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Long-horizon tasks in unstructured environments



Solving long-horizon tasks with general-purpose skills

extensible

Discover novel behaviors 
for ever-increasing demand 

robust

Robustly handle wide 
variations of the task

adaptable

Efficiently adapt to unseen 
and more challenging tasks

Can robots acquire general-purpose skills through learning?



The power of scaling up

[Lin et al. 2014; Liu et al. 2015; Yu et al. 2015; Chang et al. 2015; Heilbron et al. 2015; Abu-El-Haija et al. 2016; Mo et al. 2018; He et al. 2017]

massive datasets generalizable models

14,000,000 images
[Deng et al. 2009]

30,000,000 positions
[Silver et al. 2016]

45 TB of texts
[Brown et al. 2020]



Towards scaling up robot learning

general-purpose skillswide-ranging tasks

robust adaptable extensible



understand tasks learn tasks

Human supervision in robot learning

specify tasks

environment goal

Require non-trivial manual labor and domain knowledge

Specific for each new environment, goal, and task.



Towards scaling up human supervision

[Byravan et al. 2017; Levine et al. 2017; Gordon et al. 2018; Xiang et al. 2018; Manuelli et al. 2019; Pinto and Gupta 2016; Punjani and 
Abbeel 2015; Kalashnikov et al. 2018; Srinivas et al. 2018; Peng et al. 2020; Zeng et al. 2017] ……

Prior efforts in industry Prior efforts in research labs

[Pinto and Gupta 2016] [Agrawal et al. 2016][Levine et al. 2016]

[Gupta et al. 2018] [Mandlekar et al. 2019] [Zeng et al. 2019]

Google Arm Farm

9,600 robot hours
[Kalashnikov et al. ArXiv 2021]

Waymo Autonomous Vehicle

20M miles on public roads
[Sun et al. ArXiv 2020]



How can robots effectively learn to solve long-
horizon tasks with limited human supervision?



Generalization through Generation

Core idea: train robots to autonomously acquire general-purpose skills 
through the generation of environments and goals. 
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Generate feasible, diverse, and useful tasks 

Acquire robust, adaptable, and extensible skills
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Learning Robust Skill 
via Environment Generation

Adapting Prior Skills 
via Goal Generation
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Robust skills for robotic manipulation
skills state

action



Robust skills for robotic manipulation

various objects

various arrangements



It is challenging to acquire robust skills that can solve complex tasks

Hand-designed skills
[Migimatsu and Bohg. RA-L 2020]

Cannot handle unknown objects

Learned skills
[Levine et al. ISER 2016]

Require large-scale data



Alternative data source: procedural content generation

Enrich training data

Procedural content generation (PCG) Real-world robotics problems



Procedural content generation for scalable learning

[Cobbe et al. 2019] [Daniele et al. 2019]

[Khalifa et al. 2020] [Bontrager et al. 2020]

Grid-world domain
discrete spaces, simple dynamics

[Tobin et al. 2017]

Robotic manipulation
limited variations, simple environments

[Wang et al. 2018; Izatt and Tedrake 2020; Fisher et al. 2012; Izadinia et al. 2017; Majerowicz et al. 2013; Schwarz and Behnke 2020; 
Wang et al. 2019; Raileanu & Rocktaschel, 2020; Kolve et al., 2017; Xia et al., 2018; Savva et al., 2019; Yu et al., 2019]

Challenge: how to generate diverse and feasible environments for complex skills.



Tool-use skills 

Fang, Zhu, Garg, Kurenkov, Mehta, Fei-Fei, Savarese. IJRR 2019

failure

success

sweepinghammering
simulation



Self-supervised skill learning with procedurally generated objects

skill policy

environment

st
at

e
re

w
ar

d action

parameterized object space

uniform
sampling

object
parameter

head shape (type, width, length, height)
handle shape (type, width, length, height)
relative pose (x, y, z, roll, pitch, yaw)

Fang, Zhu, Garg, Kurenkov, Mehta, Fei-Fei, Savarese. IJRR 2019



Self-supervised skill learning with procedurally generated objects

skill policy

environment

st
at

e
re

w
ar

d action

encoder representation

state 𝑠

The action is selected as 𝑎∗ = argmax
"
𝑄(𝑠, 𝑎)

𝑄(𝑠, 𝑎) estimates the probability of success  

𝑄(𝑠, 𝑎)

Fang, Zhu, Garg, Kurenkov, Mehta, Fei-Fei, Savarese. IJRR 2019



Training in simulation:
20,000 synthetic objects

100,000 training trajectories
(equivalent to 800 robot hours) 

