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What is 6D Pose?

3D translation (x, y, x) and rotation (row, pitch, yaw) which refers to the location and
orientation of the object in space.
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6D object pose estimation (L) The goal of 6D pose estimation is to find the translation and rotation from the
object coordinate frame O to the camera coordinate frame C. (R) The translation and rotation both have three
degrees of freedom,
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Significance of 6D Pose Estimation

Important task because:

* robot manipulation (e.g. bin
picking)

* self-driving cars

* augmented reality

* human robot interaction (e.g.

learning from demonstration).
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Why is 6D Pose Estimation Challenging

® Complexity of the environment: clutter, occlusion.
® Variety of objects with different textures and shapes.

® Change in object apparencies in images due to lighting and other
conditions.

® Sensor noise

Fig. 1. Occlusion issues in multiple object tracking.
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Previous Work

® Handcrafted feature extraction such as Brachmann et al [1]

o Cons: Poor performance with heavy occlusion and lighting variation

® Deep network-based pose estimation such as PoseCNN and MCN

o Cons: require extensive post processing refinement

® Frustrum PointNet and PointFusion improve on deep network methods that perform well in real-time.

o Cons: Perform well in driving scenes, but limited under heavy occlusion
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Motivation

® Create an end-to-end deep network to predict 6D pose estimation
of known objects in space using RGB-D images.

® Achieve robustness for complex tasks including occlusion.
® Achieve optimal speed for real time applications.
® Utilize both color and depth information in fusion to extract pixel-

wise features to estimate the pose.
® Addition of iterative pose refinement method that can run in real

time
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Architecture Overview
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Semantic Segmentation

Encoder-decoder architecture

Takes an image as input

Creates an N+1 channeled semantic segmentation map

In each channel, active pixels refer to one objects in the set of N possible objects
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Dense Feature Extraction

* Color and depth information are processed separately to create feature embeddings that include the
intrinsic structure of each data.

* Dense 3D point cloud feature embedding

®  Converts segmented depth pixels into a 3D point cloud using camera intrinsics

®  PointNet-like model to extract geometric features

* Dense color image feature embedding
®  CNN-based encoder-decoder architecture mapping an image of size H x W x 3 into H x W x d_rgb embedding space

° Each pixel of the embedding is a d_rgb dimensional vector representing appearance information of the image at the specific location
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6D Object Pose Estimation

Minimize the pose estimation loss for each dense-pixel prediction

Loss for asymmetric objects:

1 A -
Li =7 Z |(Rzj +1) = (Rizj + )|
J

x; Is the j" point in the M randomly selected 3D points from the object.
p = [R|t] — ground truth pose

p: = [R;|t;] — predicted pose corresponding to the i*" dense-pixel.
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6D Object Pose Estimation

Minimize the pose estimation loss for each dense-pixel prediction

Loss for symmetric objects:

1 ) % N
Ly = N 2 i o ST |[(Rz; +t) — (Rizr + t5)||
g

x; Is the j" point in the M randomly selected 3D points from the object.
p = [R|t] — ground truth pose

p: = [R;|t;] — predicted pose corresponding to the i*" dense-pixel.
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6D Object Pose Estimation

Minimizing the sum of all dense-pixel losses:
— 1 p
L = N Zz Lz"

The network balances the confidence scores with each pose prediction. Hence, weighing the confidence

score with the loss and adding a confidence regularization formula.

1 p
L=~ ;(Li ¢; — wlog(c;)),

N = the number of randomly selected dense-pixels features from the P elements of the segment

w = balancing hyperparameter
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lterative Refinement

Neural network based iterative refinement to improve pose

estimation
: _ |
® Step 1: Use the previous predicted pose to transform embeddings Lot
feature
the input point cloud into its canonical frame. t ~ —
Dense reiidual O rotation residual AR
® Step 2: Feed the transformed point cloud back into the Fusion rosidual > elation residual At

network and predict a residual pose

£ current input
5‘3“ > Pointiet point cloud
® Step 3: Iterate to obtain finer pose estimations geometry | | nextiteration

embeddings transformed
point cloud
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lterative Refinement

® After K iterations the final pose estimation is obtained as
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YCB-Video Dataset

