

Soft Actor-Critic Algorithms and Applications

Presenter: Zizhao Wang

10/12/2021

Motivation

Sample Efficiency

Reinforcement Learning (RL) can solve complex decision making and control problems, but

it is notoriously sample-inefficient.

Vinyals et al., 2019

"During training, each agent experienced up to **200 years** of real-time StarCraft play."

Grandmaster level in StarCraft II using multi-agent reinforcement learning

Motivation

Sample Efficiency

Reinforcement Learning (RL) can solve complex decision making and control problems, but

it is notoriously sample-inefficient.

Levine et al., 2016

- **14** robot arms learning to grasp in parallel
- Observing over 800,000 grasp attempts (3000 robot-hours of practice), we can see the beginnings of intelligent reactive behaviors.

Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection

Motivation

Robustness to Hyperparameters

RL performance is brittle to hyperparameters, which needs laborious tuning.

Henderson et al., 2017

Reward scaling has a significant impact on DDPG performance. (DDPG will be introduced soon)

Problem Setting

Markov Decision Process (MDP)

RL Ranking on Sample Efficiency

model-based

learns a model of the environment + use the learned model to imagine interactions

better sample efficiency

RL Ranking on Sample Efficiency

- model-based
- model-free
 - \circ off-policy

can learns from data generated by a

different policy

off-policy RL

better sample efficiency

Context

RL Ranking on Sample Efficiency

- model-based
- model-free
 - \circ off-policy

can learns from data generated by a

- different policy
- \circ on-policy

must learn from data generated by the current policy

on-policy RL

000

better sample efficiency

Context

RL Ranking on Sample Efficiency

- model-based
- model-free
 - off-policy

can learns from data generated by a

- different policy
- \circ on-policy

must learn from data generated by the current policy

on-policy RL

000

Actor-Critic

• Critic: estimates future return of state-action pair

$$egin{aligned} Q^{\pi}(s,a) &= \mathop{\mathbb{E}}\limits_{ au \sim \pi} [\sum_{t=0}^{\infty} \gamma^t r(s_t,a_t) | s = s_0, a = a_0] \ Q^{\pi}(s,a) &= \mathop{\mathbb{E}}\limits_{s' \sim p, a' \sim \pi(\cdot | s')} [r(s,a) + \gamma Q^{\pi}(s',a')] \end{aligned}$$

• Actor: adjusts policy to maximize critic's estimated future return

$$\pi(s) = rg\max_a Q^\pi(s,a)$$

Actor-Critic

- $\begin{array}{l} \text{Critic: } Q^{\pi}(s,a) = \mathop{\mathbb{E}}_{s' \sim p, a' \sim \pi(\cdot \mid s')} [r(s,a) + \gamma Q^{\pi}(s',a')] \\ \text{Actor: } \pi(s) = \arg\max_{a} Q^{\pi}(s,a) \end{array}$ lacksquare
- •

Deep Deterministic Policy Gradient (DDPG)

Critic

$$L_Q = \mathop{\mathbb{E}}_{(s,a,r,s')\sim D} \Bigl[\left(Q(s,a) - \left(r + \gamma Q(s',\pi(s'))
ight)^2
ight] \; .$$

Actor

$$L_{\pi} = - \mathop{\mathbb{E}}\limits_{s \sim D} [Q(s, \pi(s))]$$

Actor-Critic

- $\begin{array}{l} \text{Critic: } Q^{\pi}(s,a) = \mathop{\mathbb{E}}_{s' \sim p, a' \sim \pi(\cdot | s')} [r(s,a) + \gamma Q^{\pi}(s',a')] \\ \text{Actor: } \pi(s) = \mathop{\arg\max}_{a} Q^{\pi}(s,a) \end{array}$ •
- •

Deep Deterministic Policy Gradient (DDPG)

Critic

$$\mathbb{L}_Q = \mathop{\mathbb{E}}_{(s,a,r,s')\sim D} \Big[\left(Q(s,a) - \left(r + \gamma Q(s',\pi(s'))
ight)^2 \Big] \Big] \, .$$

Actor

$$L_{\pi} = - \mathop{\mathbb{E}}\limits_{s \sim D} [Q(s, \pi(s))]$$

Deterministic policy makes training unstable and brittle • to hyperparameters.

Standard RL

Reward: r(s,a)

Maximum Entropy RL

reward: $r(s, a) + lpha \mathcal{H}(\pi(\cdot|s))$

Standard RL Reward: r(s, a)

Maximum Entropy RL

reward: $r(s, a) + lpha \mathcal{H}(\pi(\cdot|s))$

Entropy \mathcal{H} : measure of uncertainty $\mathcal{H}(p) = -\int p(x)\log p(x)dx = -\mathbb{E}_{x\sim p}[\log p(x)]$ 0.8 Entropy 9.0 0.4 0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 p

Standard RL

reward: r(s,a)

optimal policy:

 $\pi^* = rg \max \sum_t \mathbb{E}[\gamma^t r(s_t, a_t)]$

Maximum Entropy RL

reward: $r(s, a) + \alpha \mathcal{H}(\pi(\cdot|s))$ optimal policy: $\pi^* = \arg \max \sum_t \mathbb{E}[\gamma^t(r(s_t, a_t) + \alpha \mathcal{H}(\pi(\cdot|s_t)))]$

Standard RL

reward: r(s,a)

optimal policy:

$$\pi^* = rg \max \sum_t \mathbb{E}[\gamma^t r(s_t, a_t)]$$

Why is it helpful?

