

Learning to Look Around: Intelligently Exploring Unseen Environments for Unknown Tasks

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018 Dinesh Jayaraman, Kristen Grauman

> Presenter: Shenghui Chen (Vivian) Sept 30, 2021

The challenge: learning to look around

Problem:

How to autonomously capture good observations?

Why important?

- fixed observation → passive perception algorithm running on disembodied stationary machines
- embodied agent \rightarrow active exploration and perception

Motivating tasks:

Proposed work

Motivation: infants' abilities to actively manipulate and inspect objects correlate with learning to complete 3D shapes [Soska et al. 2010]

Unsupervised learning based on Active observation completion

- small set of observations \rightarrow all other possible observations
- the agent continuously updates its internal model of a target, and choose actions that lead to new views that will efficiently complete the internal model
 Advantages:
- generality \rightarrow policy can transfer to unseen tasks and environments
- low cost (label-free) data

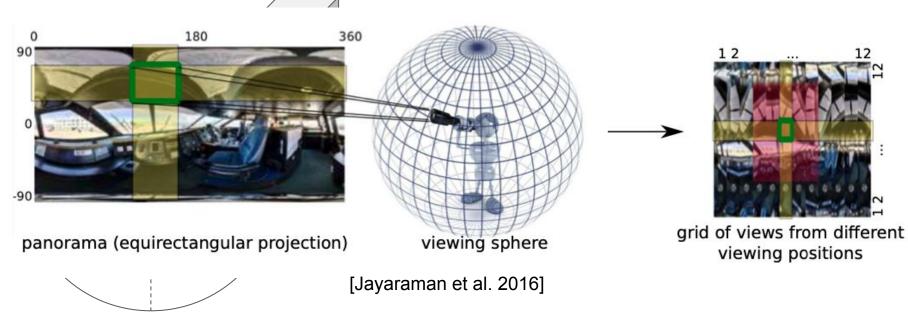
Related work (and their limitations)

- Saliency and attention: find most salient regions of already captured image/video data; predict the gaze of human observer. Access to observation of the entire environment → to look for a new observation.
- Optimal sensor placement: how to place sensors so that they provide maximum coverage. Sensors are static → Active completion, reacting to past observations.
- Active perception: active object localization, action detection in video, object recognition. Pre-defined recognition tasks → general data acquisition strategy in perception; manually labeled data → unlabeled observations.

Related work (and their limitations)

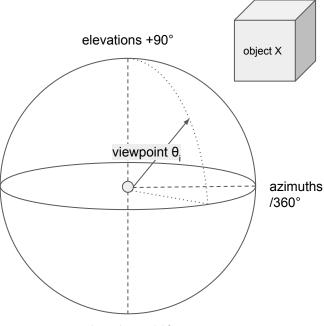
- Active visual localization and mapping: to limit samples needed to densely reconstruct a 3D environment geometrically. Purely geometric methods require dense observations → infer missing content with semantic and contextual clues.
- Learning to reconstruct: one-short reconstruction. Single view → sequence of views; image feature learning → learn action policies.

Problem setting



elevations -90°

Problem setting



elevations -90°

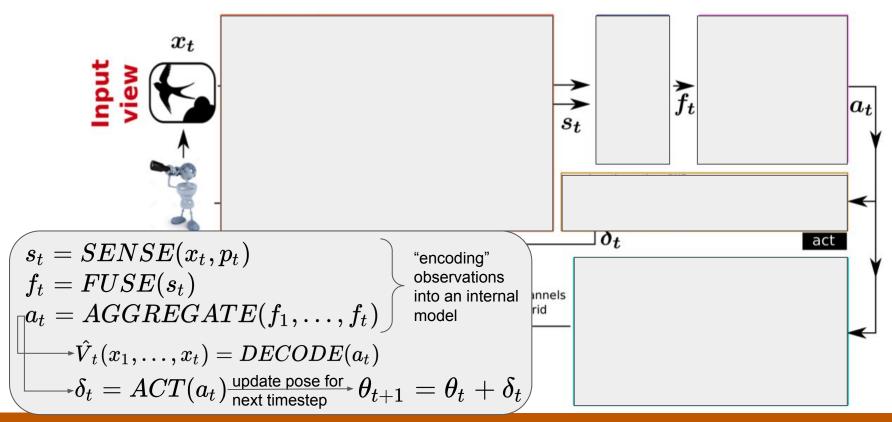
Object observation completion problem:

- At timestep t = 1, an active agent is presented with an object X in a random, unknown pose
- At every timestep, it can perform one action to rotate the object, azimuths 0° make new observation x_t ,

