

Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation

Presenter: Martin Braquet

November 4, 2021

Motivation

High-level description of control problem:

- Finding a policy π that maximizes expected future rewards Major challenge in RL:
 - Learning goal-directed behavior in environments with sparse feedback and delayed rewards

Difficulties:

• Insufficient exploration -> learned value function not robust

Main Problem

Limitations of prior approaches:

- Use of non-linear function approximators coupled with RL
 - learn abstractions over **high-dimensional state spaces**
 - BUT exploration with **sparse feedback** still remains a major challenge
- Boltzmann exploration and Thomson sampling
 - offer significant improvements over epsilon-greedy expiration
 - BUT limited due to the underlying models functioning at the level of basic actions

Main Problem

Importance of the problem

- Rise of complicated / high-dimensional environments
 - -> need for efficient space for exploration
- Difficult training in environments providing delayed rewards

Proposed algorithm: Hierarchical-DQN

- integrate hierarchical value functions (operating at different temporal scales)
 - top-level value function learns a policy over intrinsic goals (flexible goal specifications)
 - lower-level function learns a policy over atomic actions to satisfy the given goals
- with intrinsically motivated deep reinforcement learning

Problem Setting

Finding a policy π that maximizes expected future rewards

- States *s*, actions *a* and transition function T:(s,a) -> s'
- Value functions V(s, g)
 - utility of state s for achieving a given goal g
 - In high-dimensional problems, approximated by neural networks as V(s,g; heta)
- (Extrinsic) reward function F(s) (to maximize over long periods of time)
- Policy $\pi_a(s) = P(a|s)$

Related Work

- Reinforcement Learning with Temporal Abstractions: options [1]
 - abstractions over the space of actions
 - one-step "primitive" action or a "multi-step" action policy (option)
 - generalize value functions to consider goals along with states [2] $V(s,g;\theta)$
 - Limitations: learning not shared between options, not scalable for a large number of options
- Intrinsically motivated RL
 - Design of "good" intrinsic reward functions [3]
- Deep Q-Networks
 - handle high-dimensional sensory input
 - but perform poorly on environments with sparse, delayed reward signals
 - Alleviate problem: prioritized experience replay [4] and bootstrapping [5]

Proposed Approach

- Framework: 2 levels of hierarchy
 - top level module (meta-controller)
 - takes in the state and picks a new goal
 - lower-level module (controller)
 - uses state and goal to select actions (until goal reached or episode terminated)
- Optimize expected future intrinsic (controller) and extrinsic rewards (meta-controller)

Proposed Approach

- Temporal abstraction of options
 - **policies** π_g for each goal g
 - **critic**, which provides intrinsic rewards $r_t(g)$ based on whether the agent is able to achieve its goals
- Goal
 - **Controller**: maximize cumulative **intrinsic** reward $R_t(g) = \sum_{t'=t}^{\infty} \gamma^{t'-t} r_{t'}(g)$
 - Meta-controller: maximize cumulative extrinsic reward $F_t = \sum_{t'=t}^{\infty} \gamma^{t'-t} f_{t'}$

Policy learning via Deep Q-Learning

• Controller
$$Q_1^*(s, a; g) = \max_{\pi_{ag}} \mathbb{E}[\sum_{t'=t}^{\infty} \gamma^{t'-t} r_{t'} \mid s_t = s, a_t = a, g_t = g, \pi_{ag}]$$

 $\pi_{ag} = P(a|s, g) = \max_{\pi_{ag}} \mathbb{E}[r_t + \gamma \max_{a_{t+1}} Q_1^*(s_{t+1}, a_{t+1}; g) \mid s_t = s, a_t = a, g_t = g, \pi_{ag}]$

• Meta-controller

$$Q_2^*(s,g) = \max_{\pi_g} \mathbb{E}\left[\sum_{t'=t}^{t+N} f_{t'} + \gamma \, \max_{g'} Q_2^*(s_{t+N},g') \mid s_t = s, g_t = g, \pi_g\right]$$

Represent $Q^*(s,g) \approx Q(s,g;\theta)$ as deep Q-network (same procedure for Q1 and Q2)

