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What is Multimodal Manipulation?

Humans use sight and touch Goal: Enable robots to do
seamlessly in tasks the same
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Why is Multimodal Manipulation Important?

It makes robots more human-like

Improves their ability to reason about the world
Easier to achieve human-level performance on some tasks

Potential Tasks and Applications

Manufacturing Surgery Household Tasks
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Challenges with Multimodal Manipulation

It can be difficult to apply standard machine learning techniques, which normally
expect a single type of data, to data of varying modalities

Natural challenges when working with real-time data:
noisy data, real-time processing speed requirements, adapting to changing
environment
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Problem Setting

e Objectives:

o Learn neural-net based feature representation of sensory data
o Learn a policy to perform a manipulation task through reinforcement learning

Maximize the reward:
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Related Work

Data-Driven Online Decision Making for Autonomous Manipulation

(Kappler et al., 2015)

Similarities

Manipulation Task

Multimodal Inputs
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Approach - Multi-Modal Representation Model

First Objective: Learn representation of high-dimensional data using neural net
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Approach - Multi-Modal Representation Model

image encoder

Challenge: Need to
combine three different
forms of data into one
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Approach - Multi-Modal Representation Model

Challenges: Solutions: Design training objectives that
A) Need a lot of training data A) allow for self-supervision

B) Want representations to encode B) use next robot action to make

action related info predictions
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Approach - Policy Learning & Controller Design

RGB Camera

Force-Torque Sensor

Goal: Train a policy to move the end effector into a desired position

Technique: Use model-free reinforcement learning with trust-region
policy optimization (TRPO)
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Approach - Policy Learning & Controller Design

Goal: Given 20Hz 20 Hz
- : Ax Trajectory X 200 Hz
end-effector Ax, output Policy 2% » Gonerater |
200Hz torque commands i :
t
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Technique: Use a controller Multimodal Representation Im%ﬂ?&ﬁ rPD
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Experimental Setup

Task: Peg insertion into hole Environments:

Reachin » _ Iignmnt _ Insertin 77 Real Robot S|mu|at|on

XXX X

semicircular square A triangular
(1.85mm) (2 24mm) (2.13mm)

round O hexagonal
(2.15mm) (2.50mm)
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Experimental Setup

Staged reward function for training

(¢, — F(tanhA||s|| +tanhA|syy||)  (reaching)
(s) = 2 —cqllSxyll2 if |[syy ]2 < & (alignment)
4—2( hds_z 5) if s, <0 (insertion)
10 if hy —|s;| <& (completion),
S - peg’s current A, ¢, c_ - constant h - height of hole
position factors
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Experimental Setup - Metrics

Quantitative
Sum of rewards per episode

Qualitative

Task Completion Categories:

:W:j . .4 .E-.: W.::
Completed Inserted Touched
Insertion Into Hole the Box
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Experimental Results - Simulation

Ablation Study: Determine
importance of each sensor modality
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Experimental Results - Real Robot

Transfer Learning: How well do the representations
and policies transfer between peg shapes?
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Results Discussion

e Multi-modal sensory input can greatly improve performance on the peg
insertion task

e Learned representations and policies can be transferred between different
peg shapes and maintain decent performance

e Policy transfer causes performance to suffer more than representation

transfer
o This is a possible obstacle to generalizing this approach
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Critiques / Limitations

e \Would have been interesting to compare results of training from scratch on
new peg shapes with results of transferring policies and representations

e Possible issues with generalization

o Policy transfer causes noticeable hit to performance, even on simple task like peg insertion,
changing only small part of task (peg shape)

e High training costs

o To get arobot to perform a task, the robot needs to spend to learning the representation then
the policy

o Limits applications of this technique in real-world scenarios
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Future Work

e Generalized Policies: Train a single representation and policy on a more
varied mix of tasks (i.e. one policy trained on multiple peg shapes). See if this
improves policy generalizability

e Simulation to Real-World Transfer: Train representations and policies in
simulation, then see how well they work in the real world, possibly performing
some smaller amount of additional training

e Extension of current technique: New tasks, new sensor modalities (e.g.
sound, depth)
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Extended Readings

Variable Compliance Control for Robotic Peg-in-Hole Assembly: Outlines

another approach for using deep RL to perform the peg insertion task, using some
techniques not found in this paper

Foundations & Trends in Multimodal Machine Learning: Provides a review of
how machine learning can be applied to multimodal inputs

MultiBench: Introduces a set of benchmarks that can be used for assessing
multimodal machine learning

CS391R: Robot Learning (Fall 2023) 20



https://www.mdpi.com/2076-3417/10/19/6923
https://arxiv.org/abs/2209.03430
https://arxiv.org/abs/2107.07502

Summary

e This paper addresses the problem of training a robot to utilize multiple types
of sensory input when performing a task

e Combining visual and haptic input is valuable for improving performance on
contact-rich tasks

e The use of deep RL enables learning of more generalizable representations
and policies, which was not done in prior work

e Key Insight: Multimodal representations can be learned through
self-supervised learning, then can be combined with deep RL to achieve high
levels of performance on tasks
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