Evaluation in the real world:
Hammering: 71.1% 
Sweeping: 80.0%

Fang, Zhu, Garg, Kurenkov, Mehta, Fei-Fei, Savarese. IJRR 2019



Procedural generation of complex environments

Fang, Zhu, Garg, Kurenkov, Mehta, Fei-Fei, Savarese. IJRR 2019

Environment parameter Procedurally generated environment



Procedural generation of complex environments

Repetitive environments Infeasible environments

Fang*, Migimatsu*, Mandlekar, Fei-Fei, Bohg. 2023

reward:  𝑟 = 	 /	 1	 if	on(𝑥,	table_near)	
0	 otherwise	skill:  pull_with 𝑥, 𝑦  



skill policy

environment

st
at

e
re

w
ar

d action

Active Task Randomization (ATR)

Fang*, Migimatsu*, Mandlekar, Fei-Fei, Bohg. 2023

environment 
generator

return

𝑤environment
parameter



parameterized environment space

skill policy

environment

st
at

e
re

w
ar

d action environment 
generator

return
infeasible 

environments

feasible 
environments

Active Task Randomization (ATR)
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parameterized environment space

skill policy

environment

st
at

e
re

w
ar

d action environment 
generator

return
infeasible 

environments

feasible 
environments

Active Task Randomization (ATR)
Key idea: adaptively estimate feasibility and diversity of the sampled environments.

Fang*, Migimatsu*, Mandlekar, Fei-Fei, Bohg. 2022

𝑤environment
parameter



skill policy

environment

st
at

e
re

w
ar

d action environment 
generator

𝑤environment
parameter

return

Adaptive estimation of feasibility and diversity

Expected rewards achieved 
by the current skill policy

feasibility: 𝑉(𝑤)

Fang*, Migimatsu*, Mandlekar, Fei-Fei, Bohg. 2023

Density of the environment 
parameter diversity: − log 𝑝(𝑤)



diversity: − log 𝑝(𝑤)

feasibility: 𝑉(𝑤)

Non-parametric 
estimation of density  

Adaptive estimation of feasibility and diversity

environment 
embedding

replay buffer

KNN
distance

Value network

Select the training environment parameter by

 𝑤∗ = 	argmax
𝒘

𝑉(𝑤) − 𝛽 log 𝑝(𝑤)

Fang*, Migimatsu*, Mandlekar, Fei-Fei, Bohg. 2023



Procedurally generated training environments

move-onto move-next-to push-under pull-with

Fang*, Migimatsu*, Mandlekar, Fei-Fei, Bohg. 2023

Training with 10,000 generated environments in simulation.



Learned skills

ATR (Ours) Uniform

move-onto move-next-to push-under pull-with

Fang*, Migimatsu*, Mandlekar, Fei-Fei, Bohg. 2023



[Jiang et al. 2021; Zhang et al. 2020] Fang*, Migimatsu*, Mandlekar, Fei-Fei, Bohg. 2023

Composing learned skills to solve sequential manipulation tasks



Composing learned skills to solve sequential manipulation tasks

PLR [Jiang et al. 2021] ATR (Ours)Uniform VDS [Zhang et al. 2020]
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● Procedurally generate environments in simulation to enrich training data.

● Select suitable environments by adaptively estimating the diversity and feasibility.

Summary

Training Testing



Learning Robust Skill 
via Environment Generation

Adapting Prior Skills 
via Goal Generation

Generalization through Generation: 
Learning Long-Horizon Tasks with Limited Supervision



Reusing and adapting prior skills
final goalsubtasks

novel

known

cutting

sauteing

cutting sauteing layering

layering



Solving sequential tasks specified by goals

[Kaelbling 1993; Andrychowicz et al. 2017; Pong et al. 2020; Ding et al. 2019; Khazatsky et al. 2021]

final goal

drawer → open
can → bottom left

initial state



Solving sequential tasks specified by goals

push(can) reach(drawer) open(drawer)

solution 1: planning + motion primitives

reward = reward_can + reward_drawer + reward_gripper

solution 2: reward shaping

Requires non-trivial domain knowledge about the task

[Nilsson 1984; Malcolm and Smithers 1990 Kaelbling 2011; Kaelbling 2013; Srivastava 2014; Toussaint 2015; Dantam 2016; Toussaint 2018; Garret 2020]



Solving sequential tasks specified by goals

Exploring over long horizons without immediate feedback leads to poor performance.

goal
action: 

reward: 𝑟 = /
0	 𝑠	 − 𝑔 ≤ 𝜖
	−1	 𝑠	 − 𝑔 > 𝜖

5 Hz



Learning sequential tasks by leveraging prior skills across tasks

adaptation

prior experiences

goal

2.3k short-horizon trajectories 
collected through teleoperation

Fang, Zhu, Garg, Savarese, Fei-Fei. CoRL 2019



Decompose the novel goal into familiar subgoals

Challenge: how to propose feasible and useful subgoals in high-dimensional space?

