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Main Problem

e Sequential prediction problems where future observations depend on
previous predictions/actions violate the independently and identically
distributed (i.i.d.) assumptions, leading to poor performance

e Due to compounding error, if a wrong action is taken, then the observations in
far-future time steps will be vastly different

o Ex: arobot who turned right instead of left will have very different observations next timestep
e This paper aims to learn a STATIONARY policy that achieves a linear bound

in the number of errors
o Stationary - same policy for each timestep
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Main Problem: Compounding Error

e Atypical stationary policy with a task horizon T and mistake probability €
is expected to make T e mistakes over the task horizon (check proof in
paper by Ross and Bagnell)

e Intuitively, making a mistake at timestep 1 will greatly alter the observations
seen
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Motivation

e Sequence Prediction problems are common in robotics
e Most systems must make a sequence of actions that affect their observations
e Imitation Learning (learning to match an expert’s actions) has achieved SOTA

performance in a variety of tasks
o Typically trains a classifier or regressor to produce an expert’s actions given observations

e Aim is to come up with a no-regret online (on-the-fly) policy using imitation
learning

e Nonstationary policies have been developed but this is infeasible if T is large
or unknown
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Problem Setting

e /T the class of policies
d. = %ZL dt . represents the average distribution of states after following 71
policy for T timesteps
o C,. ( ) - GMT(S) [C(s a)] cost of actlng according to policy 71 for one timestep

o ( ) Zt . Sth [C’ ( )] _ s~d [C’ ( )] . Total expected cost
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Problem Setting: Surrogate Loss Function

e May not know exact cost C(s,a)
e Can upper bound J(x) by using a surrogate loss function, which is greater
than or equal to actual cost.

e In Imitation Learning, can be any of the following:
o 0-1 Loss (whether the action matches with expert or not)
o Squared Loss
o Actual cost, C itself

e \Want to find the policv which minimizes this surrogate loss:
7 =argminEgq_[4(s, )]
well

e Note the dependence of the distribution on the policy itself, not i.i.d.

@)
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Related Work: Forward Training

e Trains a nonstationary policy for T iterations, where 7T¢is trained to mimic the
expert on the distribution of states resulting from acting from policies

T, 72,5« Tt—1
e Num mistakes grows
linearly in T, (proof in paper)
e Need torun T iterations
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Initialize 79, ..., 7% to query and execute 7*.
fori=1to7 do
Sample T'-step trajectories by following 7°~1,
Get dataset D = {(s;,7*(s;))} of states, actions taken
by expert at step <.
Train classifier 7! = argmin_ . Esop(ex(s)).
i _ i1 Yy
m;=m,  forallj #4

end for

Return 77, ...,71'%

Algorithm 3.1: Forward Training Algorithm.




Related Work: Stochastic Mixing lterative Learning
(SMILe)

Stationary

Starts with 7T which simply executes expert’s choice

Trains 7, to mimic expert on current distribution of trajectories
Updates m, = mp—1 + (1l — &) (1, — o)

Guarantees near linear regret in T and €
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Related Work: Stochastic Mixing lterative Learning
(SMILe)

Initialize 7° < 7* to query and execute expert.
for: =1to N do
Execute m*~ ! to get D = {(s,7*(s))}.
Train classifier 7** = argmin,. .y Es~p(ex(s)).
m=1-a)m*+a), _(1—-a) a9,
end for
Remove expert queries: 7

Return 7V
Algorithm 4.1: The SMILe Algorithm.

N _ ¥ —(1—a)Yr*
— 1-(1-a)N
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Proposed method: DAGGER (dataset aggregation)
algorithm

e Uses expert’'s policy to generate dataset of trajectories (state, expert action)
e Trains 79 on dataset to mimic expert, create even more trajectories with 7y
e Repeat

Initialize D < 0.

Initialize 7; to any policy in II.

fori=1to N do
Let m; = Bim™* + (1 — ,Bz)ﬁz
Sample T'-step trajectories using ;.
Get dataset D; = {(s,7*(s))} of visited states by ;
and actions given by expert.
Aggregate datasets: D < D|JD;.
Train classifier 7,41 on D.

end for

Return best 7; on validation.

Algorithm 3.1: DAGGER Algorithm.
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Proposed method: DAGGER expert-use optimization

e \When populating the dataset of new trajectories, may want to use expert

Bim* + (1 — Bs);

e Especially helpful in first few iterations, when policy is randomly initialized
o Exponentlally decay /Bz over iterations

e Note: 7 is expert, 7; is our policy trained onD, T adds (aggregates) to
dataset
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Proposed method: DAGGER significance

Can guarantee bounds on total cost that are near-linear if infinite samples are

taken per iteration (see paper for proofs)
o Assuming E (surrogate loss) convex and bounded over all policies
o Assumina B; < (1 — a)*or some constant (¥,
o €N = MiNgeq % Zivzl Es~d,, [£(s, )] : true cost of best policy in hindsight

Theorem 3.1. For DAGGER, if N is O(T) there exists a
policy t € 7r1.n s.t. Egog. [€(s,7)] < exy +O(1/T)
Theorem 3.2. For DAGGER, if N is O(uT) there exists a
policy # € 7t1.n s.t. J(7) < J(7*) + uTen + O(1).
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Proposed method: DAGGER significance, continued

e \What about the finite sample case, when only a finite number of samples are
sampled per |terat|on’?

