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Manipulation Tasks in the Real World
Motion planning is enough to solve tasks 
with single objective (e.g. grasp a mug)

Real world tasks need executions of sequence of 
objectives in a correct order and long time horizon

Nvidia Google image

https://developer.nvidia.com/blog/new-nvidia-research-helps-robots-improve-their-grasp/
https://www.google.com/search?q=messy+laundry+room&sxsrf=AOaemvJsc6zIzkAWVkoUsKNPFo-GIA99iA:1635901719966&source=lnms&tbm=isch&sa=X&ved=2ahUKEwitqJ_ngPvzAhWcl2oFHUH6Ai0Q_AUoAXoECAEQAw&biw=1853&bih=948&dpr=1
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Combining Task and Motion Planning (TAMP)

● Planning in task level: wash clothes A and put A in storage

Pick(C) -> Place(parkingC) -> Pick(B) -> Place(parkingB) -> Pick(A) -> 

Place(washer) -> Wash -> Pick(D) -> Place(parkingD) -> Pick(A) -> 

Place(storage)

● Motion planner translate tasks to actual motion plans

● Combining task planning and motion planning is not trivial!

○ Non-determinism in the low-level motion planner

○ Task planning under continuous geometric states
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Hierarchical Task and Motion Planning in the Now
● Non-determinism in the low-level motion planner

○ Aggressive hierarchical planning: make choice and commit it

○ Constrain abstract plan steps to be serializable

● Task planning under continuous geometric states

○ Use “‘suggesters’” to propose appropriate discretized states

G1 & G2

G1 G1 & G2
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A Concrete Example 
Goal: In(a, storage) ∧ Clean(a)

Plans: Pick(C) -> 

Place(parkingC) -> Pick(B) -> 

Place(parkingB) -> Pick(A) -> 

Place(washer) -> Wash -> 

Pick(D) -> Place(parkingD) -> 

Pick(A) -> Place(storage)

How does the robot come up 

with this plan? 
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Hierarchical Planning and 
Execution Tree
Naive intuition:
Depth first search with an order of preconditions to 
decide which child node to descend first.

Until it reaches the leaf node of primitive action that 
will be solved by motion planning
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Planning Domain Description
Fluents: symbolic predicate that characterizes the logics aspect of the domain

In(O, R), Overlaps(O, R), ClearX(R, Os), Holding(), Clean(O)

Goals: conjunction of fluents with values

In(a, storage) = True ∧ Clean(a) = True

Operations: primitive actions 

Pick(O), Place(O, R), Wash()
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Operator Description
STRIPS-style form: Target fluent:

Preconditions:                         represented as fluents                   

Side effects:                        represented as fluents                   

Primitive action:                         

Semantics:  if the primitive action   is executed in any 
world state s in which all of the φ fluents hold, then the 
resulting world state will be the same as s, except that any 
fluent mentioned as the target fluent or a side effect will 
have the value specified by those fluents.



CS391R: Robot Learning (Fall 2021) 9

Beyond Standard Operator Descriptors

Suggesters:
(a) not conflict with the current 
planning goal; 
(b) ensure that the preconditions of 
the operation can be effectively 
serialized.

Abstraction level



CS391R: Robot Learning (Fall 2021) 10

Other Operators
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Hierarchy
Preconditions with abstraction level:

postponing Preconditions with high abstraction levels

The new operator description may not be true:
(a) Suboptimality:                      may not be 

possible without
(b) Achieving      may additional side-effect
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Algorithm
Calling HPN recursively:  

Hierarchy: return a list of operators and 
goals ((o1, g1), …, (on, gn)) where the oi 
are operator instances, gn = goal, gi is the 
weakest precondition of gi+1 under oi+1

Leaf node of a single primitive action
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Correctness

Theorem:
If
(1) The planning domain description (PDD) specified by 

operators ops at the most concrete abstraction level 
H* is a complete and correct formalization of the 
primitive actions of domain w;

(2) start has static connectivity in that domain;
(3) G is reachable from start,
Then, executing HPN(start, G, ops, H0 , w) will cause 
world w to be in a state s ∈ G.

