

Deep TAMER: Interactive Agent Shaping in High-Dimensional State Spaces

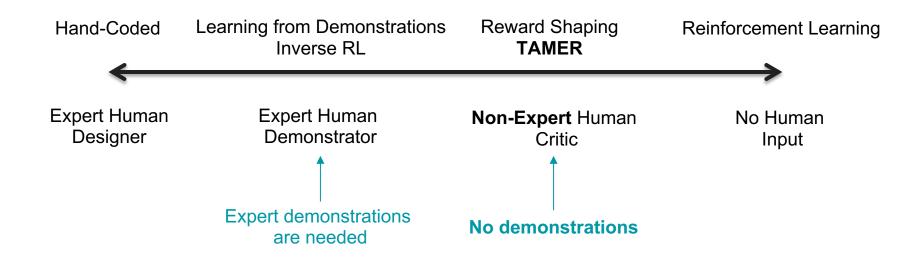
By Garrett Warnell, Nicholas Waytowich, Vernon Lawhern, and Peter Stone

Presenter: Alex Tsolovikos

November 2, 2021

Human Input in Reinforcement Learning

Autonomous agents need a **policy** for sequential decision making



The TAMER Framework

Training an Agent Manually via Evaluative Reinforcement

- Learn by interacting with a non-expert human
- Non-expert human observes system performance and "critiques" how good or bad it is via a scalar feedback
- No demonstrations only scalar critique
- Useful for tasks that are hard for a human to demonstrate but easy to critique

The TAMER Framework

- S: set of states
- A: set of actions
- Agent: selects actions $(a_1, a_2, ...)$ that lead to a sequence of states $(s_0, s_1, s_2, ...)$
- **Human**: observes $(s_0, s_1, s_2, ...)$ and periodically provides scalar feedback $(h_0, h_1, ...)$
- Large h: good behavior
- Implicit human reward function: $H(\cdot, \cdot) : S \times A \to \mathbb{R}$

Implicit Human Function vs Q-Function

Q-Function

- Associated with a state-action reward
- In general, no labels available
- A value for each policy and state-action pair

Implicit Human Reward Function

- No predefined reward
- Labeled by human feedback
- Provided at unknown intervals

 $Q(\cdot, \cdot) : S \times A \to \mathbb{R}$ $Q(s, a) = r(s, a) + \gamma \max_{a'} Q(s', a')$

 $H(\cdot, \cdot) : S \times A \to \mathbb{R}$ H(s, a) = ?

Deep TAMER as Supervised Learning

Agent observes:

• State – action pairs:

$$x_i = (s_i, a_i, t_i^{start}, t_i^{end})$$

Time spent in state

• Human feedback:

$$y_j = (h_j, t_j^{feedback})$$

Time feedback is given

Which *x_i* does the feedback correspond to?

• No one-to-one correspondence

 $\{x_i\} \rightarrow y_j$ $\{x_i, x_{i+1}, x_{i+2}\} \rightarrow y_j$ $\{x_i, x_{i+1}\} \rightarrow \{0\}$

- Assumptions:
 - $t^{feedback} < t^{start}$: no correspondence
 - \circ $t^{start} \leq t^{feedback} \leq t^{end}$: correspondence
 - $t^{feedback} \gg t^{end}$: correspondence goes to zero

Deep TAMER as Online Supervised Learning

Loss Function:

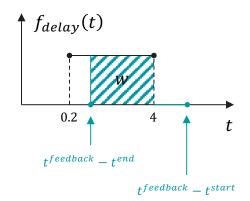
$$\ell(\hat{H}; x_i, y_j) = w(t_i^{start}, t_i^{end}, t_j^{feedback}) [\hat{H}(s_i, a_i) - h_j]^2$$

$$Weight:$$

$$t^{feedback} < t^{start}: w = 0$$

$$t^{feedback} \gg t^{end}: w \to 0$$
else: $w \neq 0$

Uniform distribution



Weight Function:

$$w(t_{i}^{start}, t_{i}^{end}, t_{j}^{feedback}) = \int_{t^{feedback} - t^{end}}^{t^{feedback} - t^{start}} f_{delay}(t)dt$$
Probability of correspondence

