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Problem - Motion Estimation

What is Motion Estimation?

e The creation of velocity trajectories made on
an object to predict where it will be after X
amount of time has passed.

Different Goals?
e Dense Pixel Trajectories

e Long-range Pixel trajectories
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Why is Motion Estimation Important

Incredibly important to solve tasks such as:
e How an object will behave

e \Where an object will appear

These are important when interacting with the
world
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Challenges

e Maintaining accurate tracking across long sequences
e Tracking points through occlusions

e Maintaining coherence in space and time
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Problem Proposal

A model that:
e Produces globally consistent full-length motion trajectories for all points in a
video
e Can track points through occlusions
e Can tackle in-the-wild videos with any combination of camera and scene

motion.
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Related Work

e Balanced trade offs for

different results

o i.e. precision for long-range

predictability
e Overarching issue with

tracking all pixels.
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Related Work

e Video-based Motion Optimization

o Produces a set of semi dense long-range trajectories from optical flow fields

o Does not allow tracking through occlusions. Reappearing particles are treated as new entities

e Neural Video Representations
o Uses coordinate-based multi-layer perceptrons to focus on problems such as novel view
synthesis and video decomposition.
o Can create mapping between frames but is expensive and unreliable.

o Require known camera poses and thus predicted motion is often erroneous.
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Approach - Overview

e Represents the video in a canonical 3D volume G
e Define a network F that maps each coordinate in G to
a density ¢ and color ¢

e Density

o Gives information about canonical space

o Allows to track surfaces (even through occlusion)
e Color

o Photometric Loss

o Perceived Depth
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Approach - 3D Bijections

e Define bijective mapping T maps 3D points x from each coordinate in frame L

to a canonical 3d coordinate frame called u

z; = T o Ti(w;).

J

e Can train these mappings as

Invertible Neural Networks
Ti(-) = Mo(-;v)
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Approach - Frame-to-Frame Motion

e Now to describe 2D motion for a query pixel p in frame i
e Lift the query pixel to 3D by sampling points on a ray (which contains {z}}

points), then map the 3D points to a target frame.

e Next obtain colors and densities through: (o« c) = Fo(Mg(x¥; 1))

e Lastly aggregate points at the target frame through (method taken from

NeRF): K k—1
&£; = ZTkakmf, where T}, = H(l — )
k=1 =1
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Approach - All together
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Optimization

e Model works but now needs to train and learn

e Broken into 3 steps

Supervision
Collgct Input Apply Loss through
Motion Data ini

Hard Mining

CS391R: Robot Learning (Fall 2023) 12




Collecting Input Motion Data

e Done so through using different methods to compute pairwise

correspondence
o RAFT and TAP-Net
e Next compute all pairwise optical flows

e Apply cycle consistency and appearance consistency to filter out spurious
correspondence.

e Helps reduce noise but still need more methods
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Applying Loss function
Eﬂoz Z ||fi—>j—fi—>j||1

e Trying to minimize predicted flow

.fi—)jEQf
e Minimize the photometric | = o) — O 2
photometric loss Lpho_ Z |C;(p) Cz(p)||2
(Z,p)egp

e Minimize 3D acceleration
Ereg = E ||fI3z'+1 + ®j—1 — 2513z'||1
(i,2)EQ,

between points in frame i+1 and
i-1

e Total loss is the summation of all L = Lo + AphoLpho + Areg Lreg

3 losses
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Supervision via Hard Mining

e Lots of data points through pairwise flow, some

: : . 0o ® O
that is not important/rigid . u 8 #"0
o Background pixels remain relatively constant across :. : :. ..
frames
e Need a way to filter to more important data
e Calculating Euclidean error map to guide the s
@

sampling process during optimization.
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Experimental Setup

Datasets were taking from TAP-Vid

DAYIS Kinetics RGB-Stacking

30 videos _ 1,189 videos 50 videos

34 - 10{1 frames per wdgo 250 frames per video 250 frames per video
21.7 point track annotations 26.3 point track annotations 30 point track annotations
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Experimental work

Four Main Metrics Used:

® <47, e Occlusion Accuracy (OA)
o Average position accuracy of visible o Accuracy of visibility/occlusion at each
points across 1, 2, 4, 8 and 16 pixels frame
e Temporal Coherence (TC) e Average Jaccard (AJ)
o Temporal coherence of tracks by o Evaluates occlusion and position
measuring L2 Norm between accuracy on same thresholds as above.

acceleration of ground-truth tracks and

predicted tracks
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Experimental work

