reconstruction. Single view — sequence
of views; image feature learning — learn action policies.
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Problem setting

—

grid of views from different
viewing positions

panorama (equirectangular projection) viewing sphere
: [Jayaraman et al. 2016]

elevations -90°
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Problem setting

elevations +90°

viéwpoint 8,

elevations -90°
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object X

azimuths 0°
/360°

Object observation completion problem:

At timestep ¢ = 1, an active agent is presented with
an object X in a random, unknown pose

At every timestep, it can perform one action to rotate the object,
make new observation x;,
then update its prediction for the viewgrid V;(zy, ..., z)

After T << M N timesteps, it should have learned a model that
can produce a view of the object as seen from any new viewing angle

(Assume the agent is aware of the relative motion from the previous view,
let p; denote this proprioceptive metadata (elevation, relative motion))




Active observation completion framework
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Active observation completion framework
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Objective function and model optimization

e to minimize the distance between predicted and target views at the same viewpoint at time T

LT(X) — Zz d(é}T(Xa 9’&')’ :B(X, 91))

Output viewgrids are shifted by an angle A from
the target viewgrid

LT(X) — Z?i]lv d(iT(X7 0; + AO)’w(Xa 02))

e To minimize this loss, employ stochastic gradient descent (BPTT) + REINFORCE [Williams
1992]
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e Specifically,
VLT (X) backpropagated via the DECODE, AGGREGATE, FUSE, SENSE modules

e ACT is stochastic as it involves sampling — use REINFORCE to handle this:

R(X) — _LT (X) applied to outputs of ACT at all timesteps, backpropagating to
encourage ACT behaviors that led to high R(X) (i.e. low loss);

VR(X ) at timestep t from ACT passed to AGGREGATE for timestep t-1

e |n practice, it is beneficial to penalize errors in the predicted viewgrid at every timestep rather
than just at t=T

L(X) = Y, Lr(X)

V L (X) per timestep
o ———
- DECODE

SENSE — FUSE — AGGREGATE ——= =

- ACT

VR(X) for previous
timesteps
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Experiments

Active Observation Completion (scene, object)
= to show look-around policy performs better on motivating tasks

Transfer to unseen tasks
= to show the advantages of the approach: generality and low-cost
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Active Observation Completion
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Experimental Setup: Active observation completion

Datasets:
SUN360 (scene) ModelNet (object)
e 26 category e Train on seen (ModelNet-40 \ ModelNet-10); unseen
e 32x32 views from 5 camera elevations and (ModelNet-10)
8 azimuths e 32x32 views from 7 camera elevations and 12 azimuths
e  per-timestep motions within 3x5 e per-timestep motions within 5x5
e Training episode length T =6 e Training episode length T =4

Baselines: ours compared with
e 7-view: the method trained with T=1
e random: the method with randomly action selection module
e [arge-action: largest allowable action
e peek-saliency. most salient view within reach at each timestep
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Experimental Results: Active observation completion

Dataset— SUN360 ModelNet (seen classes) ModelNet (unseen classes)
Method| — Metric— MSE(x1000) Improvement MSE(x1000) Improvement MSE(x1000) Improvement
l-view 39.40 - 3.83 - 7.38 -
random 31.88 19.09% 3.46 9.66% 6.22 15.72%
large—-action 30.76 21.93% 3.44 10.18% 6.16 16.53%
peek-saliency |12i] 27.00 31.47% 3.47 9.40% 6.35 13.96%
ours 23.16 41.22% 3.25 15.14% 5.65 23.44%

e lower error
higher improvement
improvements larger on more difficult datasets (SUN360 > unseen ModelNet
> seen ModelNet)
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Experimental Results: Active observation completion

SUN360 ModelNet seen classes ModelNet unseen classes
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e ours method has the sharpest MSE drop
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lon completion examples
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Transfer to unseen tasks