Deep TAMER as Online Supervised Learning

Optimization Goal:

$$\widehat{H}^* = \arg\min_{\widehat{H}} E_{x,y} \left[\ell(\widehat{H}; x, y) \right]$$

- Minimize loss in the statistical sense
- Online supervised learning: treat observations as realizations of a random variable

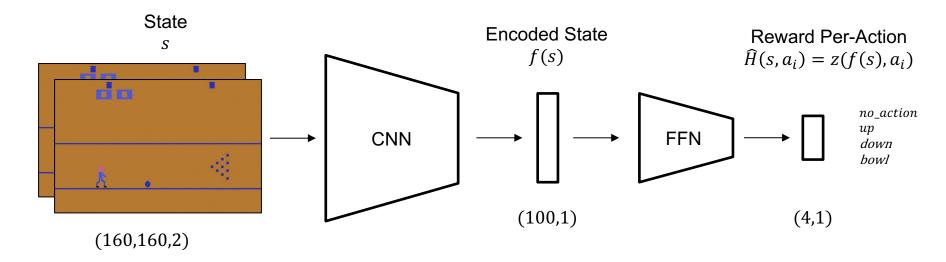
Stochastic Gradient Descent Updates:

$$\widehat{H}_{k+1} = \widehat{H}_k - \eta_k \nabla_{\widehat{H}} \ell(\widehat{H}_k; x_{i_k}, y_{j_k})$$

Sampled from experience $(x_1, x_2, ...)$ and feedback $(y_1, y_2, ...)$ for pairs with $w \neq 0$

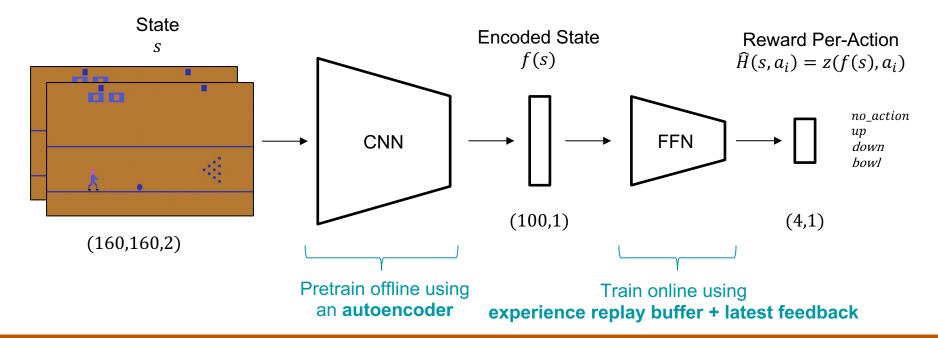
High-Dimensional Systems: Atari Bowling

Deep Reward Function for the Atari Bowling game:



High-Dimensional Systems: Atari Bowling

Deep Reward Function for the Atari Bowling game:



TAMER vs Deep TAMER

Original TAMER

- Human reward function \widehat{H} : **linear**
- Reward h_j applies to all state-action pairs
 (s_i, a_i)

$$\ell(\widehat{H}; \{\mathbf{x}\}, y_j) = \frac{1}{2} \left(h_j - \sum_i w(t_i^s, t_i^e, t_j^f) \widehat{H}(s_i, a_i) \right)^2$$

Deep TAMER

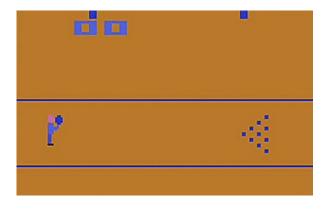
- Human reward function \widehat{H} : **deep CNN**
- Reward h_j applies to one state-action pair
 (s_i, a_i)

$$\ell(\widehat{H}; x_i, y_j) = w(t_i^s, t_i^e, t_j^f) [\widehat{H}(s_i, a_i) - h_j]^2$$

Intuition: human's feedback applies to individual state-action pair, not any state-action pair

Experiments: Atari Bowling

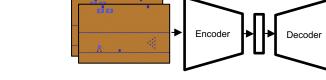
- Actions:
 - no-action
 - о **ир**
 - o down
 - o **bowl**
- State:
 - 2 most recent grayscale images (160,160,2)
 - 20 FPS
- 10 frames per game
- Metric: score per game
- Maximum score: **270**
- Implementation: OpenAl Gym

