
CS391R: Robot Learning (Fall 2021)

Neural Task Programming
Learning to Generalize Across Hierarchical Tasks

1

Danfei Xu, Suraj Nair, Yuke Zhu, Julian Gao, Animesh Garg, Li Fei-Fei, Silvio Savarese
Presenter: Atharva Sehgal

11/11/2021



CS391R: Robot Learning (Fall 2021)

Overview

● Why?
○ Motivations
○ Main Goals
○ Problem Setting
○ Related Work

● How?
○ Approach
○ Evaluation
○ Results & Critique

● What next?
○ Limitations
○ Extended Readings

2



CS391R: Robot Learning (Fall 2021)

We’ve focused a lot on learning primitive functions:
● Policy for Grasping/Manipulation/Tool handling.
● Policy for Montezuma’s revenge.

However, real world tasks requires learning progams:
● program := composition of primitive functions
● Warehouse robots:

○ retrieving, sorting, packing objects

Why Programs?
● Reusability
● Data hiding
● Interpretability

Motivations

3

move()

pick(), place()



CS391R: Robot Learning (Fall 2021) 4

Main Goals
Goals of the paper:

● Learn a policy that:

○ allows us to perform multi-step hierarchical tasks

○ generalizes to new, unseen tasks in a 

data-efficient manner

Challenges

● Scaling up to complex multi-stage, long horizon tasks:

○ Traditional RL / Meta-learning based algorithms 

suffer.

● Generalizing across tasks:

○ Hierarchical RL based models suffer

Demo of final model on object 
stacking task

https://docs.google.com/file/d/1ZkBR8i_ktXjda2RXC-Yb9gRLI_dxtbKc/preview


CS391R: Robot Learning (Fall 2021) 5

Problem Setting



CS391R: Robot Learning (Fall 2021) 6

Related Work
Learning from Demonstrations

● Use a policy to generalize from expert 
demonstrations.

● (+) No reward specification needed.
● (?) Policy generalizing to new objectives

Few Shot Generalization in LfD
Hierarchical Skill Composition
Neural Program Induction



CS391R: Robot Learning (Fall 2021) 7

Related Work
Learning from Demonstrations
Few Shot Generalization in LfD

● Use meta-learning to learn to induce models 
for learning from input specification

● (+) Generalization from single demostration
● (-) Require rich reward functions

Hierarchical Skill Composition
Neural Program Induction



CS391R: Robot Learning (Fall 2021) 8

Related Work
Learning from Demonstrations
Few Shot Generalization in LfD
Hierarchical Skill Composition

● Divide and conquer learning skills as learning 
sub-skills and learning to combine sub-skills

● (+) Great performance in several tasks
● (-) Cannot generalize across tasks

Neural Program Induction



CS391R: Robot Learning (Fall 2021) 9

Related Work
Learning from Demonstrations
Few Shot Generalization in LfD
Hierarchical Skill Composition
Neural Program Induction

● Use a neural network to induce a program 
from a given specification

● (+) Can learn complex, intricate programs
● (-) Retrain to adapt to a different domain.



CS391R: Robot Learning (Fall 2021)

Insight 1: Neural Program Induction
● Splice the full demonstration into smaller parts and recursively evaluate the smaller parts 

using subroutine calls.
Insight 2: Clever Inputs/Outputs to make NPI recursive

● Inputs: Current Observation, Current Program, and Current Task specification
○ The task specification can be symbolic (expert program trace) or neural (expert video 

embedding)
● Outputs: Output program, EoP probability, next program arguments

○ The next program arguments are API parameters if “primtive” program or the task 
specification pertaining to the next program otherwise.

Insight 3: Primitive API (grip(obj), release(), moveto(obj) )
● Need to abstract away the low-level controls otherwise will be hard to generalize to tasks.
● Restricts depth of program trace as well.
● Implemented using symbolic motion planners.

10

Approach



CS391R: Robot Learning (Fall 2021) 11

Approach



CS391R: Robot Learning (Fall 2021)

Main Questions (quoted verbatim) and Evaluation Paradigms:
1. Does NTP generalize to changes in length, topology, and semantics?

- Vary task length by varying number of steps needed to achieve goal state.
- Vary task topology by varying the permutations of steps needed to achieve goal state.
- Vary task semantics by evaluating on unseen goal state configurations.

2. Can NTP use image-based input without access to ground truth input?
- Replace state information with video as task-specification.

3. Would NTP also work in real-world complex tasks?
- Deploy NTP on real robots in real environments.

12

Evaluation



CS391R: Robot Learning (Fall 2021)

Tasks:
1. Object Stacking
2. Object Sorting
3. Table Cleanup

13

Evaluation

https://docs.google.com/file/d/131n48WTlzKFH1jdR-12rhukAvh5Kky1G/preview
https://docs.google.com/file/d/1bSC-PxhVH-zvAaiFfi8pzft8OasaOH4C/preview


CS391R: Robot Learning (Fall 2021)

Baselines:
1. Flat: Non-hierarchical model that directly predicts primitive API from input demonstration.
2. Flat (GRU): Same as above but a GRU cell allows storing past state information.
3. NTP (no scope): NTP without data hiding. The entire demonstration is fed to subroutines.
4. NTP (GRU): Complete NTP model with GRU cell replacing the reactive core.