- encourages exploration
- enables multi-modal action selection

Maximum Entropy RL

reward: $r(s,a) + lpha \mathcal{H}(\pi(\cdot|s))$

optimal policy:

$$\pi^* = rg \max \sum_t \mathbb{E}[\gamma^t(r(s_t, a_t) + lpha \mathcal{H}(\pi(\cdot|s_t)))]$$

Standard RL

reward: r(s,a)

optimal policy:

$$\pi^* = rg \max \sum_t \mathbb{E}[\gamma^t r(s_t, a_t)]$$

Maximum Entropy RL

reward: $r(s,a) + lpha \mathcal{H}(\pi(\cdot|s))$

optimal policy:

$$\pi^* = rg \max \sum_t \mathbb{E}[\gamma^t(r(s_t, a_t) + lpha \mathcal{H}(\pi(\cdot|s_t)))]$$

Why is it helpful?

- encourages exploration
- enables multi-modal action selection

Actor-Critic (DDPG)

reward: r(s,a)

Q-value:

$$Q^{\pi}(s_0,a_0) = \mathop{\mathbb{E}}\limits_{ au \sim \pi} [\sum\limits_{t=0}^{\infty} \gamma^t r(s_t,a_t)]$$

Soft Actor-Critic

reward: $r(s, a) + \alpha \mathcal{H}(\pi(\cdot|s))$ Q-value: $Q^{\pi}(s_0, a_0) = \mathop{\mathbb{E}}_{\tau \sim \pi} [\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) + \alpha \sum_{t=1}^{\infty} \gamma^t \mathcal{H}(\pi(\cdot|s_t))]$

Actor-Critic (DDPG)

reward: r(s,a)

Q-value:

$$Q^{\pi}(s_0,a_0) = \mathop{\mathbb{E}}\limits_{ au \sim \pi} [\sum\limits_{t=0}^{\infty} \gamma^t r(s_t,a_t)]$$

Q-value updates:

$$Q^{\pi}(s,a) = \mathop{\mathbb{E}}\limits_{\substack{s'\sim p \ a'\sim \pi}} [r(s,a) + \gamma Q^{\pi}(s',a')]$$

Soft Actor-Critic

reward: $r(s,a) + lpha \mathcal{H}(\pi(\cdot|s))$

Q-value:
$$Q^{\pi}(s_0, a_0) = \mathop{\mathbb{E}}_{\tau \sim \pi} [\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) + lpha \sum_{t=1}^{\infty} \gamma^t \mathcal{H}(\pi(\cdot|s_t))]$$

Q-value updates:

$$Q^{\pi}(s,a) = \mathop{\mathbb{E}}\limits_{\substack{s' \sim p \ a' \sim \pi}} [r(s,a) + \gamma \left(Q^{\pi}(s',a') + lpha \mathcal{H}(\pi(\cdot|s'))
ight)]$$

Actor-Critic (DDPG)

reward: r(s,a)

Q-value:

$$Q^{\pi}(s_0,a_0) = \mathop{\mathbb{E}}\limits_{ au \sim \pi} [\sum\limits_{t=0}^{\infty} \gamma^t r(s_t,a_t)]$$

Q-value updates:

$$Q^{\pi}(s,a) = \mathop{\mathbb{E}}\limits_{\substack{s' \sim p \ a' \sim \pi}} [r(s,a) + \gamma Q^{\pi}(s',a')]$$

policy improvement:

$$\pi_{ ext{new}} = rg \max_{\pi} Q^{\pi_{ ext{old}}}\left(s_t, \pi(\cdot|s_t)
ight)$$

Soft Actor-Critic

reward: $r(s,a) + lpha \mathcal{H}(\pi(\cdot|s))$

Q-value:
$$Q^{\pi}(s_0, a_0) = \mathop{\mathbb{E}}_{\tau \sim \pi} [\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) + \alpha \sum_{t=1}^{\infty} \gamma^t \mathcal{H}(\pi(\cdot|s_t))]$$

Q-value updates:

$$Q^{\pi}(s,a) = \mathop{\mathbb{E}}\limits_{\substack{s' \sim p \ a' \sim \pi}} [r(s,a) + \gamma \left(Q^{\pi}(s',a') + lpha \mathcal{H}(\pi(\cdot|s'))
ight)]$$

policy improvement:

$$\pi_{ ext{new}} = rgmin_{\pi} D_{ ext{KL}} \left(\pi(\cdot|s_t) || rac{\exp(rac{1}{lpha} Q^{\pi_{ ext{old}}}(s_t,\cdot))}{Z^{\pi_{ ext{old}}}(s_t)}
ight)$$

