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Disclaimer: adopted from gatech tutorial and pytorch tutorial

https://pytorch.org/
https://www.cc.gatech.edu/classes/AY2021/cs7650_fall/slides/Introduction_to_PyTorch.pdf
https://pytorch.org/tutorials/beginner/basics/intro.html
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Why do we need deep learning libraries?

Autograd
● gradient-based methods are used to 

optimize deep neural networks.
● back propagation is the core of gradient 

computation
● we use a computation graph to record all the 

operation during forward, and use chain rule 
to compute gradient backward.
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Why do we need deep learning libraries?

GPU acceleration
● GPU is well suited for deep learning because of

○ high bandwidth main memory
○ hiding memory access latency under thread parallelism
○ large and fast register and L1 memory

https://www.quora.com/Why-are-GPUs-well-suited-to-deep-learning
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Deep Learning Libraries
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Why PyTorch
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Tensors

Tensors are similar to NumPy’s ndarrays, with the addition being that 
Tensors can also be used on a GPU to accelerate computing.

Common operations for creation and manipulation of these Tensors are 
similar to those for ndarrays in NumPy. (rand, ones, zeros, indexing, 
slicing, reshape, transpose, cross product, matrix product, element wise 
multiplication)
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Initialize a tensor
Directly from data

From numpy array

From other tensors
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Attributes of a tensor
Tensor attributes describe their shape, datatype, and the device on 
which they are stored.
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Operation on tensors
Moving tensor between devices

Standard numpy-like indexing and slicing ...

Bridge between numpy
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Example 

1. Data: Datasets & DataLoaders

2. Preprocess: Transforms

3. Neural Network: nn.Module

4. Loss function

5. Optimization: loss.backward(), optimizer.step()

6. Save & Load Model: torch.save(), torch.load()


