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Motivation

The motivation to this paper was driven by the challenge to design a low-cost robot with the ability to

perform high frequency decisions while driving at high speeds.

Helps 3 things about autonomous robots:
® Cheaper parts
® Adaptive

® Real world possibilities
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Main Problem - Lack of application for Autonomous Robots

A very big problem we have these days is the lack of application to the real word where uncertainties are

everywhere.
Controlled Experimentation:
Lack external validity

Not applicable to any miniscule changes

Real World Experimentation:

Applicable to wide variety of situations

Can ultimately be used in real world scenarios

CS391R: Robot Learning (Fall 2021)




Things to Know Prior- DAgger

Compounding Errors

errors at subsequent
T - t timesteps

Iterative policy training algorithm

error at time t

Reinforcement Learning with probabilty €

Expert teaches the learner how to recover from past mistakes

Retrain the main classifier on all states ever encountered by the learner

Simply, DAgger fixes compounding errors that stray from the training data
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Related Work / Limitations of Prior Work

Prior Works:

Grady Williams, 2016 “Aggressive driving with model predictive path”
- Expensive hardware
- Only in controlled environments

Paul Drews, 2017 “Aggressive deep driving: Model predictive control with a cnn cost model”
- Uses vision based cost map
- Computationally expensive optimization due to MCP approach

Urs Muller, 2006 “Off-road obstacle avoidance through end-to-end learning”

- Low speed
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Proposed Approach - Imitation learning

Pros:
® | ow chance of damages
® Straight application of knowledge from experts

® Generally better than ordinary RL in real world situations
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Proposed Approach - DAgger

No DAgger: With DAgger:

Expert trajectory

Learned Policy ‘ .
. —_ Expert Trajectory
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No Crash
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Proposed Approach — Training Phase
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Proposed Approach — Testing Phase
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Proposed Approach — Narrowed Objective

Objective:
® Train using Imitation Learning
- With expert’s training samples
® Correct path with Dagger when needed
- When compounding errors add up
® Be as fast as possible without crashing

- Hard due to stochastic terrains

Williams etal.; 2017

CS391R: Robot Learning (Fall 2021) 10




Experimental Setup

® This system was applied to a 1/5 scale Auto Rally car

® The car was equipped with a low cost monocular camera and wheel speed sensors

® The track was a simple off-road track made of dirt

® Desired speeds of about 7 m/s

TABLE I: Comparison of our method to prior work on IL for autonomous driving
[ Methods | Tasks | Observations [ Action [ Algorithm | Expert |  Experiment |

[1] On-road low-speed Single image Steering Batch Human Real &simulated
23] On-road low-speed Single image & laser Steering Batch Human Real &simulated
24] On-road low-speed Single image Steering Batch Human Simulated
[20] Oft-road low-speed Left & nght images Steering Batch Human Real
[33] On-road unknown speed Single image Steering + break Online Pre-specified policy Simulated
Our : Single image + : Batch & i Real &

Metllll i Off-road high-speed \l\r/lhge:ll:;)‘;ifis Steering + throttle :ncline Model predictive controller sir:ulate d
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Experimental Setup — Proposed System

Algorithmic expert (Modular approach)
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Results
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Results

Performance of online and batch learning
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Discussion of Results

® Able to achieve same speeds as MPC expert

® Online data (DAgger) out preformed the batch data

® Found that online IL always improves as more datais ! e Esamest pobey,

gathered, this opposes other research papers on IL

Performance of oniing and batch leaming

- — - - — - ‘mmm Satcn |
[ Policy | Avg. speed | Top speed | Training data | Completion ratio | Total loss | Steering/Throttle loss | S r———

&0

Expert 605 m/s | 8.14 m/s N/A 100 % 0 0 _
Batch 297 mis | 551 mis 3000 100 % 0.108 0.092/0.124 &
Batch 6.02m/s | 8.18 m/s 6000 51 % 0108 0.162/0.055 .
Batch 579m/is | 7.78 m/s 9000 53 % 0.123 0.193/0.071 s
Batch 595m/s | 801 m/s 12000 69 % 0.105 0.125/0.083 2w
Online (1 iter) | 602 m/s | 7.88 m/s 6000 100 % 0.090 0.112/0.067 T
Online (2 iter) | 589 m/s | 8.02 m/s 9000 100 % 0.075 0.095/0.055 s
Online 3 iter) | 607 m/s | 8.06 m/s 12000 100 % 0.064 0.073/0.055 8 o

6000 9000 12000
Training data size
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Critique / Limitations

e Impressive due to the implementation of DAgger and pushing the state of the
art but the novelty is medium at best since many other papers have covered
this topic

e Only truly applicable in real life when an expert is there to provide data
samples

e This can still be matched or passed with other methods using very high
sampling but the risk of crashing is higher

e Even with Imitation learning, it is still very possible for a crash to happen
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Future Work for Paper / Reading
e Drones
e Experimentation on many tracks
e Multiple expert applications
e Application of new sensors like depth cameras or Gyroscopes

e Assuring there will be no crashes even with new or unknown entities on track
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Summary

Addresses the lack of application Autonomous Robots to the real word where uncertainties are

everywhere.

The use of stochastic terrains for intentionally driving the robot off track similar to the real world

Discuss the shortcomings of other robots like low speed, only simulated, or not off road

This paper uses Imitation Learning, the Dagger method to keep it on track, and DNN Control Policy

Pushed the bounds of state of the art for End-to-End Autonomous Driving using IL
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