* 21 objects of varying shapes and texture
levels under different occlusion conditions

e 92 RGB-D videos where each video shows a
subset of the 21 objects in different indoor
environments

* The videos are labeled with 6d poses and
segmentation masks

* Divided into 80 videos for training and 12 for
testing
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LineMOD Dataset

* 13 low-textured objects of the
existing 15 objects were used

* Training dataset includes around
200 instances for each object and
the test dataset includes around
1000 instances

CS391R: Robot Learning (Fall 2023)




Experiments

Metrics used:
* Average Closest Point Distance (ADD-S): The mean distance from each 3d point transformed
by [R;|£;] to its closest neighbor on the target model transformed by [R|t].

* Average Distance of Model Points (ADD): The mean distance from each 3d point transformed
by [R;|£;] to the same point on the target model.

* AUC: The area under the ADD-S curve
Image embedding network: Resnet-18 encoder + 4 up-sampling layers (decoder)

PointNet Architecture: Multilayer perceptron (MLP) + average-pooling
Iterative pose refinement: 4 fully connected layers outputting pose residual.

*  All experiments use 2 refinement iterations.
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Experiments using YCB-Video

Table 1. Quantitative evaluation of 6D pose (ADD-S[40]) on YCB-Video Dataset. Objects with bold name are symmetric.

PointFusion [41] PoseCNN+ICP [40] Ours (single)  Ours (per-pixel) Ours (iterative)

AUC <2cm AUC <2cm AUC | <2cm | AUC | <2cm | AUC | <2cm
002 _master_chef_can 90.9 99.8 95.8 100.0 939 | 1000 | 952 100.0 96.4 100.0
003 _cracker_box 80.5 62.6 92.7 91.6 90.8 98.4 92.5 99.3 95.5 99.5
004 _sugar_box 90.4 95.4 98.2 100.0 94.4 99.2 95.1 100.0 97.5 100.0
005_tomato_soup_can 91.9 96.9 94.5 96.9 92.9 96.7 93.7 96.9 94.6 96.9
006_mustard_bottle 88.5 84.0 98.6 100.0 91.2 97.8 95.9 100.0 97.2 100.0
007 _tuna_fish_can 93.8 99.8 97.1 100.0 949 | 100.0 | 94.9 100.0 96.6 100.0
008_pudding_box 87.5 96.7 97.9 100.0 88.3 97.2 94.7 100.0 96.5 100.0
009 _gelatin_box 95.0 100.0 98.8 100.0 954 | 100.0 | 95.8 100.0 98.1 100.0
010_potted_meat_can 86.4 88.5 92.7 93.6 87.3 91.4 90.1 93.1 91.3 93.1
011_banana 84.7 70.5 97.1 99.7 84.6 62.0 91.5 939 96.6 | 100.0
019_pitcher_base 85.5 79.8 97.8 100.0 86.9 80.9 94.6 100.0 97.1 100.0
021_bleach_cleanser 81.0 65.0 96.9 99.4 91.6 98.2 94.3 99.8 95.8 100.0
024 _bowl 75.7 24.1 81.0 54.9 834 554 86.6 69.5 88.2 98.8
025_mug 94.2 99.8 95.0 99.8 90.3 94.7 95.5 100.0 97.1 100.0
035_power_drill 71.5 22.8 98.2 99.6 83.1 64.2 924 97.1 96.0 98.7
036_wood _block 68.1 18.2 87.6 80.2 81.7 76.0 85.5 934 89.7 94.6
037 _scissors 76.7 35.9 91.7 95.6 83.6 75.1 96.4 100.0 95.2 | 100.0
040_large_marker 87.9 80.4 97.2 99.7 91.2 88.6 94.7 99.2 97.5 | 100.0
051_large_clamp 65.9 50.0 75.2 74.9 70.5 77.1 71.6 78.5 72.9 79.2
052_extra_large_clamp | 60.4 20.1 64.4 48.8 66.4 50.2 69.0 69.5 69.8 76.3
061 _foam brick 91.8 100.0 97.2 100.0 92.1 100.0 | 924 100.0 92.5 100.0
MEAN 83.9 74.1 93.0 93.2 88.2 87.9 91.2 953 93.1 96.8
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Experiments using YCB-Video

