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The challenge: learning to look around
Problem: 

How to autonomously capture good observations?
Why important?
● fixed observation → passive perception algorithm running on disembodied 

stationary machines
● embodied agent → active exploration and perception

Motivating tasks:
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Proposed work 

Motivation: infants’ abilities to actively manipulate and inspect objects correlate 
with learning to complete 3D shapes [Soska et al. 2010]

Unsupervised learning based on Active observation completion
● small set of observations → all other possible observations
● the agent continuously updates its internal model of a target, and choose 

actions that lead to new views that will efficiently complete the internal model
Advantages:
● generality → policy can transfer to unseen tasks and environments
● low cost (label-free) data
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Related work  (and their limitations)

● Saliency and attention: find most salient regions of already captured 
image/video data; predict the gaze of human observer. Access to observation 
of the entire environment → to look for a new observation.

● Optimal sensor placement: how to place sensors so that they provide 
maximum coverage. Sensors are static → Active completion, reacting to past 
observations.

● Active perception: active object localization, action detection in video, object 
recognition. Pre-defined recognition tasks → general data acquisition strategy 
in perception; manually labeled data → unlabeled observations.
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Related work  (and their limitations)

● Active visual localization and mapping: to limit samples needed to densely 
reconstruct a 3D environment geometrically. Purely geometric methods 
require dense observations → infer missing content with semantic and 
contextual clues.

● Learning to reconstruct: one-short reconstruction. Single view → sequence 
of views; image feature learning → learn action policies.



CS391R: Robot Learning (Fall 2021) 6

Problem setting

Some notations:
object X

azimuths 0°/360°

elevations -90°

elevations +90°

viewpoint θi

[Jayaraman et al. 2016]
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Problem setting

Object observation completion problem:object X

elevations -90°

elevations +90°

viewpoint θi

azimuths 0°
/360°
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Active observation completion framework

“encoding” 
observations 
into an internal 
model

update pose for 
next timestep 
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Active observation completion framework
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Objective function and model optimization

● to minimize the distance between predicted and target views at the same viewpoint at time T

Output viewgrids are shifted by an angle △0 from 
the target viewgrid

● To minimize this loss, employ stochastic gradient descent (BPTT) + REINFORCE [Williams 
1992]
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● Specifically,

● ACT is stochastic as it involves sampling → use REINFORCE to handle this:

● In practice, it is beneficial to penalize errors in the predicted viewgrid at every timestep rather 
than just at t=T

backpropagated via the DECODE, AGGREGATE, FUSE, SENSE modules

applied to outputs of ACT at all timesteps, backpropagating to 
encourage ACT behaviors that led to high R(X) (i.e. low loss);

at timestep t from ACT passed to AGGREGATE for timestep t-1

SENSE → FUSE → AGGREGATE 
DECODE

ACT

per timestep

for previous 
timesteps



CS391R: Robot Learning (Fall 2021) 12

Experiments

Active Observation Completion (scene, object)
⇒ to show look-around policy performs better on motivating tasks

Transfer to unseen tasks
⇒ to show the advantages of the approach: generality and low-cost
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Active Observation Completion

SUN360
45° agent to complete an omnidirectional scene

ModelNet
Agent manipulates a 3D object to complete model of 

the object



CS391R: Robot Learning (Fall 2021) 14

Experimental Setup: Active observation completion 
Datasets:
 

Baselines: ours compared with
● 1-view: the method trained with T=1
● random: the method with randomly action selection module
● large-action: largest allowable action
● peek-saliency: most salient view within reach at each timestep

SUN360 (scene) ModelNet (object)

● 26 category
● 32x32 views from 5 camera elevations and 

8 azimuths
● per-timestep motions within 3x5
● Training episode length T = 6

● Train on seen (ModelNet-40 \ ModelNet-10); unseen 
(ModelNet-10)

● 32x32 views from 7 camera elevations and 12 azimuths
● per-timestep motions within 5x5 
● Training episode length T = 4
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Experimental Results: Active observation completion 

● lower error
● higher improvement
● improvements larger on more difficult datasets (SUN360 > unseen ModelNet 

> seen ModelNet)
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Experimental Results: Active observation completion 

● ours method has the sharpest MSE drop
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SUN360 scene observation completion examples
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Transfer to unseen tasks
Objective: to inject the generic look-around policy into unseen tasks in unseen 
environments.
Active Categorization system 
[Jayaraman et al. 2016]: 

Approach:
“model A”: an 
end-to-end model using 
random policies

“model B”: an active 
observation completion 
model

labels from 
correct 
target label 
set

zero overlap, 
different categories
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Datasets:
 

Baselines: ours compared with
● sup-policy: “Lookahead active RNN” [Jayaraman et al. 2016]
● 1-view: passive feed-forward neural network which only processes one 

randomly presented view and predicts its category
● random-policy: sup-policy with random legal motions

SUN360 (scene) ModelNet (object)

“model A” (random-policy) ● SUN360 training data ● ModelNet-10 training objects

“model B” ● SUN360 training data ● ModelNet-30 training objects

Experimental Setup: Unsupervised policy transfer 
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● ours outperforms 1-view and random-policy, on par with sup-policy
○ remarkable b/c ours only trained for the separate, unsupervised active observation completion 

task

Experimental Results: Unsupervised policy transfer 
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Discussion of Results

Active observation completion
● look-around policy decreases error and boosts improvement
● results hold even for unseen ModelNet → advantage of task-independence

Unsupervised policy transfer
● Transferred policy achieves good accuracy → the potential of unsupervised 

exploratory tasks to facilitate policy learning on massive unlabeled datasets 
→ advantage of generality and low-cost
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Limitation and Future work
Limitation & followed-up work
● Train faster and converge to better policies?

○ Sidekick policy learning [Ramakrishnan et al. 2018]
● Geometry awareness (cross-object occlusion)?

○ Geometry-aware RNN [Cheng et al. 2018]
● Inference about occluded region?

○ Occupancy anticipation [Ramakrishnan et al. 2020]
● Viewing sphere in more refined discretization (Large M,N)?

Future work
● Fine-tune policy when transferred for new tasks
● Look around → move around?

○ reconstruction-based exploratory policies [54,61]
○ learning to move to perceive [Yang et al. 2019]
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Summary

● Problem: How can a visual agent autonomously capture good observations?
● Why important? Crucial step towards embodied, active agents in novel 

environments
● key limitation: lack of geometry awareness, coarse viewing sphere 

discretization
● Advantages: generality, low-cost
● key insights: the agent is rewarded for actions that reduce its uncertainty 

about the unobserved portions of the environment
● What did they demonstrate by this insight?

○ SOTA performance on active observation completion tasks
○ first to accomplish “policy transfer” between tasks