€n = milyen 3 ZZ 1IESND [€(3 7r)]
Theorem 3.3. For DAGGER, if N is O(T?log(1/6)) and

m is O(1) then with probability at least 1 — 0 there exists a
policy T € 7t1.n s.t. Egoq. [€(s,7)] < én +O(1/T)

Theorem 3.4. For DAGGER, if N is O(u?T?log(1/4))
and m is O(1) then with probability at least 1 — § there
exists a policy &t € 7r1.n s.t. J(7) < J(n*)+uTen+0(1).
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Theory: Online Learning and No-Regret Algorithms

e An online learning algo applies 7T; and incurs loss ¢;(; )for each iteration
e No-regret algo produces sequences of policies 711 s Mo, ... TNy average

regret compared to the overall best policy in hindsight goes to zero as N goes
to infinity. Description below:

N
1
il L, il <
NZi:lE’(”" i’?ﬁNZZ(”) IN
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Theory: Using DAGGER to give a No-Regret algo

e Using the expert-use optimization, we can bound the difference between

states seen by policies that samples trajectories (7T;), and policy that we are
training (7r;) Lemmad4.l. [|dy, — ds|[x < 2T

Proof. Let d the distribution of states over 7" steps condi-
tioned on 7; picking 7* at least once over 1’ steps. Since 7;
always executes 7; over T steps with probability (1 — 3;)7
we have d,, = (1 — 3;)Tdz, + (1 — (1 — B;)T)d. Thus

||d7l'z _dﬁ'z‘Hl
=(1—(1-8)")ld~ dallx
<2(1—-(1-8)")

<2TB;

The last inequality follows from the fact that (1 — )T >
1 — BT for any g3 € [0, 1]. O
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Theory: Using No-Regret Algorithms to show that
DAGGER gives good performance

Theorem 4.1. For DAGGER, there exists a policy © €

T1:N S.L Esrvdﬁ [5(8,7?)] < €N + YN + 26‘{}“ [ng +

T Zinﬂ 11 Bil, for yn the average regret of 1. .

e T3is the largest constant » < N such that 8, >

e General Idea for proof: last lemma bounded distribution of states between
sampled trajectories policy (which uses expert with some probability) and
policy we are learning.

e S0, we can bound the policy we are learning with the best policy’s loss in
hindsight.
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Theory: Using No-Regret Algorithms to show that
DAGGER gives good performance (finite sample

case where m samples are picked per iteration

Theorem 4.2. For DAGGER, with probability at least 1—9,
there exists a policy ™ € 7t1.n s.t. Esoq. [£(s,7)] < én +

/YN + 2€max [n + TZ'L nB—|—1 /BZ] + zmax \/ZIOg(l/(s) fOI'
YN the average regret of T1.N.

e The last term comes from the fact that
By Azuma-hoeffding’s iﬁédue_lﬁty ﬁ_Zi;_Z£1 Ymﬁ Lmax/ ML(;/‘D with probability at least 1 — 4.
e Y, is difference between expected per step loss at iteration i and the average
per step loss of sample j at iteration |
e See paper for full proof details
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Experimental Setup: Super Tux Kart

Expert: Human expert that controls the joystick (analog value in range [-1,1]), Yi

o
e Features: LAB color values of resized image, L
e Output: Steering value § = w' z + bthat minimizes ridge regression objective
o Objective: L(w,b) = 3 3 (w'z+b— )
+ Aw'w
e regularizer A\ = 1073
e Baseline: SMiLe, Supervised
e Metrics: falls per lap (of star track)
e 1 lap of training per iteration, 20 iterations
e Agent moves at frequency 5 Hz

Figure 1: Image from Super Tux Kart’s Star Track.
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Experimental Results: Super Tux Kart

e DAGGER never falls off after 15 iterations
e significantly outperforms baseline 3: _ [
e Supervised falls go up after too many g '3_ ,,,,,,,,,,,,,,,,,,,,,,,,,,
iterations £\ I
e SMiLe did not improve after 15 iterations E, 2 ]
i !
] I i

0 0.5 1 1.5 2 25
Number of Training Data x 10

Figure 2: Average falls/lap as a function of training data.
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Experimental Setup: Super Mario Bros

e Expert: Near-optimal planning algorithm will full access to game state, can
simulate consequences of actions exactly

e Stages are generated from simulation to diversify enemies and difficulty

e Action: subset of {left, right, up, speed}. Chosen by 4 linearly independent
SVMs

e |mage broken down into 22x22 grid, containing info about enemies, special
items, etc as binary features. Plus same info from few timesteps ago

o U = I(wga: + br > 0), kth binary feature, with weight/bias trained to
optimize SVM objective

e 20 iterations, 5000 data points per iteration (each stage is ~150 data points)
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Experimental Setup: Super Mario Bros

MARIOT GG o2 GCOTNS pEaa el e e, o
va o Y2
MO ST

Figure 3: Captured image from Super Mario Bros.
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Experimental Results: Super Mario Bros

3200,

——D0 ——D0.5—D0.9 Se1l -*Se0.4---8Sm0.1 "~ Sup
3000+

e Tested different beta values for
dagger expert use optimization
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e Supervised performs poorly
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Figure 4. Average distance/stage as a function of data.