PointFusion

Figure 4. Qualitative results on the YCB-Video Dataset. All three methods shown here are tested with the same segmentation masks as
in PoseCNN. Each object point cloud in different color are transformed with the predicted pose and then projected to the 2D image frame.
The first two rows are former RGB-D methods and the last row is our approach with dense fusion and iterative refinement (2 iterations).
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Experiments using LineMOD

Table 2. Quantitative evaluation of 6D pose (ADD[13]) on the LineMOD dataset. Objects with bold name are symmetric.

RGB RGB-D
BBS [24] i ‘I’;:;Tﬁ Implicit | SSD-6D | PointFusion |  Ours Ours
w ref. [17, 40] [30]+ICP | [14]+ICP [41] (per-pixel) | (iterative)

ape 40.4 77.0 20.6 65 70.4 79.5 92.3
bench vi. 91.8 97.5 64.3 80 80.7 84.2 93.2
camera 55.7 93.5 63.2 78 60.8 76.5 94.4
can 64.1 96.5 76.1 86 61.1 86.6 93.1
cat 62.6 82.1 72.0 70 79.1 88.8 96.5
driller 74.4 95.0 41.6 73 47.3 71.7 87.0
duck 443 77.7 324 66 63.0 76.3 92.3
eggbox 57.8 97.1 98.6 100 99.9 99.9 99.8
glue 41.2 99.4 96.4 100 99.3 99.4 100.0
hole p. 67.2 52.8 49.9 49 71.8 79.0 92.1
iron 84.7 98.3 63.1 78 83.2 92.1 97.0
lamp 76.5 97.5 91.7 73 62.3 92.3 95.3
phone 54.0 87.7 71.0 79 78.8 88.0 92.8
MEAN 62.7 88.6 64.7 79 73.7 86.2 94.3
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Experiments using LineMOD

initial iteration 1 iteration 2 iteration 3

ADD (m):  0.015 0.010 0.008 0.007
Figure 6. Iterative refinement performance on LineMOD

dataset We visualize how our iterative refinement procedure cor-
rects initially sub-optimal pose estimation.
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Model Performance

.0 —
E
< - Table 3. Runtime breakdown (second per frame on YCB-
\ X
2 o /\ e Video Dataset). Our method is approximately 200x faster than
a —— Ours (iterative) PoseCNN+ICP. Seg means Segmentation, and PE means Pose Es-
peti —— Ours (per-pixel) . .
& ~—Ours (single) timation.
5 e PoseCNN+ICP [40] Ours
2 PR PointFusion Seg PE ICP ALL | Seg PE Refine ALL
003 0.17 104 106 | 0.03 0.02 0.01 0.06
/. 0.75
0j6 0j7 0j8 0j9 1j0

Invisible surface percentage threshold (<)

Figure 5. Model performance under increasing levels of occlu-
sion. Here the levels of occlusion is estimated by calculating the
invisible surface percentage of each object in the image frame. Our
methods work more robustly under heavy occlusion compared to
baseline methods.
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Robotics Grasping Experiment

5 YCB objects were placed on the table

* 4 different locations

* 3 random orientations with partial occlusion

* Robot made 12 attempts for each object (60 total attempts)

* 73% success rate with banana being the most difficult case

* Banana looked different form dataset?

* Architecture is robust for manipulation with occlusion
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Extended Readings

PoseCNN:

Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A convolutional neural network for 6d object pose estima- tion in cluttered scenes,” ArXiv preprint
arXiv:1711.00199, 2017.

MCN:

C. Li, J. Bai, and G. D. Hager, “A unified framework for multi-view multi-class object pose estimation,” ArXiv preprint arXiv:1803.08103, 2018.

PointFusion:
D. Xu, D. Anguelov, and A. Jain, “Pointfusion: Deep sen- sor fusion for 3d bounding box estimation,” ArXiv preprint arXiv:1711.10871, 2017.

ICP:

P. J. Besl and N. D. McKay, “A method for registration of 3-d shapes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, pp. 239-256, 1992.
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Thank you for listening!
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