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Motivation
Sample Efficiency

Reinforcement Learning (RL) can solve complex decision making and control problems, but 

it is notoriously sample-inefficient.

Vinyals et al., 2019

“During training, each agent experienced 
up to 200 years of real-time StarCraft 
play.”

Grandmaster level in StarCraft II using multi-agent reinforcement learning

https://www.nature.com/articles/s41586-019-1724-z
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Motivation
Sample Efficiency

Reinforcement Learning (RL) can solve complex decision making and control problems, but 

it is notoriously sample-inefficient.

Levine et al., 2016

● 14 robot arms learning to grasp in 
parallel

● Observing over 800,000 grasp 
attempts (3000 robot-hours of 
practice), we can see the beginnings of 
intelligent reactive behaviors.

Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection

https://arxiv.org/abs/1603.02199
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Motivation
Robustness to Hyperparameters

RL performance is brittle to hyperparameters, which needs laborious tuning.

Henderson et al., 2017

Reward scaling has a significant impact 
on DDPG performance.
(DDPG will be introduced soon)

Deep Reinforcement Learning that Matters

https://arxiv.org/abs/1709.06560
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Problem Setting
Markov Decision Process (MDP)

State Space

Action Space

Transition Probability

Reward

Policy

Trajectory
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RL Ranking on Sample Efficiency

● model-based

learns a model of the environment + use the learned model to imagine interactions
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off-policy RL
RL Ranking on Sample Efficiency

● model-based

● model-free

○ off-policy

can learns from data generated by a 

different policy
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Context
Actor-Critic

● Critic: estimates future return of state-action pair

● Actor: adjusts policy to maximize critic’s estimated future 

return
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Context
Actor-Critic

● Critic:

● Actor:

Deep Deterministic Policy Gradient (DDPG)

● Critic

● Actor
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Context
Actor-Critic

● Critic:

● Actor:

Deep Deterministic Policy Gradient (DDPG)

● Critic

● Actor

● Deterministic policy makes training unstable and brittle 

to hyperparameters.
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Context
Standard RL

Reward: 

Maximum Entropy RL

reward: 
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Context
Standard RL

Reward: 

Entropy      : measure of uncertainty

Maximum Entropy RL

reward: 
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Context
Maximum Entropy RL
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optimal policy:

Standard RL

reward:

optimal policy:
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reward:

optimal policy:

Why is it helpful?
● encourages exploration
● enables multi-modal action selection
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Context
Maximum Entropy RL

reward: 

optimal policy:

Standard RL

reward:
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Method
Soft Actor-Critic

reward: 

Q-value:

Actor-Critic (DDPG)

reward:

Q-value:
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Method
Soft Actor-Critic

reward: 

Q-value:

Q-value updates:

Actor-Critic (DDPG)

reward:

Q-value:

Q-value updates:
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Method
Soft Actor-Critic

reward: 

Q-value:

Q-value updates:

policy improvement:

Actor-Critic (DDPG)

reward:

Q-value:

Q-value updates:

policy improvement:
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Method
Soft Actor-CriticActor-Critic (DDPG)
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Method
Proof of Convergence

Assumption: finite state and action space

1. If we update Q-value as follows, it will converge to       as              .
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Method
Proof of Convergence: Are they realistic?

Assumption: finite state and action space

1. If we update Q-value as follows, it will converge to       as              .

2. If we update the policy as follows, then                                                                            . 

3. If we repeat step 1 and 2, we will find the optimal policy       such that                                        for 

any policy     and                                . 
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any policy     and                                . For how many step? Possibly a lot.
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Method
Proof of Convergence: Are they realistic?

Assumption: finite state and action space

1. If we update Q-value as follows, it will converge to       as              .

2. If we update the policy as follows, then                                                                            . 

3. If we repeat step 1 and 2, we will find the optimal policy       such that                                        for 

any policy     and                                . For how many step? Possibly a lot.

Not applicable to many robotics problems (continuous state/action) and not computationally tractable.
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Method
Implementation (Practical Approximation)

1. critic training

● convergence → gradient descent
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Method
Implementation (Practical Approximation)

1. critic training

● convergence → gradient descent

● remove expectation

○ next action

○ entropy

○ next state
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Method
Implementation (Practical Approximation)

2. actor 

training

● convergence → gradient descent

● rewrite KL divergence
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Method
Implementation (Practical Approximation)

2. actor 

training

● convergence → gradient descent

● rewrite KL divergence

● scale loss by      and omit constant

● remove expectation over action
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2. actor 

training: gradient descent with 

design choice: policy as normal distribution

● but normal distribution is unimodal, it loses the declared multi-modal advantages.