CS391R: Robot Learning (Fall 2021) 22




Experimental Setup: Handwriting Recognition

e ~6600 word dataset (~52000) characters

e Uses SVM to predict word in left to right character order, uses previously
predicted character (tries to predict pairs)

e Each character has 128 features (pixels), plus 26 binary features for previous
character

e Multiclass SVM was modeled as reduction to all pairs binary classification

e Baselines: SMILe, SEARN (similar to policy iteration)

e More baselines:

o Two non-structured methods that don’t consider previously predicted character
o Supervised approach where training is conducted with previous character correctly labelled
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Experimental Results: Handwriting Recognition

0.86

e Supervised performed better than no
structure, showing that structure works

0.855[

0.85[

e DAGGER outperformed supervised go_m,
(83.6% vs 85.5%)
e Pure Policy iteration (SEARN & = 1) Eoone
performed well, since policy doesn’t ;f"-”‘
influence current state much (only §°:: ng;;g;ﬂgg:»
affects previously predicted character) o - -swie(eon) |
\\\\\\\ Supenied
— o Stueture

081 1 Il 1 Il Il L
0 2 4 6 8 0 12 14 16 18 20
Trainina Iteration

Figure 5: Character accuracy as a function of iteration.
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Discussion of Results

e The Handwriting Experiment showed that policy iteration works when policy
doesn’t influence state much. The task horizon was only 2 for any given
prediction, so the error didn’t compound much.

e The Super Tux Kart experiment showed how the stochasticity of SMiLe is a
disadvantage, occasionally led to bad actions. This is visually apparent; the
SMILe agent makes less smooth movements compared to DAGGER agent.

e The Super Mario Bros experiment showed that the expert use optimization is
important as a fine balance must be found between generating expert

“‘optimal” trajectories and our nonexpert policy’s trajectories

o Must observe nonexpert states like being stuck at an obstacle, but also collect a wider variety
of data by using expert
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Critique/Limitations/Open Issues

e Their linear error proof was based on choosing expert action at least once,
what if expert action was never chosen?

e Could using expert policy more often to generate trajectories be a good idea
when policy learned appears to be close to expert policy?

e When would using policy iteration work just as well, as was the case with
Handwriting Recognition?

e Practical challenge: how would you use learned policy to generate many
trajectories quickly in real-world, (as is necessary in DAGGER)?
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Future Work for Paper / Reading

e Will consider more sophisticated strategies for decoding than simple greedy

forward
o perhaps try beam search

e | would like to see how their handwriting recognition compares to a

Connectionist Temporal Classification (CTC) baseline

o Uses a reduction to Hidden Markov Models and uses the HMM Forward Algo to give the most
likely word

e Using base classifiers that rely on Inverse Optimal Control techniques to learn
a cost function for a planner to aid prediction in imitation learning
e Keep using similar techniques as DAGGER (cost-to-go-method)
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Extended Readings

e Talks about Forward Training and SMILe in greater detail: S. Ross and J. A.
Bagnell. Efficient reductions for imitation learning. In Proceedings of the 13th
International Conference on Artificial Intelligence and Statistics (AISTATS), 2010.

e More experiments: S. Ross. Comparison of imitation learning approaches on
Super Mario Bros, 2010b. URL http://www. youtube.com/watch?v=anOIl0xZ3kGM.

e Inverse optimal control: P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse
reinforcement learning. In Proceedings of the 21st International Conference on
Machine Learning (ICML), 2004.

e Inverse optimal control: N. Ratliff, D. Bradley, J. A. Bagnell, and J. Chestnutt.
Boosting structured prediction for imitation learning. In Advances in Neural
Information Processing Systems (NIPS), 2006.
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Summary

e Aims to fix the compounding error problem by using policy learned to
generate trajectories instead of expert (as in supervised imitation learning)

e Previous approaches have nonstationary policies (different for each timestep)
or stochastic attempts where mixing policies can lead to poor performance

e Aggregating dataset from learned policy performs better

o Expert policy should be used to help sample, especially in the beginning when learned policy
is poor

e Proven that in finite sample case, the number of mistakes DAGGER makes
grows approximately linearly in number of iterations

e Proven (using no-regret guarantees) that with high probability, DAGGER
gives good performance guarantees.

CS391R: Robot Learning (Fall 2021) 29




Thank you!! Here is the full paper | based my

presentation off of

Citation: Ross, S.; Gordon, G. J.; and Bagnell, J. A. 2011. No-regret reductions for
imitation learning and structured prediction. Aistats 15: 627-635. URL
http://proceedings.mir.press/v15/ ross11a/ross11a.pdf.

Link: https://arxiv.org/pdf/1011.0686.pdf
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