Actor-Critic (DDPG)

Soft Actor-Critic $\pi_{ ext{new}} = rgmin_{\pi} D_{ ext{KL}} \left(\pi(\cdot|s_t) || rac{\exp(rac{1}{lpha} Q^{\pi_{ ext{old}}}(s_t,\cdot))}{Z^{\pi_{ ext{old}}}(s_t)} ight)$ $Q(\mathbf{s}_t, \mathbf{a}_t)$ $\pi(\mathbf{a}_t|\mathbf{s}_t) \propto \exp Q(\mathbf{s}_t,\mathbf{a}_t)$ \mathbf{a}_t

Proof of Convergence

Assumption: finite state and action space $|S| < \infty, |A| < \infty$

1. If we update Q-value as follows, it will converge to Q^{π} as $k \to \infty$.

$$Q^{k+1}(s,a) = \mathop{\mathbb{E}}\limits_{\substack{s' \sim p \ a' \sim \pi}} ig[r(s,a) + \gamma \left(Q^k(s',a') + lpha \mathcal{H}(\pi(\cdot|s'))
ight)ig]$$

Proof of Convergence

Assumption: finite state and action space $|S| < \infty, |A| < \infty$

1. If we update Q-value as follows, it will converge to Q^{π} as $k \to \infty$.

$$Q^{k+1}(s,a) = \mathop{\mathbb{E}}\limits_{\substack{s' \sim p \ a' \sim \pi}} ig[r(s,a) + \gamma \left(Q^k(s',a') + lpha \mathcal{H}(\pi(\cdot|s'))
ight) ig]$$

 $\text{2. If we update the policy as follows, then } Q^{\pi_{\text{new}}}(s_t,a_t) \geq Q^{\pi_{\text{old}}}(s_t,a_t), \forall (s_t,a_t) \in \mathcal{S} \times \mathcal{A}.$

$$\pi_{ ext{new}} = rgmin_{\pi} D_{ ext{KL}} \left(\pi(\cdot|s_t) || rac{\exp(rac{1}{lpha} Q^{\pi_{ ext{old}}}(s_t,\cdot))}{Z^{\pi_{ ext{old}}}(s_t)}
ight)$$

Proof of Convergence

Assumption: finite state and action space $|S| < \infty, |A| < \infty$

1. If we update Q-value as follows, it will converge to Q^{π} as $k \to \infty$.

$$Q^{k+1}(s,a) = \mathop{\mathbb{E}}\limits_{\substack{s'\sim p \ a'\sim \pi}} ig[r(s,a) + \gamma \left(Q^k(s',a') + lpha \mathcal{H}(\pi(\cdot|s'))
ight)ig]$$

 $\text{2. If we update the policy as follows, then } Q^{\pi_{\text{new}}}(s_t,a_t) \geq Q^{\pi_{\text{old}}}(s_t,a_t), \forall (s_t,a_t) \in \mathcal{S} \times \mathcal{A}.$

$$\pi_{ ext{new}} = rgmin_{\pi} D_{ ext{KL}} \left(\pi(\cdot|s_t) || rac{\exp(rac{1}{lpha} Q^{\pi_{ ext{old}}}(s_t,\cdot))}{Z^{\pi_{ ext{old}}}(s_t)}
ight)$$

3. If we repeat step 1 and 2, we will find the optimal policy π^* such that $Q^{\pi^*}(s_t, a_t) \ge Q^{\pi}(s_t, a_t)$ for any policy π and $\forall (s_t, a_t) \in S \times A$.

Proof of Convergence: Are they realistic?

Assumption: finite state and action space $|S| < \infty, |A| < \infty$

1. If we update Q-value as follows, it will converge to Q^{π} as $k \to \infty$.

$$Q^{k+1}(s,a) = \mathop{\mathbb{E}}\limits_{\substack{s' \sim p \ a' \sim \pi}} ig[r(s,a) + \gamma \left(Q^k(s',a') + lpha \mathcal{H}(\pi(\cdot|s'))
ight)ig]$$

 $\text{2. If we update the policy as follows, then } Q^{\pi_{\text{new}}}(s_t,a_t) \geq Q^{\pi_{\text{old}}}(s_t,a_t), \forall (s_t,a_t) \in \mathcal{S} \times \mathcal{A}.$

$$\pi_{ ext{new}} = rgmin_{\pi} D_{ ext{KL}} \left(\pi(\cdot|s_t) || rac{\exp(rac{1}{lpha} Q^{\pi_{ ext{old}}}(s_t,\cdot))}{Z^{\pi_{ ext{old}}}(s_t)}
ight)$$

3. If we repeat step 1 and 2, we will find the optimal policy π^* such that $Q^{\pi^*}(s_t, a_t) \ge Q^{\pi}(s_t, a_t)$ for any policy π and $\forall (s_t, a_t) \in S \times A$.

Proof of Convergence: Are they realistic?