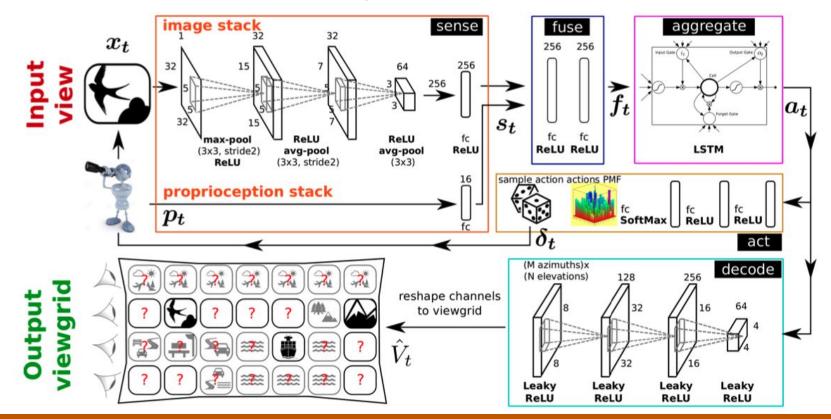
then update its prediction for the viewgrid $\hat{V}_t(x_1, ..., x_t)$

- After $T \ll MN$ timesteps, it should have learned a model that can produce a view of the object as seen from any new viewing angle
- (Assume the agent is aware of the relative motion from the previous view, let p_t denote this proprioceptive metadata (elevation, relative motion))

Active observation completion framework



Active observation completion framework



Objective function and model optimization

• to minimize the distance between predicted and target views at the same viewpoint at time T

$$egin{aligned} L_T(X) &= \sum_i d(\hat{x}_T(X, heta_i), x(X, heta_i)) \ &igcup_{ ext{Output viewgrids are shifted by an angle } \Delta_{_0}} & op \ &igcup_{ ext{the target viewgrid}} \ L_T(X) &= \sum_{i=1}^{MN} d(\hat{x}_T(X, heta_i+\Delta_0), x(X, heta_i)) \end{aligned}$$

 To minimize this loss, employ stochastic gradient descent (BPTT) + REINFORCE [Williams 1992] • Specifically,

 $abla L_T(X)$ backpropagated via the DECODE, AGGREGATE, FUSE, SENSE modules

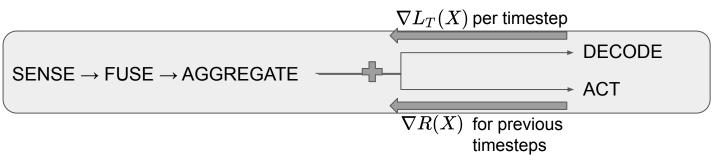
• ACT is stochastic as it involves sampling \rightarrow use REINFORCE to handle this:

 $R(X) = -L_T(X)$ applied to outputs of ACT at all timesteps, backpropagating to encourage ACT behaviors that led to high R(X) (i.e. low loss);

abla R(X) at timestep t from ACT passed to AGGREGATE for timestep t-1

• In practice, it is beneficial to penalize errors in the predicted viewgrid at every timestep rather than just at t=T

$$L(X) = \sum_{t=1}^T L_T(X)$$
 .



Experiments

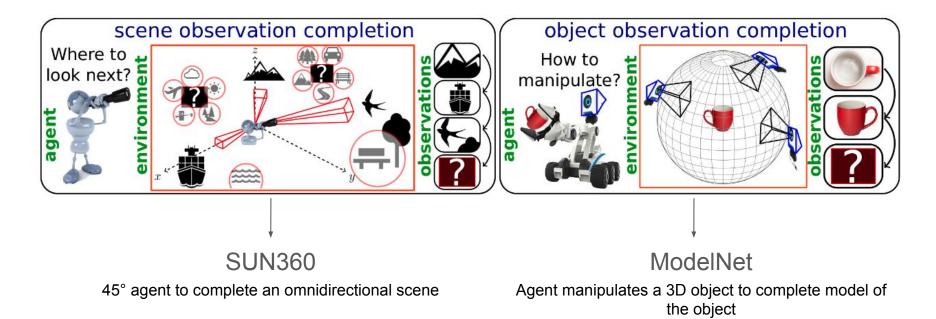
Active Observation Completion (scene, object)

 \Rightarrow to show look-around policy performs better on motivating tasks

Transfer to unseen tasks

 \Rightarrow to show the advantages of the approach: generality and low-cost

Active Observation Completion



CS391R: Robot Learning (Fall 2021)

