The University of Texas at Austin
Computer Science ;[‘EWXAS

Neural Task Programming
Learning to Generalize Across Hierarchical Tasks

Danfei Xu, Suraj Nair, Yuke Zhu, Julian Gao, Animesh Garg, Li Fei-Fei, Silvio Savarese
Presenter: Atharva Sehgal

11/11/2021

CS391R: Robot Learning (Fall 2021) 1

Overview

e \Why?
o Motivations
o Main Goals

o Problem Setting
o Related Work

e How?
o Approach
o Evaluation
o Results & Critique

e \What next?

o Limitations
o Extended Readings

CS391R: Robot Learning (Fall 2021) 2

- DO 1000 TOP-00 100, Eonus L
0
1 ke (o) 5755) 1)

Motivations

We’ve focused a lot on learning primitive functions:
e Policy for Grasping/Manipulation/Tool handling.
e Policy for Montezuma’s revenge.

However, real world tasks requires learning progams:
e program := composition of primitive functions
e \Warehouse robots:
o retrieving, sorting, packing objects

Why Programs?
e Reusability
e Data hiding

Boston Dynamics

CS391R: Robot Learning (Fall 2021)

Main Goals

Neurol Task Progrommmg

Goals of the paper:

e Learn a policy that: _, ' '“_" & l'.
o allows us to perform multi-step hierarchical tasks L " "
o generalizes to new, unseen tasks in a

data-efficient manner

Autonomous Execution

Challenges Demo of final model on object
e Scaling up to complex multi-stage, long horizon tasks: stacking task
o Traditional RL / Meta-learning based algorithms
suffer.
e Generalizing across tasks:

o Hierarchical RL based models suffer

CS391R: Robot Learning (Fall 2021) 4

https://docs.google.com/file/d/1ZkBR8i_ktXjda2RXC-Yb9gRLI_dxtbKc/preview

Problem Setting

Given distributions of observations (0), actions (A) tasks (T), states (5), and task specifications (¥), we want to find a meta-policy (7)

that induces a policy (7) which can reach a task-completion state s € S. More specifically,

m(a | 0;9(t)) : 0O — A loe Q,ac AiteT,¢pe ¥
7:¥ = (0—A)

CS391R: Robot Learning (Fall 2021) 5

Related Work

Learning from Demonstrations Meta-Imitation Learning Deployment
e Use a policy to generalize from expert provide demonstration data provide 1 demo with new object
demonstrations.

e (+) No reward specification needed.
e (?) Policy generalizing to new objectives

teleoperated robot demos

|

learn how to infer a policy
from one demonstration

linfer robot policyl

CS391R: Robot Learning (Fall 2021) 6

Related Work

Few Shot Generalization in LfD

Use meta-learning to learn to induce models
for learning from input specification

(+) Generalization from single demostration
(-) Require rich reward functions

CS391R: Robot Learning (Fall 2021)

iCub view of the demonstraled path
T T

155
160
|
a 165
1701
175}
20 40 60 80 100 120 140 160
xipixel
(a)

Generated path on the iCub coordinates system

(b)

Fig. 4: Paths imitated from one single demonstration. (a) shows the
demonstrated path seen from the left camera of the iCub. (b) shows the
generated paths for marking different cells in the iCub’s coordinates system.

Related Work

Hierarchical Skill Composition
e Divide and conquer learning skills as learning
sub-skills and learning to combine sub-skills
e (+) Great performance in several tasks
e (-) Cannot generalize across tasks

CS391R: Robot Learning (Fall 2021)

Meta
Controller

Controller

termination
(death)

goal
reached

Meta
Controller

Controller

goal
reached

7 8 9

Related Work

Neural Program Induction
e Use a neural network to induce a program
from a given specification
e (+) Can learn complex, intricate programs
e (-) Retrain to adapt to a different domain.

CS391R: Robot Learning (Fall 2021)

BUBBLESORT

Leusele = LsRESET .. LeBUBBLE ...
PTR2RIGHT LSHIFT PTR 2 RIGHT
BSTEP PTR1LEFT BSTEP

COMPSWAP PTR2 LEFT COMPSWAP
SWAP12 LSHIFT SWAP 12
RSHIFT PTR 1 LEFT RSHIFT
PTR 1 RIGHT PTR 2 LEFT PTR 1 RIGHT
PTR 2RIGHT ... PTR 2 RIGHT
LSHIFT
BSTEP PTR1LEFT BSTEP
COMPSWAP PTR2 LEFT COMPSWAP
RSHIFT RSHIFT
PTR 1 RIGHT PTR 1 RIGHT
PTR 2 RIGHT PTR 2 RIGHT

(b) Excerpt from the trace of the learned bubblesort program.

