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Motivation

General-purpose robots need large repertoires of skills.

Learning each skill individually can be prohibitive, particularly when

v Task rewards must be programmed by hand

v Data must be collected anew for each task

Simulated tasks: pick-and-place, stacking, fixture placing, food object grasping.

Can we reuse past robotic data efficiently? Offline learning
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Main Problem

The problem of learning useful robotic skills from previously collected offline data without access to 
manually specified rewards or additional online exploration, by reusing past robotic data.

v How can we obtain a general-purpose training objective in robotics?

v How can we train diverse skills so that they are represented by a single model? 

v How can we employ this model to perform zero-shot generalization or solve downstream tasks?
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Problem Setting

𝑀 = 𝑆, 𝐴, 𝑃, 𝑅, 𝑝!, 𝛾, 𝑇 A Markov decision process (MDP)

𝑆 State space

𝐴 Action space

𝑃 ∶ 𝑆 × 𝐴 × 𝑆 ⟶ ℝ" State-transition probability function

𝑅 ∶ 𝑆 × 𝐴 ⟶ ℝ Reward function

𝑝! ∶ 𝑆 ⟶ ℝ" Initial state distribution

𝛾 Discount factor

𝑇 Task horizon

𝜏 = 𝑠!, 𝑎!, ⋯ , 𝑠# , 𝑎# A trajectory

𝑅 𝜏 = ∑$%!# 𝛾$𝑅(𝑠$ , 𝑎$) Trajectory reward

Reinforcement learning methods find a 

policy 𝜋(𝑎|𝑠) that maximizes the 

expected discounted reward over 

trajectories induced by the policy:

𝔼&[𝑅(𝜏)]

Where 𝑠!~ 𝑝!, 𝑠$"'~ 𝑃 𝑠$"' 𝑠$ , 𝑎$) and

𝑎$ ~ 𝜋(𝑎$ | 𝑠$ ).

v Offline

v Model-free
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Model-based vs Model-free in the offline setting

Goal: Utilize past data from prior tasks to acquire transferable knowledge for new tasks

Model-based: Train a predictive model for the transition dynamics

❖ Pros: Allow agent to plan ahead

❖ Cons: Have to predict future world observations (e.g. images) in all of their complexity

Most requires an additional cost function for action selection

Model-free: Task-oriented solution, no access to the transition dynamics

❖ Pros: Avoid complex future prediction

❖ Cons:  Distributional shift  -> Overestimation of values

Mutual problem: Long horizons 
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Goal conditioned strategy

v Often times we care about policies that achieve many related goals

v Training such policies jointly may be beneficial

𝜋(𝑎|𝑠) 𝜋(𝑎|𝑠, g)

(s, a, r, s′) (s, g, a, r, s′)

V(𝑠) V(𝑠, g)

Q(s, a) Q(s, g, a)
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Goal relabeling

v Goal space involves only a small fraction of the state space

v All trials without reaching the goal would return no reward Low sample efficiency!
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Hindsight Experience Replay (HER)

Main idea: use failed executions under 

one goal g, as successful executions under 

an alternative goal g′. 

𝑔! ∈ 𝕊(current episode)
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Hindsight Experience Replay (HER)

Hindsight relabeling only generates 

examples for actions that are needed 

to reach a goal, and does not provide 

evidence for which actions are sub-

optimal or do not lead to a desired 

goal (Only “positive” no “negative” 
samples), which might result in 

overestimation of their Q-values.

Behavior Cloning

Behavior Cloning 

with goal relabeling
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Conservative Q-Learning (CQL)

Off-policy RL methods can fail due to overestimation of values induced by the distributional shift between 

the dataset and the learned policy, especially when training on complex and multi-modal data distributions.

Conservative Q-learning learns a conservative Q-function such that the expected value of a policy under 

this Q-function lower-bounds its true value. 

Regularizes the Q-function on out-of-distribution actions 



CS391R: Robot Learning (Fall 2021) 11

Conservative Q-Learning (CQL)

Additionally minimizing Q-values alongside a standard Bellman error objective.

We can show that C𝑄& ≔ lim
(→*

C𝑄(, lower-bonds 𝑄& at all (𝑠, 𝑎).
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Proposed Approach: Actionable Models

The method takes as input a dataset of trajectories 𝐷 = {𝜏}, and outputs a goal-conditioned Q-function, 

𝑄+(𝑠, 𝑎, 𝑔). Note that acting greedily w.r.t. this goal-conditioned Q-function provides us with a goal-

conditioned policy: π(a|s, g) = 𝑎𝑟𝑔𝑚𝑎𝑥,Q(𝑠, 𝑎, 𝑔). We train this Q-function by minimizing the following loss:

where the TD-target y is given by: 
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No manually specified rewards  

Only one sparse reward function per goal is defined:

Use temporal-difference (TD) learning to maximize the expected return yielding a goal-conditioned Q-

function, which describes the probability of reaching the goal state g at time t = T :

Then obtain a goal-reaching policy by acting greedily with respect to the goal-conditioned Q-function: 
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Conservative approach for unseen actions

