
CS391R: Robot Learning (Fall 2021)

CS 391R PyTorch Tutorial

1

Zhenyu Jiang

September 29

Disclaimer: adopted from gatech tutorial and pytorch tutorial

https://pytorch.org/
https://www.cc.gatech.edu/classes/AY2021/cs7650_fall/slides/Introduction_to_PyTorch.pdf
https://pytorch.org/tutorials/beginner/basics/intro.html


CS391R: Robot Learning (Fall 2021) 2

Why do we need deep learning libraries?

Autograd
● gradient-based methods are used to 

optimize deep neural networks.
● back propagation is the core of gradient 

computation
● we use a computation graph to record all the 

operation during forward, and use chain rule 
to compute gradient backward.



CS391R: Robot Learning (Fall 2021) 3

Why do we need deep learning libraries?

GPU acceleration
● GPU is well suited for deep learning because of

○ high bandwidth main memory
○ hiding memory access latency under thread parallelism
○ large and fast register and L1 memory

https://www.quora.com/Why-are-GPUs-well-suited-to-deep-learning



CS391R: Robot Learning (Fall 2021) 4

Deep Learning Libraries



CS391R: Robot Learning (Fall 2021) 5

Why PyTorch



CS391R: Robot Learning (Fall 2021) 6

Tensors

Tensors are similar to NumPy’s ndarrays, with the addition being that 
Tensors can also be used on a GPU to accelerate computing.

Common operations for creation and manipulation of these Tensors are 
similar to those for ndarrays in NumPy. (rand, ones, zeros, indexing, 
slicing, reshape, transpose, cross product, matrix product, element wise 
multiplication)



CS391R: Robot Learning (Fall 2021) 7

Initialize a tensor
Directly from data

From numpy array

From other tensors



CS391R: Robot Learning (Fall 2021) 8

Attributes of a tensor
Tensor attributes describe their shape, datatype, and the device on 
which they are stored.



CS391R: Robot Learning (Fall 2021) 9

Operation on tensors
Moving tensor between devices

Standard numpy-like indexing and slicing ...

Bridge between numpy



CS391R: Robot Learning (Fall 2021) 10

Example 

1. Data: Datasets & DataLoaders

2. Preprocess: Transforms

3. Neural Network: nn.Module

4. Loss function

5. Optimization: loss.backward(), optimizer.step()

6. Save & Load Model: torch.save(), torch.load()