Assumption: finite state and action space $|S| < \infty, |A| < \infty$

1. If we update Q-value as follows, it will converge to Q^{π} as $k \to \infty$.

$$Q^{k+1}(s,a) = \mathop{\mathbb{E}}\limits_{\substack{s' \sim p \ a' \sim \pi}} ig[r(s,a) + \gamma \left(Q^k(s',a') + lpha \mathcal{H}(\pi(\cdot|s'))
ight) ig]$$

 $\text{2. If we update the policy as follows, then } Q^{\pi_{\text{new}}}(s_t,a_t) \geq Q^{\pi_{\text{old}}}(s_t,a_t), \forall (s_t,a_t) \in \mathcal{S} \times \mathcal{A}.$

$$\pi_{ ext{new}} = rgmin_{\pi} D_{ ext{KL}} \left(\pi(\cdot|s_t) || rac{\exp(rac{1}{lpha} Q^{\pi_{ ext{old}}}(s_t,\cdot))}{Z^{\pi_{ ext{old}}}(s_t)}
ight)$$

3. If we repeat step 1 and 2, we will find the optimal policy π^* such that $Q^{\pi^*}(s_t, a_t) \ge Q^{\pi}(s_t, a_t)$ for any policy π and $\forall (s_t, a_t) \in S \times A$. For how many step? Possibly a lot.

Proof of Convergence: Are they realistic?

Assumption: finite state and action space $|S| < \infty, |A| < \infty$

1. If we update Q-value as follows, it will converge to Q^{π} as $k \to \infty$.

$$Q^{k+1}(s,a) = \mathop{\mathbb{E}}\limits_{\substack{s' \sim p \ a' \sim \pi}} ig[r(s,a) + \gamma \left(Q^k(s',a') + lpha \mathcal{H}(\pi(\cdot|s'))
ight) ig]$$

 $\text{2. If we update the policy as follows, then } Q^{\pi_{\text{new}}}(s_t,a_t) \geq Q^{\pi_{\text{old}}}(s_t,a_t), \forall (s_t,a_t) \in \mathcal{S} \times \mathcal{A}.$

$$\pi_{ ext{new}} = rgmin_{\pi} D_{ ext{KL}} \left(\pi(\cdot|s_t) || rac{\exp(rac{1}{lpha} Q^{\pi_{ ext{old}}}(s_t,\cdot))}{Z^{\pi_{ ext{old}}}(s_t)}
ight)$$

3. If we repeat step 1 and 2, we will find the optimal policy π^* such that $Q^{\pi^*}(s_t, a_t) \ge Q^{\pi}(s_t, a_t)$ for any policy π and $\forall (s_t, a_t) \in S \times A$. For how many step? Possibly a lot.

Not applicable to many robotics problems (continuous state/action) and not computationally tractable.

Implementation (Practical Approximation)

- 1. critic training
 - convergence \rightarrow gradient descent $Q^{k+1}(s,a) = \underset{\substack{s' \sim p \\ a' \sim \pi}}{\mathbb{E}} \left[r(s,a) + \gamma \left(Q^k(s',a') + \alpha \mathcal{H}(\pi(\cdot|s')) \right) \right], k \rightarrow \infty$

$$L_Q = \mathbb{E}_{(s,a,r) \sim D} \left[\left(Q(s,a) - \left(r + \gamma \mathop{\mathbb{E}}_{s' \sim p} \left[\mathop{\mathbb{E}}_{a' \sim \pi(\cdot | s')} [Q(s',a')] + lpha \mathcal{H}(\pi(\cdot | s'))
ight]
ight)
ight)^2
ight]$$

Implementation (Practical Approximation)

- 1. critic training
 - convergence \rightarrow gradient descent $Q^{k+1}(s,a) = \underset{\substack{s' \sim p \\ a' \sim \pi}}{\mathbb{E}} \left[r(s,a) + \gamma \left(Q^k(s',a') + \alpha \mathcal{H}(\pi(\cdot|s')) \right) \right], k \rightarrow \infty$
 - remove expectation
 - \circ next action