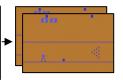


Training

• CNN pretrained with an autoencoder

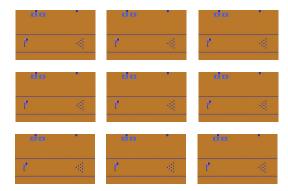
- FNN trained online
- 9 trainers do the following:
 - Record human performance: 2 games
 - Familiarize with giving feedback: 10 minutes
 - Train using Deep TAMER: 15 minutes
 - Train using Original TAMER: 15 minutes



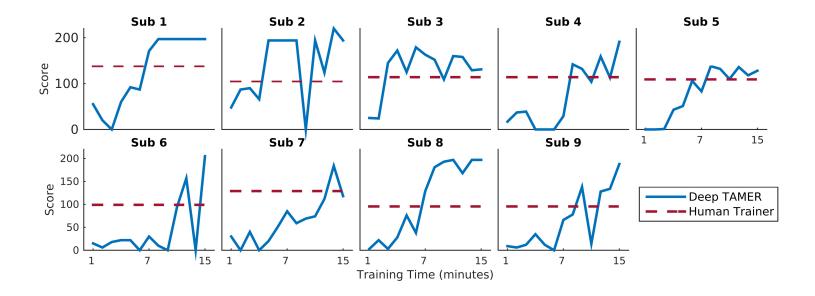


Online

Offline



Trainers vs Trained Agent



Agents perform better than their trainers after ~7 minutes

Evaluation

Deep TAMER is compared with:

- **Original TAMER:** linear rewards model; global loss function
- **Double Deep Q-Learning:** online, off-policy
- A3C: Asynchronous advantage actor-critic; uses 16 parallel actor learners
- Human Trainers performance
- **Expert Human** performance (Mnih et al. 2015)
- Learning from Demonstrations (Hester et al. 2017)

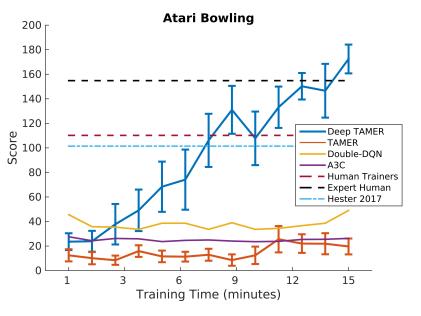
Evaluation

Other Methods:

- Double-DQN and A3C: Fail to learn in 15 minutes or even with 50-100 million training steps
- Original TAMER: Fails, since it uses a linear model for the human reward function
- Demonstrations (Hester et al. 2017): Also fails; task is hard for a human to demonstrate

Deep TAMER:

- Better than trainers after 7 minutes of training; task is easy to critique
- Better than human expert (Mnih et al. 2015)



Limitations / Open Issues

• Performance increase can be **noisy** due to stochastic optimization

- Difficult to do hyperparameter search because obtaining more human interaction data is difficult
- **Does not** seek to maximize discounted sum of future rewards; only short-term human feedback h
- No reward is directly considered

Summary

- Deep learning of policies by interacting in real-time with a non-expert human
- Non-expert human observes system performance and "critiques" how good or bad it is
- Extension of the original TAMER to high-dimensional systems
- Agents are able to learn the Atari Bowling in just 15 minutes of interactions with human critics
- Outperforms human trainers, human experts, and related RL methods in the Atari Bowling game
- Useful when a task is hard for a human to demonstrate but easy to critique

Extended Readings

- Deep COACH (similar idea, but with actor-critic): <u>Arumugam, Dilip, et al. "Deep reinforcement</u> learning from policy-dependent human feedback." (2019).
- Combining Deep TAMER with distant rewards: <u>Arakawa, Riku, et al. "DQN-TAMER: Human-in-the-</u> loop reinforcement learning with intractable feedback." (2018).
- Combining demonstrations and human preference: <u>Ibarz</u>, Borja, et al. "Reward learning from <u>human preferences and demonstrations in Atari." (2018)</u>.
- Survey on human guidance in deep RL: <u>Zhang</u>, <u>Ruohan</u>, et al. <u>"Leveraging human guidance for</u> <u>deep reinforcement learning tasks.</u>" (2019).