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Background

Reinforcement Learning: 

Q-Learning: 
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Motivation 

● Model-free deep reinforcement learning is expensive in terms of sample 
complexity, want to make it real-world applicable

○ Millions of steps of data collection
○ Complex behavior with high dimensionality

● Model-free deep RL is extremely brittle with respect to hyperparameters
○ Learning rates, constants and other settings must be set specifically per task

● Handle Continuous Action Spaces

● Exploration-Exploitation Trade-off
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Contributions

● Soft Actor-Critic Algorithm
○ Combines elements of Q-learning and entropy regularization 

● Automatic Temperature Tuning
○ Use of entropy regularization adds stability

● Sample Efficiency
○ Improved compared to other RL algorithms, reducing number of sample required for training

● Handling Continuous action Spaces
○ Addresses challenges posed by continuous spaces, showing real-world application

● Exploration vs Exploitation Balance
● Scalability/Application 
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Problem Setting

Learning Problem Definition: 

- a policy search in a Markov Decision Process (MDP) – 

state space: action space: 

Policy for a particular action: 

for action:     and state: 

Maximum Entropy Reinforcement Learning:

Bellman Equations:
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● Principle of Maximum Entropy
● Appendix B.1, B.2, B.3 for full proofs
● Dual Gradient Descent
● Addressing Function Approximation Error in Actor-Critic Methods
● Double Q-Learning

Full Proof and Additional Reading

https://mtlsites.mit.edu/Courses/6.050/2003/notes/chapter10.pdf
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
https://arxiv.org/abs/1802.09477
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
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Related Work

Maximum Entropy Inverse Reinforcement Learning (Ziebart et al., 2008)

- Developed technique of creating solutions to Markov Decision Problems by utilizing the principle of 

maximum entropy

- Limited by its discrete state requirements, not applied to robotics

https://cdn.aaai.org/AAAI/2008/AAAI08-227.pdf
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- Initialize parameters, network 
weights, and relay pool

- Each env step: sample action, 
sample state space for 
transition, and store the 
transition info

- Each gradient step: Update Q-
function, policy weights, 
temperature, and network 
weights

- Output parameters

Algorithm Breakdown



CS391R: Robot Learning (Fall 2023) 9

Simulated Benchmark Experimental Setup

Using OpenAI Gym benchmark Suite on different environments with different robotic control tasks

Tasks include Hopper-v2, Walker2d-v2, HalfCheetah-v2, Ant-v2, Humanoid-v2, and Humanoid (rllab)

Train on: 

- five different instances of each algorithm with different random seeds

- each performing one evaluation rollout every 1000 environment steps.

Hypothesis: 

- SAC will outperform the other baseline models in comparison on the same task in both learning 

speed and overall performance on numerous robot tasks

- SAC’s automatic temperature tuning will improve performance by eliminating manual tuning, 

improving performance across multiple environments
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Simulated Benchmark Experimental Setup cont.

Baseline – Compare the performance of the Soft Actor-Critic (SAC) to the following:

- DDPG (Deep Deterministic Policy Gradient) : off policy

- closely associated with Q-learning

- adapted for environments with continuous action spaces

- PPO (Proximal Policy Optimization) : on-policy

- focuses on optimizing a policy for max expected cumulative rewards

-  SQL (Soft Q-Learning) : off-policy

- extends Q-learning with being stochastic and soft value functions, but is a policy optimizer

- TD3 (Twin Delayed Deep Deterministic Policy Gradient) : off-policy

- learns deterministic policies, explores through added noise.
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Experimental Results Performance Metrics: Average Return
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Quadrupedal Locomotion Experimental Setup

Minitaur robot

- 4 legs, eight direct-drive actuators controlling legs, two actuators per leg form sagittal plane 

movement

- Motor encoders measure motor angles, and an IMU measures orientation and angular velocity of the 

Minitaur’s base

Hypothesis:

- SAC can allow the robot to learn walking patterns in real world situations, even with limited robot 

robustness (can lose balance easily and break)

- The learned policy can be generalized to different terrains without prior training
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Quadrupedal Locomotion Experimental Setup cont.