Experimental Setup: Active observation completion

Datasets:

SUN360 (scene)	ModelNet (object)		
 26 category 32x32 views from 5 camera elevations and 8 azimuths per-timestep motions within 3x5 Training episode length T = 6 	 Train on seen (ModelNet-40 \ ModelNet-10); unseen (ModelNet-10) 32x32 views from 7 camera elevations and 12 azimuths per-timestep motions within 5x5 Training episode length T = 4 		

Baselines: ours compared with

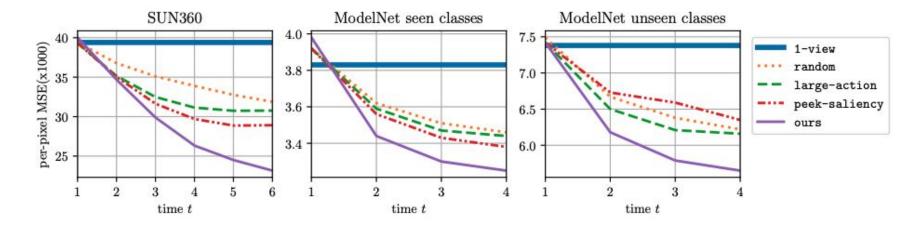
- 1-view: the method trained with T=1
- *random*: the method with randomly action selection module
- *large-action*: largest allowable action
- *peek-saliency*: most salient view within reach at each timestep

Experimental Results: Active observation completion

$Dataset \rightarrow$	SUN360		ModelNet (seen classes)		ModelNet (unseen classes)	
$Method{\downarrow} {-\!\!\!\!-} Metric{\rightarrow}$	MSE(x1000)	Improvement	MSE(x1000)	Improvement	MSE(x1000)	Improvement
1-view	39.40	-	3.83	-	7.38	-
random	31.88	19.09%	3.46	9.66%	6.22	15.72%
large-action	30.76	21.93%	3.44	10.18%	6.16	16.53%
peek-saliency [23]	27.00	31.47%	3.47	9.40%	6.35	13.96%
ours	23.16	41.22%	3.25	15.14%	5.65	23.44%

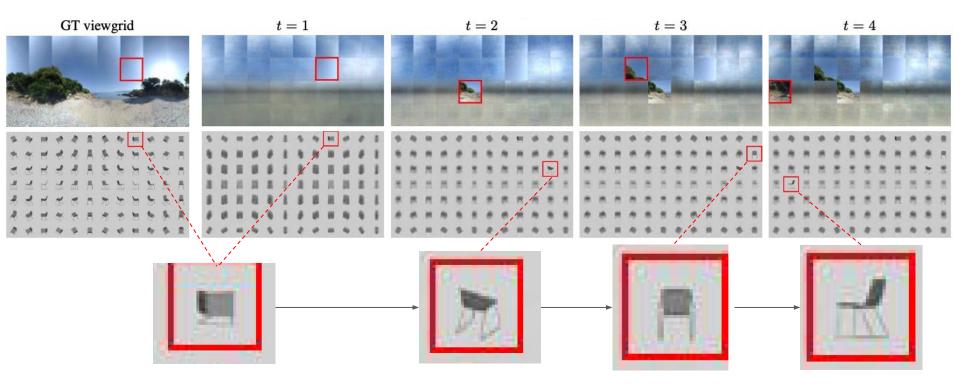
- lower error
- higher improvement
- improvements larger on more difficult datasets (SUN360 > unseen ModelNet
 > seen ModelNet)

Experimental Results: Active observation completion



• ours method has the sharpest MSE drop

SUN360 scene observation completion examples

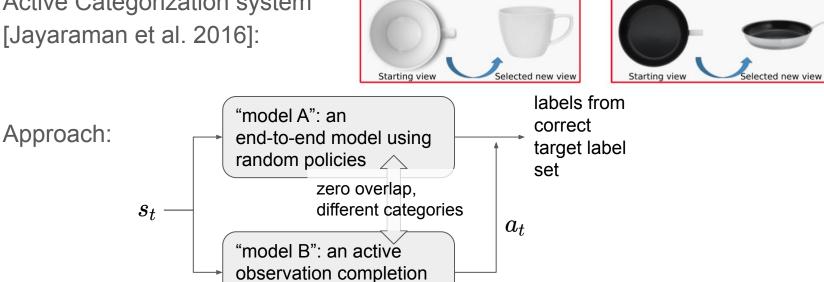


Transfer to unseen tasks

model

Objective: to inject the generic look-around policy into unseen tasks in unseen environments. mug / bowl / frying pan? mug / bowl / frying pan? muq frying pan