CS391R: Robot Learning (Fall 2021)

Approach

Insight 1: Neural Program Induction
e Splice the full demonstration into smaller parts and recursively evaluate the smaller parts
using subroutine calls.
Insight 2: Clever Inputs/Outputs to make NPI recursive
e Inputs: Current Observation, Current Program, and Current Task specification
o The task specification can be symbolic (expert program trace) or neural (expert video
embedding)
e Outputs: Output program, EoP probability, next program arguments
o The next program arguments are API parameters if “primtive” program or the task
specification pertaining to the next program otherwise.
Insight 3: Primitive APl (grip (obj), release(), moveto (obj))

e Need to abstract away the low-level controls otherwise will be hard to generalize to tasks.
e Restricts depth of program trace as well.
e Implemented using symbolic motion planners.

Approach

) C N9 HEer H W

=y o - i R N

v

» L3 S e

» =g -

A

-‘l L] _EI'I T _He W= HW) -Ei. ~ HT W H T

SR
¥ .

Env. Observation Input Task Spec. |« Env. Observation Input Task Spec.
P, - block_stacking EOP: False P, block_stacking EOP: False f—
P_.; pick_and_place Output Task Spec. c P_,; pick_and_place Output Task Spec.
L Env. Observation Input Task Spec. Env. Observation Input Task Spec. %
P, : pick_and_place EOP: False P, : pick_and_place EOP: True
P_. pick Output Task Spec. P_. place Output Task Spec. c
Env. Observation Input Task Spec. i@ | Env. Observation Input Task Spec. g Env. Observation Input Task Spec. Env. Observation Input Task Spec. %
P, - pick EOP: False > P, pick EOP: True = P : place EOP: False —>] P, place EOP: True
iﬂt move_to Args: block_E — _F:"_“,: grip Args: block_E f— i‘: move_to Args: block_B _E‘L” release Args: NIA
e = S P n

Fig. 3: Sample execution trace of NTP on a block stacking task. The task is to stack lettered blocks into a specified configuration (block_D
on top of block_E, block_B on top of block_D, etc). Top-level program block_stacking takes in the entire demonstration as
input (red window), and predicts the next sub-program to run is pick_and_place, and it should take the part of task specification
marked by the orange window as the input specification. The bottom-level API call moves the robot and close / open the gripper. When
End of Program (EOP) is True, the current program stops and return its caller program.

CS391R: Robot Learning (Fall 2021) 11

Evaluation

Main Questions (quoted verbatim) and Evaluation Paradigms:

1. Does NTP generalize to changes in length, topology, and semantics?
- Vary task length by varying number of steps needed to achieve goal state.
- Vary task topology by varying the permutations of steps needed to achieve goal state.
- Vary task semantics by evaluating on unseen goal state configurations.

2. Can NTP use image-based input without access to ground truth input?
- Replace state information with video as task-specification.

3. Would NTP also work in real-world complex tasks?
- Deploy NTP on real robots in real environments.

CS391R: Robot Learning (Fall 2021) 12

Evaluation

Tasks:
1. Object Stacking
2. Object Sorting
3. Table Cleanup

Combination Task:
Toble Cleon -up

F|rsf SorT Forks in Bowl l 1

Autonomous Execution

CS391R: Robot Learning (Fall 2021)

https://docs.google.com/file/d/131n48WTlzKFH1jdR-12rhukAvh5Kky1G/preview
https://docs.google.com/file/d/1bSC-PxhVH-zvAaiFfi8pzft8OasaOH4C/preview

Evaluation

Baselines:
1. Flat: Non-hierarchical model that directly predicts primitive API from input demonstration.

2. Flat (GRU): Same as above but a GRU cell allows storing past state information.
3. NTP (no scope): NTP without data hiding. The entire demonstration is fed to subroutines.
4. NTP (GRU): Complete NTP model with GRU cell replacing the reactive core.

Metrics
The mean success rate per 100 evaluations is calculated for all experiments.

Adversarial Dynamics:
Showcase that NTP is a closed loop policy and can recover from failures.

CS391R: Robot Learning (Fall 2021)

A. Seen Task Objectives Block Stacking: Task Semantics | B. Unseen Task Objectives

ek

success rate

Evaluation

=> NTP and variants steadily improves in © 50 100 400 1000 100~ 400 1000
number of training tasks number of training tasks
performance with more training tasks.
. . . Block Stacking: Task Topol
=> NTP is robust to changes in task semantics. s | B
. .. !) 0.8 ﬁi
=> Data scoping is important for generalization o —
—
0.2
0.1
0.0 ' g '—