Metrics
The mean success rate per 100 evaluations is calculated for all experiments.

Adversarial Dynamics:
Showcase that NTP is a closed loop policy and can recover from failures.

14

Evaluation



CS391R: Robot Learning (Fall 2021)

=> NTP and variants steadily improves in 
performance with more training tasks.
=> NTP is robust to changes in task semantics.
=> Data scoping is important for generalization

15

Evaluation



CS391R: Robot Learning (Fall 2021)

=> Flat baselines are not good at handling 
permutations
=> Hierarchical scoping of NTP helps it 
generalize better to task topology

16

Evaluation



CS391R: Robot Learning (Fall 2021)

=> NTP is robust to changes in task length and 
can even handle upto 40 objects.

Most significant result of the paper.

17

Evaluation



CS391R: Robot Learning (Fall 2021)

NTPVID (detector): input = object positions
NTPVID (E2E): input = image embedding
NTP(full state): input = program state
=> We can reliably learn from videos.
=> Task specific encoders (detector) can imbue 
vision model errors which can cascade.

18

Evaluation



CS391R: Robot Learning (Fall 2021)

=> NTP can generalize to real world situations.

19

Evaluation



CS391R: Robot Learning (Fall 2021)

=> NTP can recover from failures.
=> NTP’s reactive core is instrumental in 
enabling it to be a closed loop policy.

20

Evaluation



CS391R: Robot Learning (Fall 2021)

From the experiments, the authors conclude that:
1. NTP learns modular and reusable neural programs for hierarchical tasks.
2. NTP can successfully operate in prolonged and complex interactions with the environment.

Strengths:
- NTP can learn subroutines for long-horizon multi-task learning. This is pretty cool!

Weaknesses:
- Object sorting, object stacking, and table cleanup all use the same primitives and some common 

subroutines. However, It is unclear if the model can generalize across tasks. Would the model 
generalize to object stacking if its trained on object sorting (and given an object stacking video at 
test time)?

21

Results & Critique



CS391R: Robot Learning (Fall 2021)

1. Restrictive API
- NTP needs to use a high level API to restrict the program depth and to make training 

easier. However, because of this, NTP cannot learn a rich library of methods to perform a 
certain action.

- For instance, NTP cannot perform a side-grasp as no rotation primitive is available.
2. Introducing new “subroutines” requires retraining

- Limitation of program induction.
- Adding new constructs to NTP requires changing its entire architecture.

3. NTP requires rich structural supervision:
- It needs 1000 full program traces to generalize to unseen examples for a task.
- Follow up work removed the need for the supervision to be structured.

22

Limitation



CS391R: Robot Learning (Fall 2021)

1. Using a lower-level API to allow torque and velocity based controllers.
2. Improving the perception to capture richer relationships between objects
3. Extending framework to more complex tasks
4. Using symbolic methods to generate programs instead of program induction.

23

Future Work



CS391R: Robot Learning (Fall 2021) 24

Extended Readings
● Neural Module Networks: https://arxiv.org/abs/1511.02799v4

● One-Shot Imitation from Watching Videos: https://bair.berkeley.edu/blog/2018/06/28/daml/

● Incremental Task and Motion Planning: http://www.roboticsproceedings.org/rss12/p02.pdf

● Hierarchical Deep Reinforcement Learning: https://arxiv.org/abs/1604.06057 

● DreamCoder: https://arxiv.org/abs/2006.08381

● RobustFill: https://proceedings.mlr.press/v70/devlin17a/devlin17a.pdf

● Neural Guided Synthesis Tutorial: 

https://people.csail.mit.edu/asolar/SynthesisCourse/Lecture22.htm 

https://arxiv.org/abs/1511.02799v4
https://bair.berkeley.edu/blog/2018/06/28/daml/
http://www.roboticsproceedings.org/rss12/p02.pdf
https://arxiv.org/abs/1604.06057
https://arxiv.org/abs/2006.08381
https://proceedings.mlr.press/v70/devlin17a/devlin17a.pdf
https://people.csail.mit.edu/asolar/SynthesisCourse/Lecture22.htm


CS391R: Robot Learning (Fall 2021) 25

Summary

● We want to learn policies for long-horizon multi-stage tasks in a few-shot learning paradigm.

● This is a common setting in real-life robot use cases (warehouses)

● Prior work either couldn’t handle task complexity or required engineered reward signals.

● Current work alleviated this by doing recursive neural program induction. This allowed them to reuse 

modules and delegate tasks to specialized networks.

● Their method allowed them to learn a closed loop policy that could operate for long time-steps and 

solve complex hierarchical tasks with only a single video as test-time supervision.