The theorem guarantees if a goal state was reachable from the 
starting state under some sequence of operations, that HPN will 
eventually cause the system to reach a goal state.

Partial ordering of abstract level mapping:
Abstract -> concrete
(H0 , …, Hi , …, H*)

Static connectivity: a state s has static 
connectivity in a domain, if all states s1 
that are reachable from s are also 
reachable from any s2 that is reachable 
from s
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 Empirical Results

Domains:
● Wash: variants of our concrete example
● Household: large (6 rooms), complex operations (’vacuum’ and ‘mop’)
● Swap: interchanging the locations of two blocks (non-serializable goals)

Achievements:
● Successfully plans with different challenges 

presented in these domains
● Plans with no or few redundant steps
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Limitations

● Empirical results do not reflect most of benefits claimed by this algorithm 
(e.g. primitive action has no stochastic output in this sample domain)

● Needs a lot of human domain knowledge:
○ Relies on good domain-dependent choices in selecting a hierarchical 

formalization
○ Relies on proper design of the suggesters that suggests small set of 

plausible values from an infinite set of operator bindings.
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Future Work for Paper / Reading
● Learning-based suggesters that reduce the human effort and improve over time

○ Beomjoon Kim and Leslie Pack Kaelbling and Tomas Lozano-Perez, Adversarial actor-critic method for task 
and motion planning problems using planning experience, In AAAI Conference on Artificial Intelligence 
(AAAI), 2019.

○ Rohan Chitnis, Dylan Hadfield-Menell, Abhishek Gupta, Siddharth Srivastava, E. Groshev, Christopher Lin, P. Abbeel, 
Guided search for task and motion plans using learned heuristics, In IEEE International Conference on 
Robotics and Automation (ICRA), 2016.

● Learning-based symbolic operator for task level planning
○ Silver, Tom and Chitnis, Rohan and Tenenbaum, Josh and Kaelbling, Leslie Pack and Lozano-Perez, Tomas, 

Learning Symbolic Operators for Task and Motion Planning, IEEE/RSJ International Conference on 
Intelligent Robots and Systems (IROS), 2021

● Apply the replanning approach to uncertainty in outcomes, and extend the approach to apply 
to belief spaces in partially observable domains.

○ Leslie Pack Kaelbling and Tomás Lozano-Pérez, Integrated Task and Motion Planning in Belief Space, 
International Journal of Robotics Research, 2013

○ Garrett, Caelan R. and Paxton, Chris and Lozano-Perez, Tomas and Kaelbling, Leslie P. and Fox, Dieter, Online 
Replanning in Belief Space for Partially Observable Task and Motion Problems, In International 
Conference on Robotics and Automation (ICRA), 2020.
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Extended Readings

● A Review paper on TAMP
○ Garrett, Caelan Reed and Chitnis, Rohan and Holladay, Rachel and Kim, Beomjoon and Silver, Tom 

and Kaelbling, Leslie Pack and Lozano-Perez, Tomas, Integrated Task and Motion Planning, 
In Annual review of control, robotics, and autonomous systems, volume 4, 2021.

● Multi-modal motion planning: extend motion planning to handle constraints 
○ Hauser K, Latombe JC, Multi-modal Motion Planning in Non-expansive Spaces, 

International Journal of Robotics Research 29, 2010
○ Marc Toussaint, Kelsey Allen, Kevin Smith, Joshua Tenenbaum, Differentiable Physics and 

Stable Modes for Tool-Use and Manipulation Planning, Robotics: Science and Systems, 
2018
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Summary
● This paper addresses the problem combining task and motion planning to solve complex 

manipulation tasks that requires sequential execution of multiple tasks with long time horizon.

● Such a combination requires the task planner to plan under continuous geometric variables and 

non-determinism from low-level motion planner

● Key insights:

○ Planning in the now: limiting the length of plans and reducing the amount of search required

○ Serializable planning steps: preventing failure plans from uncertain outputs

○ “Suggesters”: constraining task planning in limited suggested states

● They demonstrated these by analyzing a concrete example task from Wash domain. They showed 

how three insights work in this specific domain, and theoretically proved the correctness of the 

algorithm