50 100 200 400 600 800 1000
number of training tasks

Block Stacking: Visual State e T l

A. Seen Task Objectives B. Unseen Task Objectives 1.0
0.8 0.8
© o) 308 -
0.6 06 ©
“ @ @ 0.6 —
204-0- —B- —@R —HQ 204 @
§ § 804 —
»w02-@— —Q@— — — v 0.2 o
- < 02— - - - -
0.0—8= = 0.0
50 100 400 1000 50 100 400 1000 0.0 ;1 3 20 20
number of training tasks number of training tasks .
number of objects
=== NTPVID (Detector) === NTPVID (E2E) === NTP (Full State) mm Flat mm Flat (GRU) == NTP (noscope) mm NTP(GRU) m= NTP

CS391R: Robot Learning (Fall 2021) 15

A. Seen Task Objectives Block Stacking: Task Semantics | B. Unseen Task Objectives

ek

=> Flat baselines are not good at handling T 50 100 400 1000 100 400 1000
number of training tasks number of training tasks
permutations

=> Hierarchical scoping of NTP helps it oo
generalize better to task topology o7 A

Evaluation

success rate

| Block Stacking: Task Topology ‘

50 100 200 400 600 800 1000
number of training tasks

Object Sorting: Task Length |

Block Stacking: Visual State

A. Seen Task Objectives B. Unseen Task Objectives 1.0
0.8 0.8
o o 308 -
0.6 06 ©
A 2 . @ 0.6 —_
204-@—~ —Q- — —_— 90 1)
g g S04 -
2o2-f-0 —Q-1 — o @02 @
< < 0.2 =— = - - -
= = 0.0
50 100 400 1000 50 100 400 1000 0.0

4 8 20 40

number of objects
mm Flat == Flat (GRU) == NTP (noscope) = NTP(GRU) === NTP

number of training tasks number of training tasks
== NTPVID (Detector) === NTPVID (E2E) === NTP (Full State)

CS391R: Robot Learning (Fall 2021) 16

A. Seen Task Objectives Block Stacking: Task Semantics | B. Unseen Task Objectives

ek

=> NTP is robust to changes in task length and T80 100 400 1000 100~ 400 1000
number of training tasks number of training tasks
can even handle upto 40 objects.

Evaluation

success rate

| Block Stacking: Task Topology ‘

0.9

Most significant result of the paper. §Z =58
8:2_/

0.3
0.2
0.1

0.0

50 100 200 400 600 800 1000
number of training tasks

. XT Object Sorting: Task Length |
A. SeenTask Objectives | D1ock Stacking: Visual State | p 17, cr Tagk Objectives 1.0
0.8 0.8
) [} 3 0.8 —
©06 ®o06 o
2 2 2 00 -
04~~~ — N — — 204 [0}
g g S04 -
»w02-@— —Q@— — e v 0.2 o
< < 0.2 — = = = =
> =
0.0
50 100 400 1000 50 100 400 1000 0.0 ;1 3 20 20
number of training tasks number of training tasks srber af Ghjects
=== NTPVID (Detector) === NTPVID (E2E) === NTP (Full State) mm Flat == Flat (GRU) == NTP (noscope) === NTP(GRU) == NTP

CS391R: Robot Learning (Fall 2021) 17

A. Seen Task Objectives Block Stacking: Task Semantics | B. Unseen Task Objectives

Evaluation

success rate

' . g & 0. =

NTPVID (detector): input = object positions 50 100 400 1000 50 100 400 1000
number of training tasks number of training tasks
NTPVID (E2E): input = image embedding
. Block Stacking: Task Topol
NTP(full state): input = program state o | B aa |
. . 0.8 ﬁﬂi
=> We can reliably learn from videos. 07 —
=> Task specific encoders (detector) can imbue 5127“ —
vision model errors which can cascade. g;§:§§::
0.0

50 100 200 400 600 800 1000
number of training tasks

. XT Object Sorting: Task Length l
A. Seen Task Objectives | Block Stacking: Visual State | B. Unseen Task Objectives 1.0
0.8 0.8 -
) [} 308 —
0.6 06 ©
2 2 @ 0.6 -
© 0.4 2 0.4 @
g g S04 -
@ 0.2 . ?0.2 7
« < 0.2 — - - - —
0.0—== 0.0—==5
50 100 400 1000 50 100 400 1000 0.0 ;1 3 20 20
number of training tasks number of training tasks nimberof ebjgets
== NTPVID (Detector) === NTPVID (E2E) === NTP (Full State) == Flat == Flat (GRU) m= NTP (no scope) = NTP (GRU) = NTP

CS391R: Robot Learning (Fall 2021) 18

Evaluation

=> NTP can generalize to real world situations.

CS391R: Robot Learning (Fall 2021)

[

| Tasks # Trials Success NTP Fail Manip. Fail
Blk. Stk. 20 0.9 0.05 0.05
Sorting 10 0.8 0 0.20

L

TABLE I: Real Robot Evaluation: Results of 20 unseen Block
Stacking evaluations and 10 unseen sorting evaluations on Sawyer
robot for the NTP model trained on simulator. NTP Fail denotes
an algorithmic mistake, while Manip. Fail denotes a mistake in
physical interaction (e.g. grasping failures and collisions).