$$egin{split} L_Q =& \mathbb{E}_{(s,a,r)\sim D} \left[\left(Q(s,a) - \left(r + \gamma \mathop{\mathbb{E}}_{s'\sim p} \left[\mathop{\mathbb{E}}_{a'\sim \pi(\cdot|s')} [Q(s',a')] + lpha \mathcal{H}(\pi(\cdot|s'))]
ight)
ight)^2
ight] \ =& \mathbb{E}_{(s,a,r)\sim D} \left[\left(Q(s,a) - \left(r + \gamma \mathop{\mathbb{E}}_{s'\sim p} [Q(s',a') + lpha \mathcal{H}(\pi(\cdot|s'))]
ight)
ight)^2
ight], a' \sim \pi(\cdot|s') \ =& \mathbb{E}_{(s,a,r)\sim D} \left[\left(Q(s,a) - \left(r + \gamma \mathop{\mathbb{E}}_{s'\sim p} [Q(s',a') + lpha \mathcal{H}(\pi(\cdot|s'))]
ight)
ight)^2
ight], a' \sim \pi(\cdot|s') \ =& \mathbb{E}_{(s,a,r)\sim D} \left[\left(Q(s,a) - \left(r + \gamma \mathop{\mathbb{E}}_{s'\sim p} [Q(s',a') + lpha \mathcal{H}(\pi(\cdot|s'))]
ight)
ight)^2
ight], a' \sim \pi(\cdot|s') \ =& \mathbb{E}_{(s,a,r)\sim D} \left[\left(Q(s,a) - \left(r + \gamma \mathop{\mathbb{E}}_{s'\sim p} [Q(s',a') + lpha \mathcal{H}(\pi(\cdot|s'))]
ight)
ight)^2
ight], a' \sim \pi(\cdot|s') \ =& \mathbb{E}_{(s,a,r)\sim D} \left[\left(Q(s,a) - \left(r + \gamma \mathop{\mathbb{E}}_{s'\sim p} [Q(s',a') + lpha \mathcal{H}(\pi(\cdot|s'))]
ight)
ight)^2
ight], a' \sim \pi(\cdot|s') \ =& \mathbb{E}_{(s,a,r)\sim D} \left[\left(Q(s,a) - \left(r + \gamma \mathop{\mathbb{E}}_{s'\sim p} [Q(s',a') + lpha \mathcal{H}(\pi(\cdot|s'))]
ight)
ight)^2
ight], a' \sim \pi(\cdot|s') \ =& \mathbb{E}_{(s,a,r)\sim D} \left[\left(Q(s,a) - \left(r + \gamma \mathop{\mathbb{E}}_{s'\sim p} [Q(s',a') + lpha \mathcal{H}(\pi(\cdot|s'))]
ight)
ight)^2
ight], a' \sim \pi(\cdot|s') \ =& \mathbb{E}_{(s,a,r)\sim D} \left[\left(Q(s,a) - \left(r + \gamma \mathop{\mathbb{E}}_{s'\sim p} [Q(s',a') + lpha \mathcal{H}(\pi(\cdot|s'))]
ight)
ight)
ight], a' \sim \pi(\cdot|s') \ =& \mathbb{E}_{(s,a,r)\sim D} \left[\left(Q(s,a) - \left(r + \gamma \mathop{\mathbb{E}}_{s'\sim p} [Q(s',a') + \alpha \mathcal{H}(\pi(\cdot|s'))]
ight)
ight], a' \sim \pi(\cdot|s') \ =& \mathbb{E}_{(s,a,r)\sim D} \left[\left(Q(s,a) - \left(r + \gamma \mathop{\mathbb{E}}_{s'\sim p} [Q(s',a') + \alpha \mathcal{H}(\pi(\cdot|s'))]
ight]
ight)
ight], a' \sim \pi(\cdot|s') \ =& \mathbb{E}_{(s,a,r)\sim D} \left[\left(Q(s,a) - \left(r + \gamma \mathop{\mathbb{E}}_{s'\sim p} [Q(s',a') + \alpha \mathcal{H}(\pi(\cdot|s'))]
ight]
ight], a' \sim \pi(\cdot|s') \ =& \mathbb{E}_{(s,a,r)\sim D} \left[\left(Q(s,a) - \left(r + \gamma \mathop{\mathbb{E}}_{s'\sim p} [Q(s',a') + \alpha \mathcal{H}(\pi(\cdot|s'))]
ight]
ight], a' \sim \pi(\cdot|s') \ =& \mathbb{E}_{(s,a,r)\sim D} \left[\left(Q(s,a) - \left(r + \gamma \mathop{\mathbb{E}}_{s'\sim p} [Q(s',a') + \alpha \mathcal{H}(\pi(\cdot|s'))]
ight]
ight]
ight], a' \sim \pi(\cdot|s') \ =& \mathbb{E}_{(s,a,r)\sim D} \left[\left(Q(s,a) - \left(r + \gamma \mathop{\mathbb{E}}_{s'\sim p} [Q(s',a') + \alpha \mathcal{H}(\pi(\cdot|s'))]
ight]
ight]
ight]$$

Implementation (Practical Approximation)

 $\mathcal{H}(p) = -\mathbb{E}_{x \sim p}[\log p(x)]$

1. critic training

• convergence
$$\rightarrow$$
 gradient descent $Q^{k+1}(s,a) = \underset{\substack{s' \sim p \\ a' \sim \pi}}{\mathbb{E}} \left[r(s,a) + \gamma \left(Q^k(s',a') + \alpha \mathcal{H}(\pi(\cdot|s')) \right) \right], k \rightarrow \infty$
• remove expectation