36

Method
Implementation (Practical Approximation)
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Method
Automatic Entropy Adjustment

Choosing the optimal     is not trivial

● Recall for maximum entropy RL, the reward is                                          .
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○ different policies as the policy gets improved
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Method
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● Recall for maximum entropy RL, the reward is                                          .

● So      depends on the magnitude of   , but     can vary a lot across
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Method
Automatic Entropy Adjustment

Only constrain the average entropy across states

●     : target entropy,      always > 0

● increase      if                           , decrease otherwise.
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Method
Overall Algorithm
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Simulated Benchmarks

State: joint value

Action: joint torque

Metric: average return

           Ant                   Half Cheetah                 Walker                   Hopper                   Humanoid

Experiment
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Baselines

● SAC with learned 

● SAC with fixed 

● DDPG (off-policy, deterministic policy)

● TD3 (DDPG with engineering improvements)

● PPO (on-policy)

Experiment
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Baselines

● SAC with learned 

● SAC with fixed 

● DDPG (off-policy, deterministic policy)

● TD3 (DDPG with engineering improvements)

● PPO (on-policy)

Hypotheses

Compared to baselines, if SAC has better

● sample-efficiency: learning speed + final performance

● stability: performance on hard tasks where hyperparameters tuning is challenging

Experiment
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Experiment
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Simulated Benchmarks
● Easy tasks (hopper, walker)

○ all algorithm performs comparably except for DDPG

Experiment
SAC (learned temperature)
SAC (fixed temperature)
DDPG
TD3
PPO
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Simulated Benchmarks
● Normal tasks (half cheetah, ant)

○ SAC > TD3 > DDPG & PPO in both learning speed and final performance

Experiment
SAC (learned temperature)
SAC (fixed temperature)
DDPG
TD3
PPO
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Simulated Benchmarks
● Hard tasks (humanoid)

○ DDPG & its variant TD3 fail to learn

○ SAC learns much faster than PPO

Experiment
SAC (learned temperature)
SAC (fixed temperature)
DDPG
TD3
PPO
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Simulated Benchmarks
● Larger variance with the automatic temperature adjustment

Experiment
SAC (learned temperature)
SAC (fixed temperature)
DDPG
TD3
PPO
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Real World Quadrupedal Locomotion

State: low-dimensional

Challenges: sample efficiency & generalization to unseen environments

Training: 160k steps (2 hours)

Experiment
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Real World Quadrupedal Locomotion

Train on Flat

Test on Slope

Test with Obstacles

Test with Stairs

Experiment
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Experiment
Real World Manipulation

State: hand joint angles + image / ground truth valve position

Challenges: precepting the valve position from images

Comparison (using ground truth valve position): SAC (3 hrs) vs PPO (7.4 hrs)
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Limitations
● Multi-modal policy

○ Though it is declared that maximum entropy RL can benefit from multi-modal policy, SAC 

chooses to use a unimodal policy (normal distribution).

○ All experiments don’t require multi-modal behaviors to finish.

● Hyperparameter tuning

○ Target entropy       brings a new hyperparameter to tune.

○ Average entropy constraints do not provide the desired exploration + exploitation balance.

○ For manipulation tasks that require accurate control, even averaged entropy regularization still 

hurts the performance.
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Future Work and Extended Readings
● Learn multi-modal policy rather than unimodal policy

○ Reinforcement Learning with Deep Energy-Based Policies

● Improve sample-efficiency with auxiliary tasks

○ Improving Sample Efficiency in Model-Free Reinforcement Learning from Images

○ CURL: Contrastive Unsupervised Representations for Reinforcement Learning

● Improve generalizability by learning tasks-relevant features 

○ Learning Invariant Representations for Reinforcement Learning without Reconstruction

○ Learning Task Informed Abstractions

https://arxiv.org/abs/1702.08165
https://arxiv.org/abs/1910.01741
https://arxiv.org/abs/2004.04136
https://arxiv.org/abs/2006.10742
https://arxiv.org/abs/2106.15612
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Summary
● Problem: sample-efficient RL with automatic hyperparameter tuning

● Limitations of prior work:

○ On-policy RL is sample-inefficient

○ DDPG that uses deterministic policy is brittle to hyperparameters

● Key insights of the proposed work

○ Maximal entropy RL encourages exploration and robust to environments & 

hyperparameters.

○ Use the average entropy across states as regularization.

● State-of-the-art sample efficiency and generalizabilities on simulated and real world tasks.