Model No failure With failures
NTP 0.863 0.663
NTP (GRU) 0.884 0.422

TABLE II: Adversarial Dynamics: Evaluation results of the Block
Stacking Task in a simulated adversarial environment. We find that
NTP with GRU performs markedly worse with intermittent failures.

Eva I u ati O n Tasks # Trials Success NTP Fail = Manip. Fail

Blk. Stk. 20 0.9 0.05 0.05

Sorting 10 0.8 0 0.20
=> NTP can recover from failures. TABLE I: Real Robot Evaluation: Results of 20 unseen Block
=> NTP’s reactive core is instrumental in Stacking evaluations and 10 unseen sorting evaluations on Sawyer

robot for the NTP model trained on simulator. NTP Fail denotes
an algorithmic mistake, while Manip. Fail denotes a mistake in
physical interaction (e.g. grasping failures and collisions).

enabling it to be a closed loop policy.

| Model No failure _ With failures
NTP 0.863 0.663
NTP (GRU) 0.884 0.422

TABLE II: Adversarial -Dynamics: Evaluation results of the Block
Stacking Task in a simulated adversarial environment. We find that
NTP with GRU performs markedly worse with intermittent failures.

CS391R: Robot Learning (Fall 2021) 20

Results & Critique

From the experiments, the authors conclude that:
1. NTP learns modular and reusable neural programs for hierarchical tasks.
2. NTP can successfully operate in prolonged and complex interactions with the environment.

Strengths:
- NTP can learn subroutines for long-horizon multi-task learning. This is pretty cool!

Weaknesses:
- Object sorting, object stacking, and table cleanup all use the same primitives and some common

subroutines. However, It is unclear if the model can generalize across tasks. Would the model
generalize to object stacking if its trained on object sorting (and given an object stacking video at

test time)?

A

CS391R: Robot Learning (Fall 2021)

Limitation

1. Restrictive API
- NTP needs to use a high level API to restrict the program depth and to make training
easier. However, because of this, NTP cannot learn a rich library of methods to perform a
certain action.
- Forinstance, NTP cannot perform a side-grasp as no rotation primitive is available.
2. Introducing new “subroutines” requires retraining
- Limitation of program induction.
- Adding new constructs to NTP requires changing its entire architecture.
3. NTP requires rich structural supervision:
- It needs 1000 full program traces to generalize to unseen examples for a task.
- Follow up work removed the need for the supervision to be structured.

CS391R: Robot Learning (Fall 2021) 22

Future Work

Using a lower-level API to allow torque and velocity based controllers.

Improving the perception to capture richer relationships between objects
Extending framework to more complex tasks

Using symbolic methods to generate programs instead of program induction.

> ownh =

CS391R: Robot Learning (Fall 2021) 23

Extended Readings

e Neural Module Networks: https://arxiv.org/abs/1511.02799v4
e One-Shot Imitation from Watching Videos: hiips://bair.berkeley.edu/blog/2018/06/28/daml/

e Incremental Task and Motion Planning: http://www.roboticsproceedings.org/rss12/p02.pdf

e Hierarchical Deep Reinforcement Learning: https://arxiv.org/abs/1604.06057
e DreamCoder: https://arxiv.org/abs/2006.08381

e RobustFill: https://proceedings.mir.press/v70/devlin17a/devlin17a.pdf

e Neural Guided Synthesis Tutorial:

https://people.csail.mit.edu/asolar/SynthesisCourse/Lecture22.htm

CS391R: Robot Learning (Fall 2021) 24

https://arxiv.org/abs/1511.02799v4
https://bair.berkeley.edu/blog/2018/06/28/daml/
http://www.roboticsproceedings.org/rss12/p02.pdf
https://arxiv.org/abs/1604.06057
https://arxiv.org/abs/2006.08381
https://proceedings.mlr.press/v70/devlin17a/devlin17a.pdf
https://people.csail.mit.edu/asolar/SynthesisCourse/Lecture22.htm

Summary

® \We want to learn policies for long-horizon multi-stage tasks in a few-shot learning paradigm.
® This is a common setting in real-life robot use cases (warehouses)
® Prior work either couldn’t handle task complexity or required engineered reward signals.

® Current work alleviated this by doing recursive neural program induction. This allowed them to reuse
modules and delegate tasks to specialized networks.
® Their method allowed them to learn a closed loop policy that could operate for long time-steps and

solve complex hierarchical tasks with only a single video as test-time supervision.

CS391R: Robot Learning (Fall 2021) 25

