

Agile Autonomous Driving using End-to-End Deep Imitation Learning

Carlos Cuartas

October 21, 2021

Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos A. Theodorou, and Byron Boots

Motivation

The motivation to this paper was driven by the challenge to design a low-cost robot with the ability to perform high frequency decisions while driving at high speeds.

Helps 3 things about autonomous robots:

- Cheaper parts
- Adaptive
- Real world possibilities

Main Problem - Lack of application for Autonomous Robots

A very big problem we have these days is the lack of application to the real word where uncertainties are everywhere.

Controlled Experimentation:

Lack external validity Not applicable to any miniscule changes

Real World Experimentation:

Applicable to wide variety of situations Can ultimately be used in real world scenarios

Things to Know Prior-DAgger

Compounding Errors

• Retrain the main classifier on all states ever encountered by the learner

Simply, DAgger fixes compounding errors that stray from the training data

Related Work / Limitations of Prior Work

Prior Works:

Grady Williams, 2016 "Aggressive driving with model predictive path"

- Expensive hardware
- Only in controlled environments

Paul Drews, 2017 "Aggressive deep driving: Model predictive control with a cnn cost model"

- Uses vision based cost map
- Computationally expensive optimization due to MCP approach

Urs Muller, 2006 "Off-road obstacle avoidance through end-to-end learning"

- Low speed

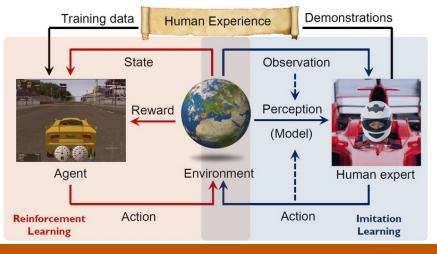
Proposed Approach - Imitation learning

Pros:

- Low chance of damages
- Straight application of knowledge from experts
- Generally better than ordinary RL in real world situations

Cons:

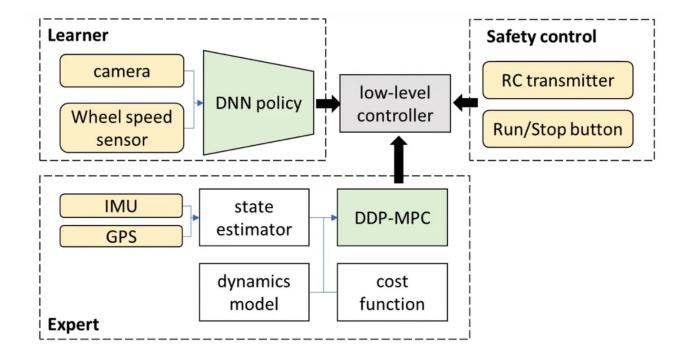
- Expert is needed
- Compounding error over time
- When path is strayed data doesn't help



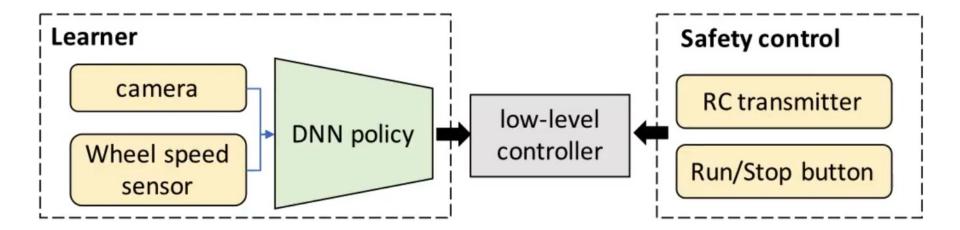
Proposed Approach - DAgger

With DAgger: No DAgger: Expert trajectory Learned Policy **Expert Trajectory** internet internet No data on how to recover and the second sec No Crash

Proposed Approach – Training Phase



Proposed Approach – Testing Phase



Proposed Approach – Narrowed Objective

Objective:

- Train using Imitation Learning
 - With expert's training samples
- Correct path with Dagger when needed
 When compounding errors add up
- Be as fast as possible without crashing
 Hard due to stochastic terrains

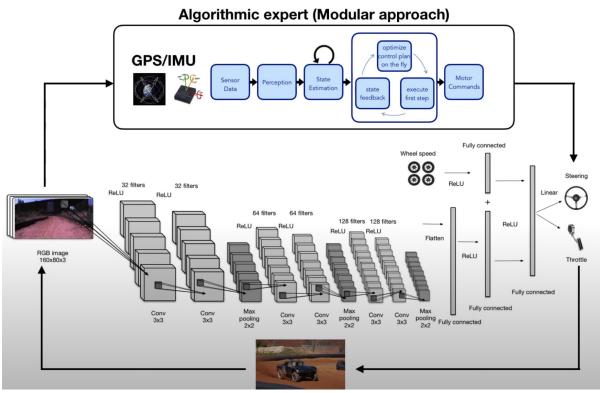
Experimental Setup

- This system was applied to a 1/5 scale Auto Rally car
- The car was equipped with a low cost monocular camera and wheel speed sensors
- The track was a simple off-road track made of dirt
- Desired speeds of about 7 m/s