Objective: to inject the generic look-around policy into unseen tasks in unseen

environments.
Active Categorization system
[Jayaraman et al. 2016]:

mug / bowl / frying pan7 mug / bowl / frying pan?
? frying pan
( )

Starting view

Selected new view Starting view Mlected new view

Approach:

“model A”:
end-to-end model using
random policies "\

an

zero overlap,
different categories

model

“model B”
observation completion

: an active
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Experimental Setup: Unsupervised policy transfer

Datasets:
SUN360 (scene) ModelNet (object)
“‘model A” (random-policy) e SUNBS360 training data e ModelNet-10 training objects
“‘model B” e SUNBS360 training data e ModelNet-30 training objects

Baselines: ours compared with
e sup-policy: “Lookahead active RNN” [Jayaraman et al. 2016]
e 171-view: passive feed-forward neural network which only processes one
randomly presented view and predicts its category
e random-policy: sup-policy with random legal motions
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Experimental Results: Unsupervised policy transfer

SUN360 active categorization ModelNet-10 active categorization
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e ours outperforms 7-view and , on par with sup-policy
o remarkable b/c ours only trained for the separate, unsupervised active observation completion
task
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Discussion of Results

Active observation completion
e |ook-around policy decreases error and boosts improvement
e results hold even for unseen ModelNet — advantage of task-independence

Unsupervised policy transfer
e Transferred policy achieves good accuracy — the potential of unsupervised
exploratory tasks to facilitate policy learning on massive unlabeled datasets
— advantage of generality and low-cost
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Limitation and Future work

Limitation & followed-up work
e Train faster and converge to better policies?
o Sidekick policy learning [Ramakrishnan et al. 2018]

e Geometry awareness (cross-object occlusion)?
o Geometry-aware RNN [Cheng et al. 2018]

e Inference about occluded region?
o  Occupancy anticipation [Ramakrishnan et al. 2020]

e \Viewing sphere in more refined discretization (Large M,N)?

Future work
e Fine-tune policy when transferred for new tasks

e Look around — move around?
o reconstruction-based exploratory policies [54,61]
o learning to move to perceive [Yang et al. 2019]
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Extended Readings

e Yang, J.,Ren, Z., Xu, M., Chen, X., Crandall, D., Parikh, D., & Batra, D. (2019). Embodied amodal recognition:
Learning to move to perceive objects. Proceedings of the IEEE International Conference on Computer Vision,
2019-October, 2040-2050. https://doi.org/10.1109/ICCV.2019.00213

e Ramakrishnan, S. K., Al-Halah, Z., & Grauman, K. (2020). Occupancy Anticipation for Efficient Exploration and
Navigation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 12350 LNCS, 400—418. https://doi.org/10.1007/978-3-030-58558-7_24

e Ramakrishnan, S. K., Jayaraman, D., & Grauman, K. (2021). An Exploration of Embodied Visual Exploration.
International Journal of Computer Vision, 129(5), 1616—1649. https://doi.org/10.1007/s11263-021-01437-z

e Cheng, R., Wang, Z., & Fragkiadaki, K. (2018). Geometry-aware recurrent neural networks for active visual
recognition. Advances in Neural Information Processing Systems, 2018-Decem(Nips), 5081-5091.
https://arxiv.org/pdf/1811.01292.pdf

e Ramakrishnan, S. K., & Grauman, K. (2018). Sidekick policy learning for active visual exploration. Lecture Notes in
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 11216 LNCS, 424—-442. https://doi.org/10.1007/978-3-030-01258-8 26
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Summary

e Problem: How can a visual agent autonomously capture good observations?

e Why important? Crucial step towards embodied, active agents in novel
environments

e key limitation: lack of geometry awareness, coarse viewing sphere
discretization

e Advantages: generality, low-cost

e key insights: the agent is rewarded for actions that reduce its uncertainty
about the unobserved portions of the environment

e What did they demonstrate by this insight?

o SOTA performance on active observation completion tasks
o first to accomplish “policy transfer” between tasks
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