
CS391R: Robot Learning (Fall 2021)

A Reduction of Imitation Learning and 
Structured Prediction to No-Regret 

Online Learning

1

Presenter: Amit Joshi

21st October 2021

Stéphane Ross, Geoffrey J. Gordon, J. Andrew Bagnell



CS391R: Robot Learning (Fall 2021) 2

Main Problem 

● Sequential prediction problems where future observations depend on 
previous predictions/actions violate the independently and identically 
distributed (i.i.d.) assumptions, leading to poor performance

● Due to compounding error, if a wrong action is taken, then the observations in 
far-future time steps will be vastly different

○ Ex: a robot who turned right instead of left will have very different observations next timestep

● This paper aims to learn a STATIONARY policy that achieves a linear bound 
in the number of errors

○ Stationary - same policy for each timestep



CS391R: Robot Learning (Fall 2021) 3

Main Problem: Compounding Error

● A typical stationary policy with a task horizon T and mistake probability     
is expected to make         mistakes over the task horizon (check proof in 
paper by Ross and Bagnell)

● Intuitively, making a mistake at timestep 1 will greatly alter the observations 
seen
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Motivation

● Sequence Prediction problems are common in robotics
● Most systems must make a sequence of actions that affect their observations
● Imitation Learning (learning to match an expert’s actions) has achieved SOTA 

performance in a variety of tasks
○ Typically trains a classifier or regressor to produce an expert’s actions given observations

● Aim is to come up with a no-regret online (on-the-fly) policy using imitation 
learning

● Nonstationary policies have been developed but this is infeasible if T is large 
or unknown
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Problem Setting

●    : the class of policies
●                     :  represents the average distribution of states after following 

policy for T timesteps
●                                         :cost of acting according to policy     for one timestep                          
●                                                                                         : Total expected cost
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Problem Setting: Surrogate Loss Function

● May not know exact cost C(s,a)
● Can upper bound         by using a surrogate loss function, which is greater 

than or equal to actual cost.
● In Imitation Learning, can be any of the following:

○ 0-1 Loss (whether the action matches with expert or not)
○ Squared Loss
○ Actual cost, C itself

● Want to find the policy which minimizes this surrogate loss:
○

● Note the dependence of the distribution on the policy itself, not i.i.d.
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Related Work: Forward Training

● Trains a nonstationary policy for T iterations, where      is trained to mimic the 
expert on the distribution of states resulting from acting from policies 

● Num mistakes grows
        linearly in T, (proof in paper)
● Need to run T iterations
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Related Work: Stochastic Mixing Iterative Learning 
(SMILe)
● Stationary
● Starts with       which simply executes expert’s choice
● Trains      to mimic expert on current distribution of trajectories
● Updates 
● Guarantees near linear regret in T and 
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Related Work: Stochastic Mixing Iterative Learning 
(SMILe)
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Proposed method: DAGGER (dataset aggregation) 
algorithm
● Uses expert’s policy to generate dataset of trajectories (state, expert action)
● Trains      on dataset to mimic expert, create even more trajectories with     
● Repeat     
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Proposed method: DAGGER expert-use optimization

● When populating the dataset of new trajectories, may want to use expert

● Especially helpful in first few iterations, when policy is randomly initialized
○ Exponentially decay      over iterations

● Note:     is expert,     is our policy trained on    ,      adds (aggregates) to 
dataset
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Proposed method: DAGGER significance
● Can guarantee bounds on total cost that are near-linear if infinite samples are 

taken per iteration (see paper for proofs)
○ Assuming      (surrogate loss) convex and bounded over all policies
○ Assuming                                for some constant       
○                                                                          : true cost of best policy in hindsight

●    
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Proposed method: DAGGER significance, continued

● What about the finite sample case, when only a finite number of samples are 
sampled per iteration?

●
●
●
●
●
●
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Theory: Online Learning and No-Regret Algorithms

● An online learning algo applies      and incurs loss          for each iteration
● No-regret algo produces sequences of policies                              average 

regret compared to the overall best policy in hindsight goes to zero as N goes 
to infinity.  Description below:
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Theory: Using DAGGER to give a No-Regret algo

● Using the expert-use optimization, we can bound the difference between 
states seen by policies that samples trajectories (     ), and policy that we are 
training (    )
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Theory: Using No-Regret Algorithms to show that 
DAGGER gives good performance

●      is the largest constant 
● General Idea for proof: last lemma bounded distribution of states between 

sampled trajectories policy (which uses expert with some probability) and 
policy we are learning.  

● So, we can bound the policy we are learning with the best policy’s loss in 
hindsight.
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Theory: Using No-Regret Algorithms to show that 
DAGGER gives good performance (finite sample 
case where m samples are picked per iteration

● The last term comes from the fact that

●      is difference between expected per step loss at iteration i and the average 
per step loss of sample j at iteration i

● See paper for full proof details
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Experimental Setup: Super Tux Kart

● Expert: Human expert that controls the joystick (analog value in range [-1,1]),
● Features: LAB color values of resized image,
● Output: Steering value                      that minimizes ridge regression objective
● Objective:

●
● Baseline: SMILe, Supervised
● Metrics: falls per lap (of star track)
● 1 lap of training per iteration, 20 iterations
● Agent moves at frequency 5 Hz



