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Motivation and Main Problem

e Supervised learning has been successful through
many areas except policy learning.

e Emerging large-scale dataset for task demonstration
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Existing Large-scale demonstration dataset

RoboTurk Pilot Dataset

137.5 hours of demonstrations

22 hours of total platform usage
1071 successful Picking demonstrations
1147 successful Assembly demonstrations

3224 total attempted demonstrations
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Suboptimality

Fumbling the can
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Suboptimality

Failed Sideways Grasp
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Diversity

Straight Top-Down Grasp
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Diversity

Tilt and Grab
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Problem Setting

e MDP with absorbing goal states M = (S, A.T.R.v.m). G C S
e Task instantiation sy ~ po(-)
e Maximize expected return E[Xr, ¥R(sa,541)]

e (Goal-Reaching Trajectories

T = (S()ra{):r()rs'l? e ,,S-T),S.t. ry = R(Shahst-—-l)rst-—l e T('lshat)
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Context / Related Work / Limitations of Prior Work

e Imitation Learning

o pros: reduce exploration cost

o cons: task-specific, small scale

e Behavioral Cloning (BC)
e Batch-Constrained Q-Learning (BCQ)
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Proposed Approach: Goal learning + Goal proposals

IRIS: Implicit Reinforcement without Interaction at Scale
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Proposed Approach: suboptimal demonstration

e Low-level controller learns short action sequences

e (Goal generation chooses the most significant task goals
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Proposed Approach: Diverse demonstration

e Low-level controller learns future goal observations at small temporal scale and produces unimodal
action sequences as a result

e Goal generation proposes reachable goals from the current state, which induces diversity

e Decouples the problem into unimodal sequence learning and trajectory rollouts, achieving selective

imitation.
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Proposed Approach: Off-policy

e |earning only in-distribution data
o Goal generation proposes according to training data observations
o Goal controller imitates training data sequences

e (Goal selection avoids extrapolation error within the value learning part

o  Q-network is only queried on state-action pairs within the distribution
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Proposed Approach: Inference
IRIS: Agent Rollout
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Experimental Setup

e Graph Reach

o 2D Navigation, 5x5 grid

o sampled random paths, demonstration of playing along the path
e Robosuite List

o grasp and lift

o demonstration of different approaches
e RoboTurk Can Pick and Place

o pick and place

o 225 fastest demonstrations, significant suboptimality and diversity
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Experimental Results: Piecewise policy attains
global integrity

TABLE I: Performance Comparison: We present a comparison of the best performing models for our method and baselines. Evaluations
occurred on model checkpoints once per hour over 100 randomized task instances. We report the best task success rate, average rollout
length (among successful rollouts), and discounted task return per training run across three random seeds. Most models are able to decrease
or maintain average rollout lengths among successful rollouts compared to the original dataset of trajectories.

Graph Reach Robosuite Lift RoboTurk Cans RoboTurk Cans Image

Model Success Rollout Task Success Rollout Task Success Rollout Task Success Rollout Task

Rate (%) Length Return Rate (%) Length Return Rate (%) Length Return Rate (%) Length Return
BC 1000 2750+ 346 67.4+200 [[T37ET 404100 96.8 £59.0 |[T0:00=0.00 - 0.00+£0.00 13.3+4.04 946 +70.9 559+17.5
BC-RNN 1000 2918+36.1  54.0+1.93 16.7+10.6 401+114 117+755 0.33+047 166 +235 2.02+2.86 | 283+1.53 635+£71.5 157+14.8
BCQ 1000 2077 +162 127£19.3 || 18.0£13.5 360 +65.0 132+ 106 0.00£0.00 - 0.00+£0.00 | 9.67+3.06 706+ 156 522+19.3
IRIS, no Goal VAE | 100 = 0 1895 + 131 151 + 189 | 73.0+535 533+£38.7 432+479 21.0+3.27 593+£15.6 117+19.9 38.7+6.66 632+28.2 213+35.1
IRIS, no Q 1000 2285+227 107+£24.8 || 743149 513+18.1 447+894 || 30.7 + 3.68 618 + 38.5 168 + 238 | 42.7 + 5.03 661 + 8.92 230 + 30.2
IRIS (Full Model) 100+0 2264 +171 106+18.4 || 81.3 + 6.60 523 + 29.0 486 + 49.7 || 28.3 + 0.94 569 + 11.5 163 + 5.68 423 + 1.15 625 + 34.6 236 + 12.3
Dataset (Oracle) 1000 3844 + 644 27.0+£222 | 100+0 6224192 546+92.7 1000 590 £84.0 566+48.6 |  100+0 590+ 84.0 566 +48.6
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Experimental Results: Piecewise policy attains
global integrity

