Generative Adversarial Imitation Learning

Alex Zuzow

10/28/2021
Motivation

Mimic human behavior in a given task.

❖ Sometimes it is easier for an expert to demonstrate a task instead of specifying a reward function.
❖ Facilitates teaching complex tasks without the need for explicitly designing a reward function
❖ Applicable to large, high dimensional environments
Imitation

Input: expert behavior generated by π_E

$$\{(s_i^0, a_i^0, s_i^1, a_i^1, \ldots)\}_{i=1}^n \sim \pi_E$$

Goal: learn cost function (reward) or policy

(Ng and Russell, 2000), (Abbeel and Ng, 2004; Syed and Schapire, 2007), (Ratliff et al., 2006), (Ziebart et al., 2008), (Kolter et al., 2008), (Finn et al., 2016), etc.
Inverse RL

• An approach to imitation
• Learns a cost c such that

$$
\pi_E = \arg \max_{\pi} \mathbb{E}_{\pi}[c(s, a)]
$$
Problem setup

\[RL(c) = \arg \min_{\pi \in \Pi} -H(\pi) + E_\pi [c(s, a)] \]

Cost Function \(c(s) \) \rightarrow \text{Reinforcement Learning (RL)} \rightarrow \text{Optimal policy} \(\pi \)

Environment (MDP)

Cost Function \(c(s) \) \rightarrow \text{Inverse Reinforcement Learning (IRL)} \rightarrow \text{Expert's Trajectories} \(s_0, s_1, s_2, \ldots \)

\[
\max_{c \in C} \left(\min_{\pi \in \Pi} -H(\pi) + E_\pi [c(s, a)] \right) - E_{\pi_E} [c(s, a)]
\]

(Ziebart et al., 2010; Rust 1987)

Everything else has high cost \quad \text{Expert has small cost}
Problem setup

\[IRL_{\psi}(\pi_E) = \arg \max_{c \in \mathbb{R}^{S \times A}} -\psi(c) + \left(\min_{\pi \in \Pi} -H(\pi) + E_{\pi}[c(s, a)] \right) - E_{\pi_E}[c(s, a)] \]

Convex cost regularizer

\(\approx \) (similar? wrt \(\psi \))
Combining RL \circ IRL

$\rho_\pi = \text{occupancy measure} = \text{distribution of state-action pairs encountered when navigating the environment with the policy}$

$\rho_{\pi E} = \text{Expert's occupancy measure}$

s_0, s_1, s_2, \ldots

ψ-regularized inverse reinforcement learning learning,

ψ^* (convex conjugate of ψ)

Theorem: ψ-regularized inverse reinforcement learning, implicitly, seeks a policy whose occupancy measure is close to the expert's, as measured by ψ^*

$$RL \circ IRL_\psi(\pi_E) = \arg \min_{\pi \in \Pi} -H(\pi) + \psi^*(\rho_\pi - \rho_{\pi E})$$
Takeaway

Theorem: ψ-regularized inverse reinforcement learning, implicitly, seeks a policy whose occupancy measure is close to the expert’s, as measured by ψ^*

- Typical IRL definition: finding a cost function c such that the expert policy is uniquely optimal w.r.t. c

- Alternative view: IRL as a procedure that tries to induce a policy that matches the expert’s occupancy measure (generative model)
Related Work

Apprenticeship learning

- Solution: use features $f_{s,a}$
- Cost $c(s,a) = \theta \cdot f_{s,a}$

$$IRL_\psi(\pi_E) = \operatorname{arg\,max}_{c \in \mathbb{R}^s \times A} -\psi(c) + \left(\min_{\pi \in P} -H(\pi) + \mathbb{E}_\pi[c(s, a)] \right) - \mathbb{E}_{\pi_E[c(s, a)]}$$

Only these “simple” cost functions are allowed

- $\psi(c) = \infty$
- $\psi(c) = 0$

Linear in features

All cost functions
Related Work

Issues with Apprenticeship learning

• Need to craft features very carefully
 – unless the true expert cost function (assuming it exists) lies in C, there is no guarantee that AL will recover the expert policy

• $RL \circ IRL_{\psi}(\pi_E)$ is “encoding” the expert behavior as a cost function in C.
 – it might not be possible to decode it back if C is too simple
Generative Adversarial Imitation Learning

\[\psi_{GA}(c) = \begin{cases} \mathbb{E}_{\pi_E} [g(c(s, a))] & \text{if } c < 0 \\ +\infty & \text{otherwise} \end{cases} \]

where \(g(x) = \begin{cases} -x - \log(1 - e^x) & \text{if } x < 0 \\ +\infty & \text{otherwise} \end{cases} \)
Related Work

Generative Adversarial Networks

Figure from Goodfellow et al, 2014
Method
Generative Adversarial Imitation Learning

- $\psi^* = \text{optimal negative log-loss of the binary classification problem of distinguishing between state-action pairs of } \pi \text{ and } \pi_E$
Experimental Setup

❖ Tested on 9 physics-based control tasks such as a 3D humanoid locomotion.
❖ Each task comes with a true cost function, defined in the OpenAI Gym.
❖ Expert trajectories generated for these tasks by running Trust Region Policy Optimization (TRPO).
Experimental Setup

Baselines
❖ Behavioral cloning.
❖ Feature expectation matching (FEM).
❖ Game-theoretic apprenticeship learning (GTAL).
Experimental Results
Discussion of Results

❖ GAIL is generally quite sample efficient in terms of expert data.
❖ Inefficient in terms of environment interaction during training.
❖ GAIL always produced policies performing better than behavioral cloning, FEM, and GTAL.
Critique / Limitations

- Requires a large number of environment interactions during training.
- Infeasible to train using real robots
Future Work

❖ Precompute policy weights by applying behavioral cloning
❖ combine with a method like DAgger to allow GAIL to query expert when uncertain
Extended Readings

- InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations
 [Link](https://arxiv.org/pdf/1703.08840.pdf)

- Agail: Learning Robust Rewards with Adversarial Inverse Reinforcement.

- TextGAIL: Generative Adversarial Imitation Learning for Text Generation

- Triple-GAIL: A Multi-Modal Imitation Learning Framework with Generative Adversarial Nets

- MAGAIL: Multi-Agent Generative Adversarial Imitation Learning
 [Link](https://arxiv.org/pdf/1807.09936.pdf)
Summary

❖ **Problem**: learning complex behaviors in high dimensional environments.
 ○ Easier for an expert to demonstrate behaviors than specify a reward function.

❖ **Previous limitations**: imitation learning methods.
 ○ Inverse Reinforcement learning: required lots of expert demonstrations and computationally expensive.
 ○ Behavioral Cloning: small errors compound over time, poor generalization.

❖ **key insights**: directly learns a policy without an explicit reward function.
 ○ Similar to Inverse Reinforcement Learning although discriminator acts as reward function.