CS391R: Robot Learning (Fall 2021) 19

Experimental Results: Super Tux Kart

● DAGGER never falls off after 15 iterations
● significantly outperforms baseline
● Supervised falls go up after too many

        iterations
● SMILe did not improve after 15 iterations
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Experimental Setup: Super Mario Bros

● Expert: Near-optimal planning algorithm will full access to game state, can 
simulate consequences of actions exactly

● Stages are generated from simulation to diversify enemies and difficulty
● Action: subset of {left, right, up, speed}.  Chosen by 4 linearly independent 

SVMs
● Image broken down into 22x22 grid, containing info about enemies, special 

items, etc as binary features.  Plus same info from few timesteps ago
●                                                   kth binary feature, with weight/bias trained to 

optimize SVM objective
● 20 iterations, 5000 data points per iteration (each stage is ~150 data points)
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Experimental Setup: Super Mario Bros
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Experimental Results: Super Mario Bros

● Tested different beta values for 
dagger expert use optimization

● 0.5 worked the best
● 0.9 caused slow convergence expert

shouldn’t generate trajectories 
frequently as iterations goes on

● Supervised performs poorly
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Experimental Setup: Handwriting Recognition

● ~6600 word dataset (~52000) characters
● Uses SVM to predict word in left to right character order, uses previously 

predicted character (tries to predict pairs)
● Each character has 128 features (pixels), plus 26 binary features for previous 

character
● Multiclass SVM was modeled as reduction to all pairs binary classification
● Baselines: SMILe, SEARN (similar to policy iteration)
● More baselines:

○ Two non-structured methods that don’t consider previously predicted character
○ Supervised approach where training is conducted with previous character correctly labelled
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Experimental Results: Handwriting Recognition

● Supervised performed better than no
structure, showing that structure works

● DAGGER outperformed supervised
       (83.6% vs 85.5%)
● Pure Policy iteration (SEARN             )

performed well, since policy doesn’t
influence current state much (only 
affects previously predicted character)
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Discussion of Results

● The Handwriting Experiment showed that policy iteration works when policy 
doesn’t influence state much.  The task horizon was only 2 for any given 
prediction, so the error didn’t compound much.

● The Super Tux Kart experiment showed how the stochasticity of SMILe is a 
disadvantage, occasionally led to bad actions.  This is visually apparent; the 
SMILe agent makes less smooth movements compared to DAGGER agent.

● The Super Mario Bros experiment showed that the expert use optimization is 
important as a fine balance must be found between generating expert 
“optimal” trajectories and our nonexpert policy’s trajectories

○ Must observe nonexpert states like being stuck at an obstacle, but also collect a wider variety 
of data by using expert



CS391R: Robot Learning (Fall 2021) 26

Critique/Limitations/Open Issues

● Their linear error proof was based on choosing expert action at least once, 
what if expert action was never chosen?

● Could using expert policy more often to generate trajectories be a good idea 
when policy learned appears to be close to expert policy?

● When would using policy iteration work just as well, as was the case with 
Handwriting Recognition?

● Practical challenge: how would you use learned policy to generate many 
trajectories quickly in real-world, (as is necessary in DAGGER)? 
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Future Work for Paper / Reading

● Will consider more sophisticated strategies for decoding than simple greedy 
forward

○ perhaps try beam search

● I would like to see how their handwriting recognition compares to a 
Connectionist Temporal Classification (CTC) baseline

○ Uses a reduction to Hidden Markov Models and uses the HMM Forward Algo to give the most 
likely word

● Using base classifiers that rely on Inverse Optimal Control techniques to learn 
a cost function for a planner to aid prediction in imitation learning

● Keep using similar techniques as DAGGER (cost-to-go-method) 
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Extended Readings
● Talks about Forward Training and SMILe in greater detail: S. Ross and J. A. 

Bagnell. Efficient reductions for imitation learning. In Proceedings of the 13th 
International Conference on Artificial Intelligence and Statistics (AISTATS), 2010.

● More experiments: S. Ross. Comparison of imitation learning approaches on 
Super Mario Bros, 2010b. URL http://www. youtube.com/watch?v=anOI0xZ3kGM.

● Inverse optimal control: P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse 
reinforcement learning. In Proceedings of the 21st International Conference on 
Machine Learning (ICML), 2004.

● Inverse optimal control: N. Ratliff, D. Bradley, J. A. Bagnell, and J. Chestnutt. 
Boosting structured prediction for imitation learning. In Advances in Neural 
Information Processing Systems (NIPS), 2006.
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Summary

● Aims to fix the compounding error problem by using policy learned to 
generate trajectories instead of expert (as in supervised imitation learning)

● Previous approaches have nonstationary policies (different for each timestep) 
or stochastic attempts where mixing policies can lead to poor performance

● Aggregating dataset from learned policy performs better
○ Expert policy should be used to help sample, especially in the beginning when learned policy 

is poor

● Proven that in finite sample case, the number of mistakes DAGGER makes 
grows approximately linearly in number of iterations

● Proven (using no-regret guarantees) that with high probability, DAGGER 
gives good performance guarantees.
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Thank you!! Here is the full paper I based my 
presentation off of
Citation: Ross, S.; Gordon, G. J.; and Bagnell, J. A. 2011. No-regret reductions for 
imitation learning and structured prediction. Aistats 15: 627–635. URL 
http://proceedings.mlr.press/v15/ ross11a/ross11a.pdf.

Link: https://arxiv.org/pdf/1011.0686.pdf