• Trained by minimizing loss functions

$$L_1(\theta_{1,i}) = E_{(s,a,g,r,s')\sim D_1}[(y_{1,i} - Q_1(s,a;\theta_{1,i},g))^2],$$

$$y_{1,i} = r + \gamma \max_{a'} Q_1(s',a';\theta_{1,i-1},g)$$

• Update parameters θ_1 via stochastic gradient descent

$$\nabla_{\theta_{1,i}} L_1(\theta_{1,i}) = \mathbf{E}_{(s,a,r,s'\sim D_1)} \left[\left(r + \gamma \max_{a'} Q_1(s',a';\theta_{1,i-1},g) - Q_1(s,a;\theta_{1,i},g) \right) \nabla_{\theta_{1,i}} Q_1(s,a;\theta_{1,i},g) \right]$$

Learning parameters of h-DQN

	Controller	Meta-controller
Experiences collected	At every time step	When controller terminates
Epsilon-greedy policy	$\epsilon_{1,g}$, dependent on current empirical success rate of reaching g	ϵ_2

Alg	gorithm 1 Learning algorithm for h-DQN
1:	Initialize experience replay memories $\{\mathcal{D}_1, \mathcal{D}_2\}$ and parameters $\{\theta_1, \theta_2\}$ for the controller
	and meta-controller respectively.
2:	Initialize exploration probability $\epsilon_{1,g} = 1$ for the controller for all goals g and $\epsilon_2 = 1$ for
	the meta-controller.
3:	for $i = 1, num_episodes$ do
4:	Initialize game and get start state description s
5:	$g \leftarrow \text{EPSGREEDY}(s, \mathcal{G}, \epsilon_2, Q_2)$
6:	while s is not terminal do
7:	$F \leftarrow 0$
8:	$s_0 \leftarrow s$
9:	while not (s is terminal or goal g reached) do
10:	$a \leftarrow \text{EPSGREEDY}(\{s, g\}, \mathcal{A}, \epsilon_{1,g}, Q_1)$
11:	Execute a and obtain next state s' and extrinsic reward f from environment
.2:	Obtain intrinsic reward $r(s, a, s')$ from internal critic
13:	Store transition $(\{s, g\}, a, r, \{s', g\})$ in \mathcal{D}_1
4:	$ ext{UPDATEPARAMS}(\mathcal{L}_1(heta_{1,i}),\mathcal{D}_1)$
15:	UPDATE PARAMS $(\mathcal{L}_2(\theta_{2,i}), \mathcal{D}_2)$
16:	$F' \leftarrow F' + f$
17:	$s \leftarrow s'$
18:	end while
19:	Store transition (s_0, g, F, s') in \mathcal{D}_2
20:	if s is not terminal then
21:	$g \leftarrow \text{EPSGREEDY}(s, \mathcal{G}, \epsilon_2, Q_2)$
22:	end if
23:	end while
24:	Anneal ϵ_2 and adaptively anneal $\epsilon_{1,g}$ using average success rate of reaching goal g.
25:	end for
Alş	$\operatorname{\mathbf{gorithm}} 2 : \operatorname{epsGreedy}(x, \mathcal{B}, \epsilon, Q)$
1:	if $random() < \epsilon$ then
2:	return random element from set \mathcal{B}
3:	else
4:	$\mathbf{return} \operatorname{argmax}_{m \in \mathcal{B}} Q(x, m)$
5:	end if
Alg	gorithm 3 : updateParams $(\mathcal{L}, \mathcal{D})$
1:	Randomly sample mini-batches from \mathcal{D}
2:	Perform gradient descent on loss $\mathcal{L}(\theta)$ (cf. (3))

Experimental Setup

Stochastic decision process

- Extrinsic reward depends on the history of visited states
- 6 possible states and starts at s2
 - action left: moves left deterministically
 - action right: moves right with probability 50% (left otherwise)
- Terminal state: s1 (receives r = 100 if went through s6)

Experimental Results

Stochastic decision process

Tested against Q-learning baseline:

• which converges to sub-optimal policy of reaching state s1 directly (low reward)

h-DQN:

- learns to choose goals s4, s5 or s6
- visit s6 before going back to s1
- High reward

Figure 3: Average reward for 10 runs of our approach compared to Q-learning.