Let Q𝐴(𝑠, 𝑔) denote a set of unseen actions, for which we do not have evidence of reaching the goal g 

from state s in the dataset D, and R𝑎~𝑝 -. ( R𝑎|𝑠, 𝑔) some probability distribution with the support on this 

set, which we will describe below. Furthermore, let Q𝒢 (𝑔) be a set of goals different from g and 𝑝 /𝒢 (𝑔) a 

distribution with the support on this set.
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Conservative approach for unseen actions

We assume there is no recovery unless there are trajectories in the dataset D that demonstrate this 

recovery, which would be taken into account through labeling them with the success-reward as 

described above. This amounts to assuming that any deviation R𝑎~𝑝 -. ( R𝑎|𝑠, 𝑔) leads to some other goal 

R𝑔~𝑝 /𝒢 (𝑔):

With high-dimensional goals like images, the set of all other goals Q𝒢 (𝑔) becomes intractable. We can 

circumvent dealing with Q𝒢 (𝑔) by the following transformation:

we aim at minimizing 
Q-values for unseen

actions
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Goal chaining for long-horizon tasks 

Given a sequence 𝜏!:', instead of limiting the goal to be within the sequence (i.e., 𝑔~ 𝑠!, ⋯ , 𝑠2 ), we 

redefine it to be any state observed in the dataset (i.e., 𝑔~𝐷). If g = si (e.g. when the goal is the final state 

of the sub-sequence) then similarly as before, we label such trajectories with 𝑅 𝜏!:', 𝑠2 = 1. Otherwise, 

since we do not know whether 𝑔 ≠ 𝑠2 can be reached from the states within 𝜏!:', instead of assigning a 

constant reward, we set the reward of the final transition to be its Q-value, such that

This procedure follows the intuition that if there is evidence in the dataset that g is reachable from 𝑠3, 𝑎2 , 

it will eventually propagate into the Q-values of 𝜏!:'. 
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Goal chaining

v The dynamic programming nature of Q-learning is able to chain trajectories in state space

v In the case when we use function approximators for learning Q-functions, the chaining points does not 

have to be exactly the same in both trajectories in order to propagate useful reachability information. 



CS391R: Robot Learning (Fall 2021) 18

Application: Goal reaching 

This method can be integrated into 

any Q- learning method with an 

experience replay buffer
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Application: Pre-training / Auxiliary objective 

❖ Pre-training: Given a large dataset 𝐷 of previous experience, pre-train a goal-conditioned Q-function 

𝑄+(𝑆, 𝐴, 𝐺) using our offline method, and then further fine-tune it on a specific task reward.

❖ Auxiliary objective: Utilize our method to provide an auxiliary objective that can be used in parallel with 

conventional online RL to encourage learning of functional representations. Given a small mix-in 

probability 𝜉 we can augment the task-specific objective 𝐿$,4( 𝜃 with the regularized goal-reaching 

objective 𝐿5 𝜃 from the following joint objective:

𝐿,65789$8: 𝜃 = 𝐿$,4( 𝜃 + 𝜉𝐿5 𝜃
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Experimental Setup

❖ Policy architecture follows the QT-Opt framework, with an additional Q-function input for the 

472x472x3 goal image.



CS391R: Robot Learning (Fall 2021) 21

Experimental Setup

❖ Simulated tasks: pick-and-place, stacking, fixture placing, food object grasping

- baseline: GCBC, Q-learning with HER, Q-learning with HER + random goal negatives

❖ Real robot goal reaching task
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Experimental Results
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Experimental Results
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Experimental Results
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Discussion of Results

❖ Q-learning without any regularization fails to learn any of the tasks, indicating that the Q-function 

collapses without a presence of negative examples. 

Both positive and negative samples are essential

❖ In the context where we split the fixture placing task trajectories into two separate trajectories: the 

grasping part and the placing part, and shuffle the dataset to make that these trajectories are not 

connected in any way, disable goal chaining would make performance drops significantly.

With goal chaining, the model can learn to reach the goal across two separate episodes 

and successfully perform tasks

❖ Pre-training on large and diverse datasets with actionable models can lead to representations that 

significantly accelerate the acquisition of downstream tasks.
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Critique / Limitations / Open Issues 

Specifying a task to the goal-conditioned Q-function requires suitable goal image at test time
❖ Goal image requirement limits the ability to specify general tasks

e.g. Using goal images from a different scene

e.g. Commanding the robot to grasp a particular type of object instead of reaching a goal image

❖ Joint training and pre-training with fine-tuning can sidestep this limitation by using additional general 

task rewards

Reaching some goals requires reasoning over extended horizons 

❖ Currently, the approach cannot reposition a large number of objects in a single episode

e.g.  Moving multiple objects to desired locations
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Future Work

❖ Representation learning and goal embeddings for general goal-conditioned policies

❖ Combination of planning algorithms with goal-conditioned RL

Replay buffer waypoint-guided planning (Eysenbach et al., 2019) RRT-inspired tree search planning  (Ichter et al., 2020) 
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