Methods	Tasks	Observations	Action	Algorithm	Expert	Experiment
[1]	On-road low-speed	Single image	Steering	Batch	Human	Real & simulated
[23]	On-road low-speed	Single image & laser	Steering	Batch	Human	Real &simulated
[24]	On-road low-speed	Single image	Steering	Batch	Human	Simulated
[20]	Off-road low-speed	Left & right images	Steering	Batch	Human	Real
[33]	On-road unknown speed	Single image	Steering + break	Online	Pre-specified policy	Simulated
Our Method	Off-road high-speed	Single image + wheel speeds	Steering + throttle	Batch & online	Model predictive controller	Real & simulated

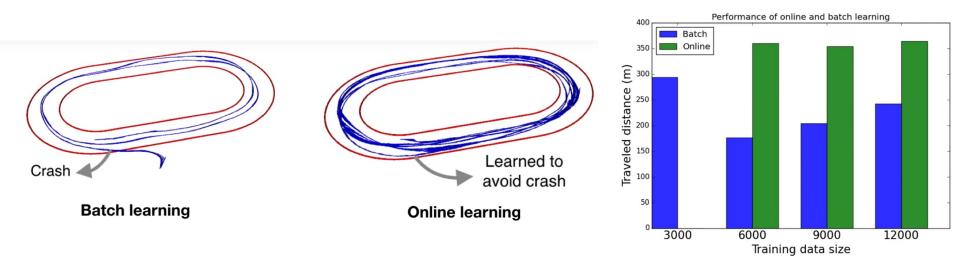
TABLE I: Comparison of our method to prior work on IL for autonomous driving

Experimental Setup – Proposed System



Results

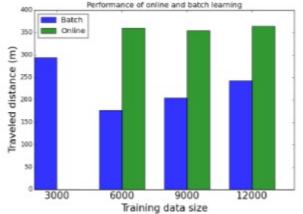
Results



Discussion of Results

- Able to achieve same speeds as MPC expert
- Online data (DAgger) out preformed the batch data
- Found that online IL always improves as more data is gathered, this opposes other research papers on IL

Policy	Avg. speed	Top speed	Training data	Completion ratio	Total loss	Steering/Throttle loss
Expert	6.05 m/s	8.14 m/s	N/A	100 %	0	0
Batch	4.97 m/s	5.51 m/s	3000	100 %	0.108	0.092/0.124
Batch	6.02 m/s	8.18 m/s	6000	51 %	0108	0.162/0.055
Batch	5.79 m/s	7.78 m/s	9000	53 %	0.123	0.193/0.071
Batch	5.95 m/s	8.01 m/s	12000	69 %	0.105	0.125/0.083
Online (1 iter)	6.02 m/s	7.88 m/s	6000	100 %	0.090	0.112/0.067
Online (2 iter)	5.89 m/s	8.02 m/s	9000	100 %	0.075	0.095/0.055
Online (3 iter)	6.07 m/s	8.06 m/s	12000	100 %	0.064	0.073/0.055



Critique / Limitations

- Impressive due to the implementation of DAgger and pushing the state of the art but the novelty is medium at best since many other papers have covered this topic
- Only truly applicable in real life when an expert is there to provide data samples
- This can still be matched or passed with other methods using very high sampling but the risk of crashing is higher
- Even with Imitation learning, it is still very possible for a crash to happen

Future Work for Paper / Reading

- Drones
- Experimentation on many tracks
- Multiple expert applications
- Application of new sensors like depth cameras or Gyroscopes
- Assuring there will be no crashes even with new or unknown entities on track

Extended Readings 1

Grady Williams, Paul Drews, Brian Goldfain, James M Rehg, and Evangelos A Theodorou. **"Aggressive** driving with model predictive path integral control." 2016

Paul Drews, Grady Williams, Brian Goldfain, Evangelos A Theodorou, and James M Rehg. "**Aggressive deep driving: Model predictive control with a cnn cost model.**" 2017

Urs Muller, Jan Ben, Eric Cosatto, Beat Flepp, and Yann L Cun. "Off-road obstacle avoidance through end-to-end learning." 2006

Stéphane Ross, Geoffrey J. Gordon, J. Andrew Bagnell. "A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning" 2010

Extended Readings 2

Dean A Pomerleau. "Alvinn: An autonomous land vehicle in a neural network" 1989

Viktor Rausch, Andreas Hansen, Eugen Solowjow, Chang Liu, Edwin Kreuzer, and J. Karl Hedrick. **"Learning a deep neural net policy for end-to-end control of autonomous vehicles."** 2017

Jeff Michels, Ashutosh Saxena, and Andrew Y Ng. "High speed obstacle avoidance using monocular vision and reinforcement learning." 2005.

Summary

- Addresses the lack of application Autonomous Robots to the real word where uncertainties are everywhere.
- The use of stochastic terrains for intentionally driving the robot off track similar to the real world
- Discuss the shortcomings of other robots like low speed, only simulated, or not off road
- This paper uses Imitation Learning, the Dagger method to keep it on track, and DNN Control Policy
- Pushed the bounds of state of the art for End-to-End Autonomous Driving using IL