Figure 4: Number of visits (for states s_3 to s_6) averaged over 1000 episodes. The initial state is s_2 and the terminal state is s_1 .

Experimental Setup

Montezuma's Revenge (ATARI game)

- Player finds a key (small reward)
- Then opens a door (high but delayed reward)

Setup

- DQN architecture for controller / meta-controller
- Goals: intermediate locations in the image

*Q*₇(*s*, *a*; *g*) ↑ Linear ↑ ReLU:Linear (h=512) ↑ ReLU:Conv (filter:3, ftr-maps:64, strides:1) ↑ ReLU:Conv (filter:4, ftr-maps:64, strides:2) ↑ ReLU:Conv (filter:8, ftr-maps:32, strides:4) ↓ *image (s) + goal (g)*

Experimental Results

Montezuma's Revenge (ATARI game)

Tested against deep Q-learning baseline:

• which converges to sub-optimal policy of reaching state s1 directly (low reward)

h-DQN:

- Reach the key more often
- Obtain higher reward
- Select the appropriate intermediate goals

(c) Success % of different goals over time

Discussion of Results

Selecting intermediate goals

to achieve higher global reward

- Especially when rewards are delayed
- Outperform baselines Q-learning and DQN methods
- The goals are initially evenly explored
- Then most promising goals further explored

Limitations and Future Work

- Requires careful task-specific design and on-policy training
 - design of meta-controller (application dependant)
 - difficult to apply in real-world scenarios
- Missing components
 - automatically disentangling objects from raw pixels
 - agent needs to store a history of previous goals, actions and representations
- Future work
 - combination of deep generative models of images with h-DQN
 - scale up to harder non-Markovian settings
 - use of recurrent neural networks / short-term memory

Extended Readings

- Nachum, Ofir, et al. "Data-efficient hierarchical reinforcement learning." arXiv preprint arXiv:1805.08296 (2018). (<u>https://arxiv.org/abs/1805.08296</u>)
 - general: no onerous additional assumptions beyond standard RL algorithms
 - efficient: can be used with modest numbers of interaction samples more suitable for real-world problems, robotic control)
- Xue Bin Peng, Glen Berseth, Kangkang Yin, and Michiel Van De Panne. 2017. DeepLoco: dynamic locomotion skills using hierarchical deep reinforcement learning. ACM Trans. Graph. 36, 4, Article 41 (July 2017), 13 pages.

DOI:https://doi.org/10.1145/3072959.3073602

- two-level hierarchical control framework: robust walking gaits (low level) and motion to target (high level)
- Simulated on a 3D biped
- Z. Yang, K. Merrick, L. Jin and H. A. Abbass, "Hierarchical Deep Reinforcement Learning for Continuous Action Control," in IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 11, pp. 5174-5184, Nov. 2018, doi: 10.1109/TNNLS.2018.2805379.
 - compound skills and basic skills learned by two levels of hierarchy

References

- 1. R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1):181–211, 1999.
- 2. T. Schaul, D. Horgan, K. Gregor, and D. Silver. Universal value function approximators. In Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pages 1312–1320, 2015.
- 3. S. P. Singh, A. G. Barto, and N. Chentanez. Intrinsically motivated reinforcement learning. In Advances in neural information processing systems, pages 1281–1288, 2004.
- 4. T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. arXiv preprint arXiv:1511.05952, 2015.
- 5. I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep exploration via bootstrapped dqn. arXiv preprint arXiv:1602.04621, 2016.

Summary

- Problem: learning goal-directed behavior in environments with sparse feedback and delayed rewards
- Use Hierarchical Deep Reinforcement Learning to motivate agents with intermediate rewards
- Prior work limited by the delay of the reward (Q-learning, DQN, etc)
- Build a two-level hierarchical model
 - operating at different temporal scales
 - top-level value function learns policy over goals
 - lower-level function learns policy over actions to satisfy goals
- Obtain higher rewards against the baselines (Q-learning) which do not succeed in obtaining the delayed rewards