Active Categorization system [Jayaraman et al. 2016]:



Experimental Setup: Unsupervised policy transfer

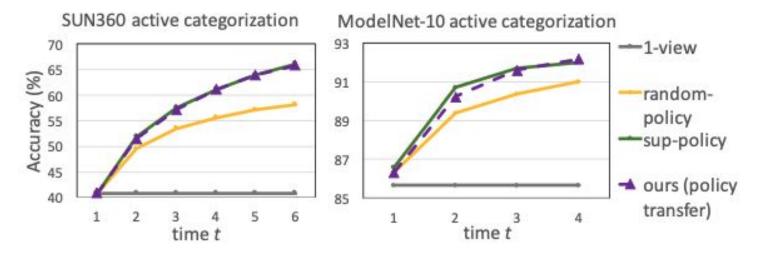
Datasets:

	SUN360 (scene)	ModelNet (object)	
"model A" (random-policy)	SUN360 training data	ModelNet-10 training objects	
"model B"	SUN360 training data	ModelNet-30 training objects	

Baselines: ours compared with

- *sup-policy*: "Lookahead active RNN" [Jayaraman et al. 2016]
- *1-view*: passive feed-forward neural network which only processes one randomly presented view and predicts its category
- *random-policy*: *sup-policy* with random legal motions

Experimental Results: Unsupervised policy transfer



• *ours* outperforms *1-view* and *random-policy*, on par with *sup-policy*

 remarkable b/c ours only trained for the separate, unsupervised active observation completion task

Discussion of Results

Active observation completion

- look-around policy decreases error and boosts improvement
- results hold even for unseen ModelNet \rightarrow advantage of task-independence

Unsupervised policy transfer

 Transferred policy achieves good accuracy → the potential of unsupervised exploratory tasks to facilitate policy learning on massive unlabeled datasets → advantage of generality and low-cost

Limitation and Future work

Limitation & followed-up work

- Train faster and converge to better policies?
 - Sidekick policy learning [Ramakrishnan et al. 2018]
- Geometry awareness (cross-object occlusion)?
 - Geometry-aware RNN [Cheng et al. 2018]
- Inference about occluded region?
 - Occupancy anticipation [Ramakrishnan et al. 2020]
- Viewing sphere in more refined discretization (Large M,N)?

Future work

- Fine-tune policy when transferred for new tasks
- Look around \rightarrow move around?
 - reconstruction-based exploratory policies [54,61]
 - learning to move to perceive [Yang et al. 2019]

Extended Readings

- Yang, J., Ren, Z., Xu, M., Chen, X., Crandall, D., Parikh, D., & Batra, D. (2019). Embodied amodal recognition: Learning to move to perceive objects. Proceedings of the IEEE International Conference on Computer Vision, 2019-October, 2040–2050. <u>https://doi.org/10.1109/ICCV.2019.00213</u>
- Ramakrishnan, S. K., Al-Halah, Z., & Grauman, K. (2020). Occupancy Anticipation for Efficient Exploration and Navigation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12350 LNCS, 400–418. <u>https://doi.org/10.1007/978-3-030-58558-7_24</u>
- Ramakrishnan, S. K., Jayaraman, D., & Grauman, K. (2021). An Exploration of Embodied Visual Exploration. International Journal of Computer Vision, 129(5), 1616–1649. <u>https://doi.org/10.1007/s11263-021-01437-z</u>
- Cheng, R., Wang, Z., & Fragkiadaki, K. (2018). Geometry-aware recurrent neural networks for active visual recognition. Advances in Neural Information Processing Systems, 2018-Decem(Nips), 5081–5091.
 https://arxiv.org/pdf/1811.01292.pdf
- Ramakrishnan, S. K., & Grauman, K. (2018). Sidekick policy learning for active visual exploration. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11216 LNCS, 424–442. <u>https://doi.org/10.1007/978-3-030-01258-8_26</u>

Summary

- **Problem:** How can a visual agent autonomously capture good observations?
- Why important? Crucial step towards embodied, active agents in novel environments
- **key limitation:** lack of geometry awareness, coarse viewing sphere discretization
- Advantages: generality, low-cost
- **key insights:** the agent is rewarded for actions that reduce its uncertainty about the unobserved portions of the environment
- What did they demonstrate by this insight?
 - SOTA performance on active observation completion tasks
 - first to accomplish "policy transfer" between tasks