Fig. 4: Qualitative Evaluation: We visualize 5 trajectories taken
by the best performing policies for the BC (red), BCQ (green), and
IRIS (orange) models on the Graph Reach environment. A set of 50
trajectories from the dataset (blue) is also shown. Our model is both
able to faithfully reconstruct demonstrated trajectories and leverage
them to reach the goal quickly. By contrast, BCQ extrapolates an
entirely new trajectory, while BC converges to a particular mode in
the dataset that is slow to reach the goal. Unlike the other models,
ours also exhibits variation in policy rollouts.
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Empirical Analysis: Ablate Goal Proposal

TABLE I: Performance Comparison: We present a comparison of the best performing models for our method and baselines. Evaluations
occurred on model checkpoints once per hour over 100 randomized task instances. We report the best task success rate, average rollout
length (among successful rollouts), and discounted task return per training run across three random seeds. Most models are able to decrease

or maintain average rollout lengths among successful rollouts compared to the original dataset of trajectories.

Graph Reach Robosuite Lift RoboTurk Cans RoboTurk Cans Image

Model Success Rollout Task Success Rollout Task Success Rollout Task Success Rollout Task

Rate (%) Length Return Rate (%) Length Return Rate (%) Length Return Rate (%) Length Return
BC 1000 2750+ 346 67.4+20.0 | 13.7+7.36 404100 96.8+59.0 | 0.00+0.00 - 0.00+£0.00 13.3+4.04 946 +70.9 559+17.5
BC-RNN 1000 2918+36.1  54.0+1.93 16.7+10.6 401+114 117+755 0.33+047 166 +235 2.02+2.86 | 283+1.53 635+£71.5 157+14.8
BCQ 1000 2077 +162 127+19.3 | _180+135 360 +65.0 132+ 106 000000 - 0.00+£0.00 | 706+ 156 522+19.3
IRIS, no Goal VAE | 100 = 0 1895 + 131 151 + 189 | 73.0+535 533+£38.7 432+479 21.0+3.27 593+£15.6 117+19.9 38.7+6.66 632+28.2 213+35.1
IRIS, no Q 1000 2285+227 107+£24.8 || 743149 513+18.1 447+894 | |30.7 + 3.68 618 + 38.5 168 + 238 ||42.7 + 5.03 661 + 8.92 230 + 30.2
IRIS (Full Model) 100+0 2264 +171 106+18.4 || 81.3 + 6.60 523 + 29.0 486 + 49.7 | |28.3 + 0.94 569 + 11.5 163 + 5.68 | |42.3 + 1.15 625 + 34.6 236 + 12.3
Dataset (Oracle) 1000 3844 + 644 27.0+£222 | 100+0 6224192 546+92.7 1000 590 £84.0 566+48.6 | 100+0 590+ 84.0 566 +48.6
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Empirical Analysis: Data efficiency

s (RIS (ours) wwsm RIS, no Q  wmmm RIS, no Goal VAE mmmm BCQ mmmm BC-RNN BC m 3ll demos  wees 50% demos == 10% demos
Lift Dataset: Average Success Rate Cans Dataset: Average Success Rate Lift Dataset Size Comparison: Average Success Rate Cans Dataset Size Comparison: Average Success Rate
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Fig. 3: Manipulation Results: We present a comparison of IRIS against several baselines on the Robosuite Lift and RoboTurk Cans
datasets (left two plots). There is a stark contrast in performance between variants of IRIS and the baseline models, which suggests that
goal-conditioned imitation is critical for good performance. We also perform a dataset size comparison (right two plots) to understand how
the performance of IRIS is affected by different quantities of data.
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Empirical Analysis: Pixel Input

Unsupervised Representation Learning RoboTurk Cans Image
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Dundar et al. 2020 on Lalls
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Limitations

e Poor domain adaptation by construction
e Applicable only to fully observable systems (requires system states as supervision

e Reduced to hierarchical RL in some sense
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Future Work for Paper / Reading

e Domain Adaptation

e Generalize to larger-scale learning from weaker demonstrations, raw

data in the wild, etc

e Extract stronger primitives (semantical/physical/hierarchical/etc) instead

of vague goal proposals
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Summary

e Supervised learning for policy learning

e Suboptimality, diversity

e BC/BCAQ suffers from poor extrapolation and separating suboptimality
e IRIS: Goal proposal + short trajectory policy

e IRIS attains global integrity, data-efficiency, rollout diversity

e Suffers from poor generalizability
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