subgoal 1 subgoal 2 subgoal 3

prior experiences
final goalinitial state

Fang, Zhu, Garg, Savarese, Fei-Fei. CoRL 2019



Planning-to-Practice (PTP)

𝜋 𝑎 𝑠, 𝑔)
goal-conditioned policy

𝑚 𝑠′ 𝑠, 𝑢)

affordanceprior experience : the possibility of an action on an object

Fang*, Yin*, Nair, Levine. IROS 2022

Gibson (1979). The Ecological Approach to Visual Perception.



𝑚 𝑠′ 𝑠, 𝑢)

Planning-to-Practice (PTP)

affordance
Model the distribution of feasible future 
states 𝑝 𝑠$ 𝑠) within 𝐻 steps.

prior experience

future state
𝐻 steps away noisecurrent state

𝜋 𝑎 𝑠, 𝑔)
goal-conditioned policy

Implemented with a 
Conditional Variational Autoencoder 
(CVAE)1.
1[Sohn et al., 2015]

Fang*, Yin*, Nair, Levine. IROS 2022

Trained using transitions sampled from the 
prior experience.



Planning-to-Practice (PTP)

prior experience

𝜋 𝑎 𝑠, 𝑔)

action goalstate
Select the action 𝑎 to reach the goal 
𝑔 from the current state 𝑠.

𝑚 𝑠′ 𝑠, 𝑢)

affordance

goal-conditioned policy

Trained with the goal-reaching reward 
in a self-supervised manner.

Fang*, Yin*, Nair, Levine. IROS 2022



𝑚 𝑠′ 𝑠, 𝑢)

Planning-to-Practice (PTP)

pre-training

affordance

𝜋 𝑎 𝑠, 𝑔)

final goalsubgoals

fine-tuning

prior experience

planning

goal-conditioned policy

Fang*, Yin*, Nair, Levine. IROS 2022



Fang*, Yin*, Nair, Levine. IROS 2022

Recursive generation for subgoal planning

initial state
final goal 

𝑠&
𝑔

Recursively generate K-step subgoals 𝑠̂":$  using the sampled noise 𝑢":$ .



Fang*, Yin*, Nair, Levine. IROS 2022

Recursive generation for subgoal planning

initial state
final goal 

affordance

𝑚 	𝑠̂" 	𝑠%, 𝑢")
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𝑔

Recursively generate K-step subgoals 𝑠̂":$  using the sampled noise 𝑢":$ .
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Recursively generate K-step subgoals 𝑠̂":$  using the sampled noise 𝑢":$ .



Recursive generation for subgoal planning

final goal 
initial state

𝑠&
𝑔

Fang*, Yin*, Nair, Levine. IROS 2022

𝑢∗ = 	argmin
	 (

𝑔	 − 𝑠̂) 	− 	𝜂N
*

	log 𝑝(𝑢*) + 𝑉(𝑠̂*+,, 𝑠̂*)

Select the optimal plan by:

If the each subgoal is feasible If the final goal is reached 



Recursive generation for subgoal planning

final goal 

𝑠&
𝑔

Fang*, Yin*, Nair, Levine. IROS 2022

initial state

goal-conditioned policy

𝜋 𝑎( 𝑠( , 𝑠̂))



Comparisons with alternative subgoal generation methods

P(            )Unconditional generation
LEAP [Nasiriany et al. 2019]

Ignore contextual information

P(           |          ,           )Interpolative generation
GCP [Pertsch et al. 2020]

Limited generalization

initial state final goal

P(           |          )Recursive generation
PTP (ours)

initial state



Generated subgoal sequences
PT

P
(o

ur
s)

 

final goalinitial state

G
CP

LE
AP

Recursive generation enables generalizable subgoal planning.
subgoals

Fang*, Yin*, Nair, Levine. IROS 2022



Solving sequential tasks using the fine-tuned skills

10 X 

final goal subgoal
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GCP 
[Pertsch et al. NeurIPS 2020]

PTP 
(Ours)

10 X 

final goal subgoal

GCP

pre-trained
fine-tuned

GCP

PTP (ours)

PTP (ours)

Fine-tuning for 80 episodes (3 hour)

Fang*, Yin*, Nair, Levine. IROS 2022



Solving long-horizon tasks using the fine-tuned skills

10 X 

final goal subgoal

10 X 

final goal subgoal

10 X 

final goal subgoal

Move away the can and then 
open the drawer.

Close the drawer then move 
the can in front of it.

