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Motivation

High-level description of control problem:

● Finding a policy π that maximizes expected future rewards

Major challenge in RL: 

● Learning goal-directed behavior in environments with sparse feedback and 

delayed rewards

Difficulties:

● Insufficient exploration -> learned value function not robust
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Main Problem

Limitations of prior approaches:

● Use of non-linear function approximators coupled with RL
○ learn abstractions over high-dimensional state spaces

○ BUT exploration with sparse feedback still remains a major challenge

● Boltzmann exploration and Thomson sampling 
○ offer significant improvements over epsilon-greedy expiration

○ BUT limited due to the underlying models functioning at the level of basic actions
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Main Problem
Importance of the problem

● Rise of complicated / high-dimensional environments
○ -> need for efficient space for exploration

● Difficult training in environments providing delayed rewards

Proposed algorithm: Hierarchical-DQN

● integrate hierarchical value functions (operating at different temporal scales)
○ top-level value function learns a policy over intrinsic goals (flexible goal specifications)

○ lower-level function learns a policy over atomic actions to satisfy the given goals

● with intrinsically motivated deep reinforcement learning
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Problem Setting

Finding a policy π that maximizes expected future rewards

● States s, actions a and transition function T:(s,a) -> s’

● Value functions V(s, g)
○ utility of state s for achieving a given goal g

○ In high-dimensional problems, approximated by neural networks as 

● (Extrinsic) reward function F(s) (to maximize over long periods of time)

● Policy π_a(s) = P(a|s)
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Related Work
● Reinforcement Learning with Temporal Abstractions: options [1]

○ abstractions over the space of actions

○ one-step “primitive” action or a “multi-step” action policy (option)

○ generalize value functions to consider goals along with states [2]

○ Limitations: learning not shared between options, not scalable for a large number of options

● Intrinsically motivated RL
○ Design of “good” intrinsic reward functions [3]

● Deep Q-Networks
○ handle high-dimensional sensory input

○ but perform poorly on environments with sparse, delayed reward signals

○ Alleviate problem: prioritized experience replay [4] and bootstrapping [5]
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Proposed Approach

● Framework: 2 levels of hierarchy
○ top level module (meta-controller) 

■ takes in the state and picks a new goal

○ lower-level module (controller) 

■ uses state and goal to select actions (until 

goal reached or episode terminated)

● Optimize expected future intrinsic (controller) and 

extrinsic rewards (meta-controller)
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Proposed Approach
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Algorithm

● Temporal abstraction of options 

○ policies π_g for each goal g

○ critic, which provides intrinsic rewards          based on whether the 

agent is able to achieve its goals

● Goal

○ Controller: maximize cumulative intrinsic reward

○ Meta-controller: maximize cumulative extrinsic reward
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Algorithm

Policy learning via Deep Q-Learning

● Controller

● Meta-controller
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Algorithm

Represent                              as deep Q-network (same procedure for Q1 and Q2)

● Trained by minimizing loss functions

● Update parameters      via stochastic gradient descent
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Learning parameters of h-DQN
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Experimental Setup

Stochastic decision process

● Extrinsic reward depends on the history of visited states

● 6 possible states and starts at s2

○ action left: moves left deterministically

○ action right: moves right with probability 50% (left otherwise)

● Terminal state: s1 (receives r = 100 if went through s6)
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Experimental Results

Stochastic decision process
Tested against Q-learning baseline:

● which converges to sub-optimal policy of 

reaching state s1 directly (low reward)

h-DQN:

● learns to choose goals s4, s5 or s6

● visit s6 before going back to s1

● High reward
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Experimental Setup

Montezuma’s Revenge (ATARI game)

● Player finds a key (small reward)

● Then opens a door (high but delayed reward)

Setup

● DQN architecture for controller / meta-controller

● Goals: intermediate locations in the image
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Experimental Results

Montezuma’s Revenge (ATARI game)
Tested against deep Q-learning baseline:

● which converges to sub-optimal policy of 

reaching state s1 directly (low reward)

h-DQN:

● Reach the key more often

● Obtain higher reward

● Select the appropriate intermediate goals
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Discussion of Results
Selecting intermediate goals

to achieve higher global reward

● Especially when rewards are delayed

● Outperform baselines Q-learning and DQN 

methods

● The goals are initially evenly explored

● Then most promising goals further explored
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Limitations and Future Work
● Requires careful task-specific design and on-policy training

○ design of meta-controller (application dependant)

○ difficult to apply in real-world scenarios

● Missing components

○ automatically disentangling objects from raw pixels

○ agent needs to store a history of previous goals, actions and representations

● Future work

○ combination of deep generative models of images with h-DQN

○ scale up to harder non-Markovian settings

■ use of recurrent neural networks / short-term memory
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Extended Readings
● Nachum, Ofir, et al. "Data-efficient hierarchical reinforcement learning." arXiv preprint arXiv:1805.08296 (2018). 

(https://arxiv.org/abs/1805.08296)

○ general: no onerous additional assumptions beyond standard RL algorithms

○ efficient: can be used with modest numbers of interaction samples more suitable for real-world problems, robotic control)

● Xue Bin Peng, Glen Berseth, Kangkang Yin, and Michiel Van De Panne. 2017. DeepLoco: dynamic locomotion skills using 

hierarchical deep reinforcement learning. ACM Trans. Graph. 36, 4, Article 41 (July 2017), 13 pages. 

DOI:https://doi.org/10.1145/3072959.3073602

○ two-level hierarchical control framework: robust walking gaits (low level) and motion to target (high level)

○ Simulated on a 3D biped

● Z. Yang, K. Merrick, L. Jin and H. A. Abbass, "Hierarchical Deep Reinforcement Learning for Continuous Action Control," in 

IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 11, pp. 5174-5184, Nov. 2018, doi: 

10.1109/TNNLS.2018.2805379.

○ compound skills and basic skills learned by two levels of hierarchy

https://arxiv.org/abs/1805.08296
https://doi.org/10.1145/3072959.3073602
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Summary

❖ Problem: learning goal-directed behavior in environments with sparse feedback and delayed rewards

❖ Use Hierarchical Deep Reinforcement Learning to motivate agents with intermediate rewards

❖ Prior work limited by the delay of the reward (Q-learning, DQN, etc)

❖ Build a two-level hierarchical model 

○ operating at different temporal scales

○ top-level value function learns policy over goals 

○ lower-level function learns policy over actions to satisfy goals

❖ Obtain higher rewards against the baselines (Q-learning) which do not succeed in obtaining the 

delayed rewards