- next action
- \circ entropy

$$\begin{split} L_Q = & \mathbb{E}_{(s,a,r)\sim D} \left[\left(Q(s,a) - \left(r + \gamma \mathop{\mathbb{E}}_{s'\sim p} \left[\mathop{\mathbb{E}}_{a'\sim \pi(\cdot|s')} [Q(s',a')] + \alpha \mathcal{H}(\pi(\cdot|s'))] \right) \right)^2 \right] \\ = & \mathbb{E}_{(s,a,r)\sim D} \left[\left(Q(s,a) - \left(r + \gamma \mathop{\mathbb{E}}_{s'\sim p} [Q(s',a') + \alpha \mathcal{H}(\pi(\cdot|s'))] \right) \right)^2 \right], a' \sim \pi(\cdot|s') \\ = & \mathbb{E}_{(s,a,r)\sim D} \left[\left(Q(s,a) - \left(r + \gamma \mathop{\mathbb{E}}_{s'\sim p} [Q(s',a') - \alpha \log \pi(a'|s')] \right) \right)^2 \right] \end{split}$$

Implementation (Practical Approximation)

- 1. critic training
 - convergence \rightarrow gradient descent $Q^{k+1}(s,a) = \mathop{\mathbb{E}}_{\substack{s' \sim p \\ a' \sim \pi}} [r(s,a) + \gamma \left(Q^k(s',a') + \alpha \mathcal{H}(\pi(\cdot|s')) \right)], k \rightarrow \infty$
 - remove expectation
 - \circ next action
 - \circ entropy

$$\mathcal{H}(p) = -\mathbb{E}_{x \sim p}[\log p(x)]$$

 \circ next state

$$\begin{split} L_Q = & \mathbb{E}_{(s,a,r)\sim D} \left[\left(Q(s,a) - \left(r + \gamma \mathop{\mathbb{E}}_{s'\sim p} \left[\mathop{\mathbb{E}}_{a'\sim \pi(\cdot|s')} [Q(s',a')] + \alpha \mathcal{H}(\pi(\cdot|s'))] \right) \right)^2 \right] \\ = & \mathbb{E}_{(s,a,r)\sim D} \left[\left(Q(s,a) - \left(r + \gamma \mathop{\mathbb{E}}_{s'\sim p} [Q(s',a') + \alpha \mathcal{H}(\pi(\cdot|s'))] \right) \right)^2 \right], a' \sim \pi(\cdot|s') \\ = & \mathbb{E}_{(s,a,r)\sim D} \left[\left(Q(s,a) - \left(r + \gamma \mathop{\mathbb{E}}_{s'\sim p} [Q(s',a') - \alpha \log \pi(a'|s')] \right) \right)^2 \right] \\ = & \mathbb{E}_{(s,a,r,s')\sim D} \left[\left(Q(s,a) - (r + \gamma Q(s',a') - \alpha \log \pi(a'|s')) \right)^2 \right] \end{split}$$

Implementation (Practical Approximation)

2. actor

- convergence \rightarrow gradient descent
- rewrite KL divergence

$$D_{ ext{KL}}(p||q) = \mathop{\mathbb{E}}\limits_{x \sim p(\cdot)} \Bigl[\log rac{p(x)}{q(x)} \Bigr]$$

$$\pi_{ ext{new}} = rgmin_{\pi} D_{ ext{KL}} \left(\pi(\cdot|s_t) || rac{\exp(rac{1}{lpha} Q^{\pi_{ ext{old}}}(s_t,\cdot))}{Z^{\pi_{ ext{old}}}(s_t)}
ight)$$

$$L_{\pi} = \mathop{\mathbb{E}}\limits_{s \sim D} \Biggl[\mathop{\mathbb{E}}\limits_{a' \sim \pi(\cdot | s')} \Biggl[\log rac{\pi(a' | s')}{\exp(rac{1}{lpha} Q(s', a'))/Z^{\pi}} \Biggr] \Biggr]$$

Implementation (Practical Approximation)

2. actor

- convergence \rightarrow gradient descent
- rewrite KL divergence

$$egin{aligned} \pi_{ ext{new}} &= rgmin_{\pi} D_{ ext{KL}} \left(\pi(\cdot|s_t) || rac{\exp(rac{1}{lpha} Q^{\pi_{ ext{old}}}(s_t,\cdot))}{Z^{\pi_{ ext{old}}}(s_t)}
ight) \end{aligned}$$

$$egin{aligned} L_{\pi} = & \mathbb{E}_{s \sim D} \left[\mathbb{E}_{a' \sim \pi(\cdot | s')} \left[\log rac{\pi(a' | s')}{\exp(rac{1}{lpha} Q(s', a')) / Z^{\pi}}
ight]
ight] \ = & \mathbb{E}_{s \sim D} \left[\mathbb{E}_{a' \sim \pi(\cdot | s')} \left[\log \pi(a' | s') - rac{1}{lpha} Q(s', a')) + \log Z^{\pi}
ight]
ight] \end{aligned}$$

Implementation (Practical Approximation)