Poke the ball out of the 
drawer and then close it

Fang*, Yin*, Nair, Levine. IROS 2022



Leveraging broad prior experiences across tasks and environments

adaptation

broad prior experiences

Final Goal 

12k trajectories collected 
through teleoperation

Fang, Yin, Nair, Walke, Yan, Levine. CoRL 2022



Fine-tuning with Lossy Affordance Planner (FLAP)

policy

affordance 

encoder

pr
e-

tra
in

in
g

fin
e-

tu
ni

ng

Final Goal 

broad prior experiences

Fang, Yin, Nair, Walke, Yan, Levine. CoRL 2022

12k trajectories collected 
through teleoperation



Fine-tuning with Lossy Affordance Planner (FLAP)

𝜑 𝑧 𝑠)

𝜋 𝑎 𝑧, 𝑧′)

𝑚 𝑧′ 𝑧, 𝑢) 
pr

e-
tra
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in

g

fin
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ng

Final Goal 

Both the affordance model and policy are defined in the lossy representation space.

The encoder learns to project the initial states and the final goal.

broad prior experiences

Fang, Yin, Nair, Walke, Yan, Levine. CoRL 2022



Pre-training lossy representations

representations

zt

zg

final goal g

current state st
variational information bottleneck2

I(st ; zt) + I(g ; zg) 

action at

RL objective1

π(at | zt, zg)

Q(zt, zg, at)

V(zt, zg)

policy

value function

Q-function

φ

φ

encoder

Fang, Yin, Nair, Walke, Yan, Levine. CoRL 20221[Kostrikov et al. 2021]; 2[Alemi et al. 2016]

Highlight task-relevant information.
Remove environment-specific details 



Learned lossy representations
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FLAP (ours)

⑥
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②

①

⑨

⑧

⑦

Fang, Yin, Nair, Walke, Yan, Levine. CoRL 2022

Visualize trajectories using t-SNE1.

1[van der Maaten and Hinton 2008]



Learned lossy representations

①②③
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FLAP (ours)pixel space
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⑥

④

Fang, Yin, Nair, Walke, Yan, Levine. CoRL 2022



Fast adaptation to novel tasks in the target environments

FLAP w/o broad 

data
FLAP (Ours)Model-free PTP
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4x 4x 4x 

Fang, Yin, Nair, Walke, Yan, Levine. CoRL 2022



Discovering skills in novel environments

open 

pick

sweep



Discovering skills in novel environments

Challenge: how to discover diverse and useful skills in unknown environments?

Repeating the same skill Attempting useless behaviors Diverse and useful skills
(What we want)



Goal-directed exploration by leveraging broad prior experiences

pre-training with 
broad prior experiences current image

goal image



Goal-directed exploration by leveraging broad prior experiences

conditional goal generation using diffusion modelspre-training with 
broad prior experiences

current image generated goals
[Sohl-Dickstein et al. ICML 2015; Song et al. NeurIPS 2019; Ho et al. NeurIPS 2020]



Exploration with generated goals

Generated Goal

Exploration

Generated Goal

Exploration

Generated Goal

Exploration

Generated Goal

Exploration

Autonomously collecting 1,000 trajectories (10 hours) directed by generated goals.

Generated Goal

Exploration

1 X 1 X 1 X 1 X 1 X



Discovered skills in novel environments

Move the mushroom into the pot Move the pot to the corner Sweep the table with the cloth

success rate: 6.7%  →  86.7% success rate: 13.3%  →  73.3% success rate: 53.3%  →  80.0% 

1 X 1 X 1 X



Solving sequential tasks using the discovered skills
Subgoal 1 Subgoal 2 Subgoal 3

Setting up the table

Subgoal 1 Subgoal 2 Subgoal 3

Cleaning up the table



● Compose and adapt prior skills using recursively generated subgoals.

● Generalize across environments using learned lossy representations.

Summary

prior experiences
actions

planned 
subgoals



Learning Robust Skill 
via Environment Generation

[Fang et al. IJRR 2019]
[Fang*, Migimatsu* et al. 2023]

Adapting Prior Skills 
via Goal Generation

[Fang et al. CoRL 2019]
[Fang*, Yin* et al. IROS 2022]

[Fang et al. CoRL 2022]
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Opportunities at

18+ robotics faculty across departments
continuously growing



Learning Robust Skill 
via Environment Generation

[Fang et al. IJRR 2019]
[Fang*, Migimatsu* et al. 2023]

Adapting Prior Skills 
via Goal Generation

[Fang et al. CoRL 2019]
[Fang*, Yin* et al. IROS 2022]

[Fang et al. CoRL 2022]

Generalization through Generation: 
Learning Long-Horizon Tasks with Limited Supervision

Questions?
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