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Manipulation Tasks in the Real World

Motion planning is enough to solve tasks Real world tasks need executions of sequence of
with single objective (e.g. grasp a mug) objectives in a correct order and long time horizon

Nvidia Google image
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https://developer.nvidia.com/blog/new-nvidia-research-helps-robots-improve-their-grasp/
https://www.google.com/search?q=messy+laundry+room&sxsrf=AOaemvJsc6zIzkAWVkoUsKNPFo-GIA99iA:1635901719966&source=lnms&tbm=isch&sa=X&ved=2ahUKEwitqJ_ngPvzAhWcl2oFHUH6Ai0Q_AUoAXoECAEQAw&biw=1853&bih=948&dpr=1

Combining Task and Motion Planning (TAMP)

e Planning in task level: wash clothes A and put A in storage
Pick(C) -> Place(parkingC) -> Pick(B) -> Place(parkingB) -> Pick(A) -> [ storage
Place(washer) -> Wash -> Pick(D) -> Place(parkingD) -> Pick(A) -> ——
Place(storage) —

e Motion planner translate tasks to actual motion plans -

e Combining task planning and motion planning is not trivial!

o Non-determinism in the low-level motion planner

o Task planning under continuous geometric states
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Hierarchical Task and Motion Planning in the Now

e Non-determinism in the low-level motion planner G1 & G2

o Aggressive hierarchical planning: make choice and commit it

o Constrain abstract plan steps to be serializable G1 G1 & G2

e Task planning under continuous geometric states
o Use “suggesters’ to propose appropriate discretized states slorage
0|
~Washer
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A Concrete Example

Goal: In(a, storage) A Clean(a)

Plans: Pick(C) ->
Place(parkingC) -> Pick(B) ->
Place(parkingB) -> Pick(A) ->
Place(washer) -> Wash ->
Pick(D) -> Place(parkingD) ->
Pick(A) -> Place(storage)

How does the robot come up

with this plan?
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Hierarchical Planning and /
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Planning Domain Description

Fluents: symbolic predicate that characterizes the logics aspect of the domain

In(O, R), Overlaps(O, R), ClearX(R, Os), Holding(), Clean(O)

Goals: conjunction of fluents with values

In(a, storage) = True A Clean(a) = True

Plan 1
In(a, storage)
Operations: primitive actions /c-eanm\
Pick(O), Place(O, R), Wash() AOWashia)  AO Placeta sorage)
naiz cz:’.:(:)

Crena) In(a, storage)

g N

AO:Place(a, washer) Al:Wash(a) Al:Pick(a, aX) ‘Al:Place(a, storage)
1

v ' \ 1
Plan 3 v Plan 9 Plan 10
In(a, washer) Wash Clean(a) Clean(a)
HoldIng() = a In(a, storage)
/ \ | | \
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Operator Description

STRIPS-style form: Target fluent: F(A;,...,A,) =V

P onn)= Vo Preconditions: ®1,...,®m represented as fluents
exists: By,..., By
pre: é1.....0m Side effects: 1,...,%¢; represented as fluents
sideEffects: v1,..., Y
prim: 7 Primitive action: 7T
cost: ¢

Semantics: if the primitive actior 7 is executed in any
world state s in which all of the ¢ fluents hold, then the
resulting world state will be the same as s, except that any
fluent mentioned as the target fluent or a side effect will
have the value specified by those fluents.
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Beyond Standard Operator Descriptors

Holding() =

O:

define: 7's = {T": ClearX (T, X) € goal AO ¢ X}

exists:

pre:

L € {Location(O, start),

SuggestParking(O, Ts,start)}

— Suggesters:

P €|SuggestPaths(O, L, home, start)

0.|Holding() = nothing
0.|In(O, L) = True
2.|ClearX (sweptVol(P), [0O]) = True

sideEffeT: VL'.In(O, L") = False

prim: P

k(O)

Abstraction level
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(a) not conflict with the current
planning goal;

(b) ensure that the preconditions of
the operation can be effectively
serialized.



Other Operators

In(O, R) = True: Overlaps(O, R) = False:
define: T's = {T": ClearX (T, X) € goal ANO ¢ X} define: Ts = {T": ClearX (T, X) € goal AO ¢ X} U {R}
exists: P € SuggestPaths(O, R, home, start) exists: L = SuggestParking(O,T's, start)
pre: 1. Holding() = O pre: 1. In(O, L) = True, ClearX (L, [O]) = True
2. ClearX (sweptVol(P),[0O]) = True prim: none

sideEffects: Holding() = nothing
prim: Place(R)

ClearX (R, Os) = True: Clean(O) = True:
pre: 1. VX € Objects — Os : Querlaps(X, R) = False pre: 1. In(O, WASHER)
prim: none

prim: Wash()
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Plan 1
In(a, storage)
Clean(a)

Hierarchy m,:,.‘{ “""‘\“'f‘“""’

1
1

\J
\J
Plan 2 Plan 8

Preconditions with abstraction level: /c'“l"" e o)
postponing Preconditions with high abstraction levels ' \-

AO:Place(a, washer) Al:Wash(a) Al:Pick(a, aX) Al:Place(a, storage)
L )

pre: pi,....pn pre: vy,...,Pn_1 '
prim: o prim: achieve p,, maintaining py,...,p,_1; 0

7

/ Clean(O) = True:
pre: 1. In(O, WASHER)
The new operator description may not be true: prim: Wash()
(a) Suboptimality: pq,...,p,—1 may not be l
possible without p» i
(b)  Achieving p, may additional side-effect can(0) = Thue:

pre:
prim: (O, wasHER) Wash()
/ 0
Clean(O) = True:
In(O, WASHER) pre:

prim: Wash()
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Algorithm

Calling HPN recursively:

HPN( currentState, goal, operators, absLevel, world):

if holds(goal, currentState):
return TRUE
else p =|PLAN(currentState, goal, operators, absLevel)
for (0;.¢9;) in p
if prim(o;):
durrentState = world.execute(o;)
else HPN(currentState, g;, operators,
NEXTLEVEL(absLevel, 0;), world)

\/

Leaf node of a single primitive action
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Hierarchy: return a list of operators and
goals ((0,, 9,), ---, (0., g,)) where the o,
are operator instances, g = goal, g.is the
weakest precondition of g, . under o,

Plan 1
In(a, storage)
Clean(a)

VAR

Mﬂlashh) AO:Place(a, storage)

\j

1
\ i
Plan 2 Plan 8
Clean(a) remh
In(a, storage)

g N

AO:Place(a, washer)  Al:Wash(a) AlPick(a,aX)  Al:Place(a, storage)
1

)
] ' 1

1
1
1 1 ' '
A \/ Plan 9 Plan 10
NG ) Wash Clean(a) Clean(a)
i Holding() = a In(a, storage)
7 S l rummie: Y



Correctness

Theorem:

If

(1) The planning domain description (PDD) specified by
operators ops at the most concrete abstraction level

Partial ordering of abstract level mapping:

Abstract -> concrete

(Hy, . Hey ooy H)

H’ is a complete and correct formalization of the
primitive actions of domain w;

1(2) start has static connectivity in that domain; |
(3) G isreachable from start,

Then, executing HPN(start, G, ops, HO, w) will cause

world w to be in a state s € G.

Static connectivity: a state s has static
connectivity in a domain, if all states s,
that are reachable from s are also
reachable from any s, that is reachable
from s

The theorem guarantees if a goal state was reachable from the
starting state under some sequence of operations, that HPN will
eventually cause the system to reach a goal state.
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Empirical Results

Domains:
e Wash: variants of our concrete example
e Household: large (6 rooms), complex operations ('vacuum’ and ‘mop’)
e Swap: interchanging the locations of two blocks (non-serializable goals)

Domain Num | Longest | Steps
Achievements: swap 22 4 8
e Successfully plans with different challenges T 14 4 13
presented in these domains e 26 6 22
e Plans with no or few redundant steps clen House 89 4 36
clean and tidy | 169 1 65
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Limitations

e Empirical results do not reflect most of benefits claimed by this algorithm
(e.g. primitive action has no stochastic output in this sample domain)

e Needs a lot of human domain knowledge:
o Relies on good domain-dependent choices in selecting a hierarchical
formalization
o Relies on proper design of the suggesters that suggests small set of
plausible values from an infinite set of operator bindings.
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Future Work for Paper / Reading

e Learning-based suggesters that reduce the human effort and improve over time

O  Beomjoon Kim and Leslie Pack Kaelbling and Tomas Lozano-Perez, Adversarial actor-critic method for task

and motion planning problems using planning experience, In AAAI Conference on Artificial Intelligence
(AAAID), 2019.

O  Rohan Chitnis, Dylan Hadfield-Menell, Abhishek Gupta, Siddharth Srivastava, E. Groshev, Christopher Lin, P. Abbeel,
Guided search for task and motion plans using learned heuristics, In IEEE International Conference on
Robotics and Automation (ICRA), 2016.

e Learning-based symbolic operator for task level planning

O  Silver, Tom and Chitnis, Rohan and Tenenbaum, Josh and Kaelbling, Leslie Pack and Lozano-Perez, Tomas,
Learning Symbolic Operators for Task and Motion Planning, IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2021

e Apply the replanning approach to uncertainty in outcomes, and extend the approach to apply
to belief spaces in partially observable domains.

O  Leslie Pack Kaelbling and Tomas Lozano-Pérez, Integrated Task and Motion Planning in Belief Space,
International Journal of Robotics Research, 2013

O  Garrett, Caelan R. and Paxton, Chris and Lozano-Perez, Tomas and Kaelbling, Leslie P. and Fox, Dieter, Online
Replanmng in Behef Space for Partlally Observable Task and Motion Problems, In International
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Extended Readings

e A Review paper on TAMP

O  Garrett, Caelan Reed and Chitnis, Rohan and Holladay, Rachel and Kim, Beomjoon and Silver, Tom
and Kaelbling, Leslie Pack and Lozano-Perez, Tomas, Integrated Task and Motion Planning,
In Annual review of control, robotics, and autonomous systems, volume 4, 2021.

e Multi-modal motion planning: extend motion planning to handle constraints

O  Hauser K, Latombe JC, Multi-modal Motion Planning in Non-expansive Spaces,
International Journal of Robotics Research 29, 2010

o  Marc Toussaint, Kelsey Allen, Kevin Smith, Joshua Tenenbaum, Differentiable Physics and
Stable Modes for Tool-Use and Manipulation Planning, Robotics: Science and Systems,
2018
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Summary

e This paper addresses the problem combining task and motion planning to solve complex
manipulation tasks that requires sequential execution of multiple tasks with long time horizon.
e Such a combination requires the task planner to plan under continuous geometric variables and
non-determinism from low-level motion planner
e Key insights:
o Planning in the now: limiting the length of plans and reducing the amount of search required
o Serializable planning steps: preventing failure plans from uncertain outputs
o “Suggesters”: constraining task planning in limited suggested states
e They demonstrated these by analyzing a concrete example task from Wash domain. They showed
how three insights work in this specific domain, and theoretically proved the correctness of the

algorithm
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