2. actor

- convergence \rightarrow gradient descent
- rewrite KL divergence
- scale loss by lpha and omit constant

$$egin{split} \pi_{ ext{new}} &= rgmin_{\pi} D_{ ext{KL}} \left(\pi(\cdot|s_t) || rac{\exp(rac{1}{lpha} Q^{\pi_{ ext{old}}}(s_t,\cdot))}{Z^{\pi_{ ext{old}}}(s_t)}
ight) \ L_{\pi} &= \mathop{\mathbb{E}}_{s \sim D} \left[\mathop{\mathbb{E}}_{a' \sim \pi(\cdot|s')} \left[\log rac{\pi(a'|s')}{\exp(rac{1}{lpha} Q(s',a'))/Z^{\pi}}
ight]
ight] \ &= \mathop{\mathbb{E}}_{s \sim D} \left[\mathop{\mathbb{E}}_{a' \sim \pi(\cdot|s')} \left[\log \pi(a'|s') - rac{1}{lpha} Q(s',a')) + \log Z^{\pi}
ight]
ight] \ &= \mathop{\mathbb{E}}_{s \sim D} \left[\mathop{\mathbb{E}}_{a' \sim \pi(\cdot|s')} \left[\log \pi(a'|s') - Q(s',a')) + \log Z^{\pi}
ight]
ight] \end{split}$$

Implementation (Practical Approximation)

2. actor

- convergence \rightarrow gradient descent
- rewrite KL divergence
- scale loss by lpha and omit constant
- remove expectation over action

$$\begin{split} \pi_{\text{new}} &= \arg\min_{\pi} D_{\text{KL}} \left(\pi(\cdot|s_t) || \frac{\exp(\frac{1}{\alpha} Q^{\pi_{\text{old}}}(s_t, \cdot))}{Z^{\pi_{\text{old}}}(s_t)} \right) \\ L_{\pi} &= \mathop{\mathbb{E}}_{s \sim D} \left[\mathop{\mathbb{E}}_{a' \sim \pi(\cdot|s')} \left[\log \frac{\pi(a'|s')}{\exp(\frac{1}{\alpha} Q(s',a'))/Z^{\pi}} \right] \right] \\ &= \mathop{\mathbb{E}}_{s \sim D} \left[\mathop{\mathbb{E}}_{a' \sim \pi(\cdot|s')} \left[\log \pi(a'|s') - \frac{1}{\alpha} Q(s',a')) + \log Z^{\pi} \right] \right] \\ &= \mathop{\mathbb{E}}_{s \sim D} \left[\mathop{\mathbb{E}}_{a' \sim \pi(\cdot|s')} \left[\alpha \log \pi(a'|s') - Q(s',a')) \right] \right] \\ &= \mathop{\mathbb{E}}_{s \sim D} \left[\alpha \log \pi(a'|s') - Q(s',a')) \right], a' \sim \pi(\cdot|s') \end{split}$$

Implementation (Practical Approximation)

2. actor

training: gradient descent with $L_{\pi} = \underset{s \sim D}{\mathbb{E}} [\alpha \log \pi(a'|s') - Q(s', a'))], a' \sim \pi(\cdot|s')$ design choice: policy as normal distribution

• but normal distribution is unimodal, it loses the declared multi-modal advantages.

Automatic Entropy Adjustment

Choosing the optimal lpha is not trivial

• Recall for maximum entropy RL, the reward is $r(s, a) + \alpha \mathcal{H}(\pi(\cdot|s))$.

Automatic Entropy Adjustment

Choosing the optimal lpha is not trivial

- Recall for maximum entropy RL, the reward is $r(s, a) + \alpha \mathcal{H}(\pi(\cdot|s))$.
- So α depends on the magnitude of r, but r can vary a lot across
 - different tasks
 - different policies as the policy gets improved

Automatic Entropy Adjustment

Choosing the optimal lpha is not trivial

- Recall for maximum entropy RL, the reward is $r(s, a) + lpha \mathcal{H}(\pi(\cdot|s))$.
- So α depends on the magnitude of r, but r can vary a lot across
 - different tasks
 - different policies as the policy gets improved
- Ideal policy entropy should be
 - stochastic enough for exploration in uncertain regions
 - deterministic enough for performance in learned regions

Automatic Entropy Adjustment

Choosing the optimal lpha is not trivial

- Recall for maximum entropy RL, the reward is $r(s, a) + \alpha \mathcal{H}(\pi(\cdot|s))$.
- So α depends on the magnitude of r, but r can vary a lot across
 - different tasks
 - different policies as the policy gets improved
- Ideal policy entropy should be
 - stochastic enough for exploration in uncertain regions
 - deterministic enough for performance in learned regions
- Only constrain the **average** entropy across states

Automatic Entropy Adjustment

Only constrain the average entropy across states

$$egin{aligned} &L_lpha = & \mathbb{E}_{s \sim D}ig[lpha(\mathcal{H}(\pi(\cdot|s)) - ar{\mathcal{H}})ig] \ &= & \mathbb{E}_{s \sim D}ig[lpha(-\log \pi(a|s) - ar{\mathcal{H}})ig], a \sim \pi(\cdot|s) \end{aligned}$$

- $\overline{\mathcal{H}}$: target entropy, α always > 0
- increase lpha if $\mathcal{H}(\pi(\cdot|s')) < \bar{\mathcal{H}}$, decrease otherwise.