To evaluate, a limited number of environment steps (160k) and episodes were 
enforced to demonstrate real world training times (about 2 hours), equating to 
about 400 episodes with maximum length of 500 steps

The robot was also placed on different terrains without being restrained.
- slopes
- wooden block obstacles
- stairs

Successes in the new environment will support the authors claim for 
generalizability.
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Results
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Dexterous Hand Manipulation Experimental Setup

The “dclaw” hand

- 3 fingered, 9 DoFs controlled by  Dynamixel servo-motors

- Environment is perceived by raw RGB images, which are processed in a neural network, forcing the 

policy to learn from these images

Hypothesis:

- SAC can enable 3-finger dexterous robotic hand to complex tasks directly from raw RGB images, 

without pre training or simulation

- The learned policy can perceive the valve, its orientation from the images, generated coordinated 

finger movements to rotate the valve

- Demonstrate the ability to learn the task without direct knowledge of the valve’s position or 

orientation
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Results
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Discussion of Results

Conclusions from experiments

● The success of SAC learning via off-policy reinforcement learning is successful at training a model 

in real time to handle baseline environments, as well as generalize to environment variations

● Demonstrated the ability for sample efficiency will the addition of a continuous action space

The authors seemed to be content with the boosted performance in the simulation experiment, which was 

supported by the graphs demonstrating increased average return over other models

But the other experiments lacked many of the quantitative data to back up its claims of state-of-the-art 

superiority to other off-policy deep RL.

- Trainings of the real robot using other algorithms could have demonstrated a true comparison
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Critique / Limitations / Open Issues 

One of the main limitations to this approach is the expertise required to understand the algorithm/model, 

possibly making it difficult for the average computer scientist/researcher to put the algorithm into practice.

Large limitation of relatively large training times are required for the agent to be able to perform the given 

task. While hopeful and a step forward for general purpose robotics, it lacks testing in real world 

environments, ones that may not give the 4-20 hours to train on.

Use of valve location vs RGB images to train shows possibility of multimodal inputs to learn on.

Real world environment tasks are limited in evaluation and lack comparison against other models.
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Future Work for Paper / Reading

“To our knowledge, these results represent the first evaluation of deep reinforcement learning for real-

world training of underactuated walking skills with a quadrupedal robot, as well as one of the most 

complex dexterous manipulation behaviors learned with deep reinforcement learning end-to-end from raw 

image observations.”

Next Steps:

- Evaluate algorithm on new, novel environments

- Stress test the learned policies to evaluate their limits

- Learn and evaluate the algorithm on more situations and tasks
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Extended Readings

How to train your robot with deep reinforcement learning: lessons we have 

learned

Continuous control with deep reinforcement learning

Model-Free Real-Time Autonomous Control for a Residential Multi-Energy System 

Using Deep Reinforcement Learning

https://journals.sagepub.com/doi/full/10.1177/0278364920987859
https://journals.sagepub.com/doi/full/10.1177/0278364920987859
https://arxiv.org/abs/1509.02971
https://ieeexplore.ieee.org/abstract/document/9016168?casa_token=wgdVinncbuIAAAAA:z03tRFd4_SJGXlF_QOp6PpPUaYbUNO1zMI51nZGMsMtzCaXQrPh49vTXPAnuQKww7Ti4s-_gzOU
https://ieeexplore.ieee.org/abstract/document/9016168?casa_token=wgdVinncbuIAAAAA:z03tRFd4_SJGXlF_QOp6PpPUaYbUNO1zMI51nZGMsMtzCaXQrPh49vTXPAnuQKww7Ti4s-_gzOU
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Summary

● The authors tackle the problem of creating a general purpose model free deep RL algorithm that can 

efficiently handle continuous action spaces 

● Solving this problem is a large leap towards general purpose robotics, without large amounts of pre-

training, a problem that often causes a lot of overhead for most models

● Prior work was limited in this sample efficiency and lack of true actor-critic models

● Key insights:

○ Off-policy, entropy learning temperature, and Actor-Critic models allow for complex, dexterous 

policy learning behaviors

○ deep reinforcement learning can also be successful with different modes of input 