Baselines
e RAFT e TAP-Net
o 2-frame optical flow method to generate o Uses cost volume to predict the location
multi-frame trajectories. of a query point in a target frame
o PIP
o Method for estimating multi-frame point e Deformable Sprites
trajectories that handle occlusions o Alayer based video decomposition
o Set to use temporal window of 8 frames method. Similar to the work at hand, but
e Flow Walk does not directly produce
o A multi-scale contrastive random walk to frame-to-frame correspondence.

learn space-time correspondences
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Experimental Results - Qualitative

PIPs

Ours
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Experimental Results - Quantitative

Method Kinetics DAVIS RGB-Stacking

AJT <é&;1 OAt TC| AJt <&t OAt TC| AJt <&t OAt TC!
RAFT-C [62] 31.7 51.7 843 082 30.7 46.6 80.2 0.93 42.0 56.4 91.5 0.18
RAFT-D [62] 50.6 66.9 85.5 3.00 34.1 48.9 76.1 9.83 72.1 85.1 92.1 1.04
TAP-Net [14] 48.5 61.7 86.6 6.65 384 53.4 814 10.82 613 73.7 91.5 1.52
PIPs | 21] 39.1 55.3 ¥2.9 1.30 39.9 a6.0 ¥1.3 L.78 37.3 al.6 8Y.7 U.84
Flow-Walk-C [5] 409 55.5 845 0.77 352 51.4 80.6 090 413 55.7 92.2 0.13
Flow-Walk-D [5] 46.9 65.9 81.8 3.04 244 40.9 76.5 1041 66.3 82.7 91.2 047
Deformable-Sprites [74] 25.6 39.5 71.4 L70  20.6 32.9 69.7 2.07 45.0 08.3 84.0 099
Ours (TAP-Net) 538 683 888 077 509 667 857 08 734 841 922 0.11
Ours (RAFT) 55.1 69.6 896 076 51.7 67.5 853 074 775 87.0 935 (.13

CS391R: Robot Learning (Fall 2023) 20




Ablation Study

3 different ablation tests:

e No invertible
o Replaces Invertible mapping network with a
separate forward and backward mapping
network between frames (without bijections)
e No Photometric
o  Omits the photometric loss from loss function
e Uniform sampling

o Replaces hard-mining sampling strategy with

uniform sampling strategy
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Method TCl <&yt
No invertible 097 214
No photometric  0.83  58.3
Uniform sampling 0.88  61.8
Full 0.74 675
Method AlJt OAT
No invertible 12.5 76.5
No photometric 423 84.1
Uniform sampling 47.8 83.6
Full 51.7 853
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Discussion

e Where do we set the trade off between having incredibly accurate systems

and having incredibly high computation and training costs?

e How can we develop more memory sparing methods for object tracking once

we are able to expand these models to longer and longer videos?

e How long can an object remain occluded before the model should forget

about it? Or should it even be forgotten at all?
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Limitation

e Rapid and highly non-rigid motion
e Thin Structures
o Fail to provide enough reliable
correspondences
e Caughtin local minima
o Due to the highly non-convex nature of the
data

e Computationally expensive

o Pairwise flows which scale quadratically
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https://docs.google.com/file/d/1YbL7QiHUVCg5DsTVftyQgcNK8yjC6Tl5/preview

Future Work

e More efficient pairwise matching

e Better optimization process
o NeRF -> Block NeRF

o Neural Graphics Primitives
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Further Readings

e Peter Sand and Seth Teller. Particle video: Long-range motion estimation using point
trajectories. Int. J. of Computer Vision, 80:72-91, 2008

e Carl Doersch, Ankush Gupta, Larisa Markeeva, Adria Recasens Continente, Kucas
Smaira, Yusuf Aytar, Joao Carreira, Andrew Zisserman, and Yi Yang. Tap-vid: A
benchmark for tracking any point in a video. In NeurlPS Datasets Track, 2022

e Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Rauvi
Ramamoorthi, and Ren Ng. NeRF: Representing scenes as neural radiance fields for
view synthesis. Communications of the ACM, 65(1):99-106, 2021
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Summary

e Problem: Created a new test-time optimized method for motion estimation
e Limitations: Very expensive and not very good at fine tracking

e Strengths: Deals the best with occlusion than other methods

e OmniMotion can estimate complete and globally consistent motion for an
entire video.

e Does so by introducing a quasi-3D canonical volume and a per-frame local
bijection to produce accurate and smooth long-range tracking through

occlusions.
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