Overall Algorithm

Input: θ_1, θ_2, ϕ $\bar{\theta}_1 \leftarrow \theta_1, \bar{\theta}_2 \leftarrow \theta_2$ $\mathcal{D} \leftarrow \emptyset$ for each iteration do for each environment step do $\mathbf{a}_t \sim \pi_{\phi}(\mathbf{a}_t | \mathbf{s}_t)$ $\mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1}|\mathbf{s}_t, \mathbf{a}_t)$ $\mathcal{D} \leftarrow \mathcal{D} \cup \{(\mathbf{s}_t, \mathbf{a}_t, r(\mathbf{s}_t, \mathbf{a}_t), \mathbf{s}_{t+1})\}$ end for for each gradient step do $\theta_i \leftarrow \theta_i - \lambda_Q \hat{\nabla}_{\theta_i} J_Q(\theta_i) \text{ for } i \in \{1, 2\}$ $\phi \leftarrow \phi - \lambda_{\pi} \nabla_{\phi} J_{\pi}(\phi)$ $\alpha \leftarrow \alpha - \lambda \hat{\nabla}_{\alpha} J(\alpha)$ $\bar{\theta}_i \leftarrow \tau \theta_i + (1 - \tau) \bar{\theta}_i$ for $i \in \{1, 2\}$ end for end for **Output:** θ_1, θ_2, ϕ

Initial parameters
 Initialize target network weights
 Initialize an empty replay pool

Sample action from the policy
 Sample transition from the environment
 Store the transition in the replay pool

Update the Q-function parameters
 Update policy weights
 Adjust temperature
 Update target network weights

Simulated Benchmarks

State: joint value

Action: joint torque

Metric: average return

Baselines

- SAC with learned lpha
- SAC with fixed lpha
- DDPG (off-policy, deterministic policy)
- TD3 (DDPG with engineering improvements)
- PPO (on-policy)

Baselines

- SAC with learned lpha
- SAC with fixed lpha
- DDPG (off-policy, deterministic policy)
- TD3 (DDPG with engineering improvements)
- PPO (on-policy)

Hypotheses

Compared to baselines, if SAC has better

- sample-efficiency: learning speed + final performance
- stability: performance on hard tasks where hyperparameters tuning is challenging

Simulated Benchmarks

- Easy tasks (hopper, walker)
 - all algorithm performs comparably except for DDPG

Simulated Benchmarks

- Normal tasks (half cheetah, ant)
 - SAC > TD3 > DDPG & PPO in both learning speed and final performance

SAC (learned temperature)
 SAC (fixed temperature)
 DDPG
 TD3
 PPO

Simulated Benchmarks

- Hard tasks (humanoid)
 - DDPG & its variant TD3 fail to learn
 - SAC learns much faster than PPO

Simulated Benchmarks

• Larger variance with the automatic temperature adjustment

SAC (learned temperature)
 SAC (fixed temperature)
 DDPG
 TD3
 PPO

Real World Quadrupedal Locomotion

State: low-dimensional

Challenges: sample efficiency & generalization to unseen environments

Training: 160k steps (2 hours)

Real World Quadrupedal Locomotion

Train on Flat

Test on Slope

Test with Obstacles

Test with Stairs

Real World Manipulation

State: hand joint angles + image / ground truth valve position Challenges: precepting the valve position from images

Comparison (using ground truth valve position): SAC (3 hrs) vs PPO (7.4 hrs)

Limitations

- Multi-modal policy
 - Though it is declared that maximum entropy RL can benefit from multi-modal policy, SAC chooses to use a unimodal policy (normal distribution).
 - All experiments don't require multi-modal behaviors to finish.
- Hyperparameter tuning
 - Target entropy ${\cal H}$ brings a new hyperparameter to tune.
 - Average entropy constraints do not provide the desired exploration + exploitation balance.
 - For manipulation tasks that require accurate control, even averaged entropy regularization still hurts the performance.

Future Work and Extended Readings

- Learn multi-modal policy rather than unimodal policy
 - <u>Reinforcement Learning with Deep Energy-Based Policies</u>
- Improve sample-efficiency with auxiliary tasks
 - Improving Sample Efficiency in Model-Free Reinforcement Learning from Images
 - <u>CURL: Contrastive Unsupervised Representations for Reinforcement Learning</u>
- Improve generalizability by learning tasks-relevant features
 - Learning Invariant Representations for Reinforcement Learning without Reconstruction
 - Learning Task Informed Abstractions

Summary

- Problem: sample-efficient RL with automatic hyperparameter tuning
- Limitations of prior work:
 - On-policy RL is sample-inefficient
 - DDPG that uses deterministic policy is brittle to hyperparameters
- Key insights of the proposed work
 - Maximal entropy RL encourages exploration and robust to environments & hyperparameters.
 - Use the average entropy across states as regularization.
- State-of-the-art sample efficiency and generalizabilities on simulated and real world tasks.