
CS391R: Robot Learning (Fall 2023)

Trust Region Policy Optimization

1

By: John Schulman et. al.

Presented by: Jonathan Salfity

September 26, 2023

CS391R: Robot Learning (Fall 2023) 2

Outline

• Reinforcement Learning and Policy Optimization

• Policy Optimzation: Refresher

• Trust Region applied to Policy Optimization

• Trust Region Policy Optimization: Theoretical and Implementation

• Experimental Results

• Critique / Limitations

• Extended Readings

• Summary

CS391R: Robot Learning (Fall 2023) 3

Context: Reinforcement Learning
We cast an agent’s decision-making framework in a
Reinforcement Learning setting:

The goal of the agent is to take actions that maximizes the
expected sum of future rewards:

goal(agent) = max 𝔼[
∞

∑
t=0

γ tr (st)]
http://incompleteideas.net/book/RLbook2020.pdf

CS391R: Robot Learning (Fall 2023) 4

Motivation: Policy Optimization within RL

In policy optimization, an agent will be represented by a policy,
, parameterized by .π : S ↦ A θ

In policy optimization, an agent wants to directly learn
parameters, , such that the choice in parameters result in
collecting high rewards:

θ

goal(agent) = max
θ

η(π (at |st, θ)) = max
θ

𝔼[
∞

∑
t=0

γ tr (st)]

CS391R: Robot Learning (Fall 2023) 5

An example of Policy Optimization

https://guardianbikes.com/blogs/around-the-block/how-to-teach-a-kid-to-ride-a-bike

When a child learns to ride a bicycle,
they don’t care about the underlying
dynamics of the bicyle…

…they only cares about controlling
their hands and feet to to keep
balance and not fall.

CS391R: Robot Learning (Fall 2023) 6

Policy Optimization: Notation and Useful Expressions
Functions to help better understand policy optimization by
assessing the quality of actions w.r.t their underlying
parameters, , and the objective function, .θ η()

η(πθ) = 𝔼s0,a0,...[
∞

∑
t=0

γ tr (st)]

Qπ(st, at) = 𝔼st+1,at+1,...[
∞

∑
l=0

γ tr (sl+1)]

Vπ(st) = 𝔼at,st+1,...[
∞

∑
l=0

γ tr (sl+1)]

Aπ(s, a) = Qπ(s, a) − Vπ(s)

The discounted sum of
future rewards

The value of a state-action pair

The value of a state

The advantage function quantifies the
marginal improvement of taking a
particular action against any action.

at ∼ π (at |st; θ)

st+1 ∼ P(st+1 |st, at)

Goal: Move towards the object

Reward: End-effector distance to the object

States: Joint angles

Actions: Commanded joint torques

Actions conditioned on the state and
parameterized by θ

Probabilistic transition dynamics

Snapshot of a manipulator during an episode.

CS391R: Robot Learning (Fall 2023)

θθ

η(πθ)

7

Policy Optimization: Refresher
Let’s focus on this optimization problem:

max
θ

η(π (at |st, θ)) = max
θ

η(πθ)

What is the maximum of the function?

η(π*θ) ≥ η(πθ)

How do we find the maximum of a function?
Iterate Parameter Function

Value
θk

θk+1

θ* η (π*θ)

η (πθk)

η (πθk+1)
k

k + 1

k + 2 θk+2 η (πθk+2)

??

The gradient gives us
directional information.

The step-size, , determines
how far to move from the last
iterate.

α

θk+1 ← θk + α∇θ η(πθk
)

Parameter Update Equation:

.

}

η (πθk+1) ≥ η (πθk)

CS391R: Robot Learning (Fall 2023) 8

Policy Optimization: Issues with Gradients, Step-Size

max
θ

η(πθ)

θk+1 ← θk + α∇θ η(πθk
)

̂∇θ η(πθ) = 𝔼τ∼πθ[
∞

∑
t=0

γ t ∇θ logπθ(at |st)Aπ(st, at)]

Optimization problem:

(Theoretical) Parameter Update equation:

How do we numerically compute
the gradient?

θk+1 ← θk + α ̂∇θ η(πθ)

(Numerical) Parameter Update equation:

Policy Gradient Theorem: We can use data
generated by to form an estimate of the
gradient.

πθ

Issues:
The gradient estimate, , is only a first order
approximation, i.e. the function is assumed to be linear,
curvature information is not captured, etc.

Globally estimating the gradient can have high variance
with large state and action spaces.

̂∇θ η(πθ)

The step-size, , is relative to the parameters, , and
not the objective function, , nor the policy .

Large step-sizes result in overshooting. Small step-size
result in slow performance.

α θ
η(πθ) πθ

Is there a better method for the update equation?

CS391R: Robot Learning (Fall 2023)

θθ

η (πθ)

9

Trust Region applied to Policy Optimization
Define a local, trust region, to be a region we think we understand
better.

Find the optimal point within this region.

θk+1 = arg max
θ

ℒ(θk, θ)

s.t. | |α | | ≤ δ

CS391R: Robot Learning (Fall 2023) 10

Trust Region Policy Optimization (TRPO)
TRPO introduces an iterative procedure for
optimizing policies with guaranteed
monotonic improvements.

First, the authors prove that minimizing a
surrogate objective function guarantees
policy improvement with non-trivial step
size.

Next, the authors use numerical
approximations to yield a practical
algorithm, namely TRPO.

θk+1 ← θk + update

θk+1 = arg max
θ

ℒ(θk, θ)

DKL(πθ | |πθk
) ≤ δ

Surrogate loss, ,
represents a local region we
understand better and is
simpler to optimize.

ℒ(θk, θ)

Average KL-divergence
between policies across states
visited by the old policy.

Parameter update rule
guarantees the next policy
iterate is better than the last.

⟹ η(πθk+1
) ≥ η(πθk

)

ℒ(θk, θ) = 𝔼s,a∼πθk
[πθ(a |s)

πθk(a |s)
Aπθk

(s, a)]

D̄KL(θ | |θk) := DKL(πθ | |πθk
)

The surrogate loss is computed by
comparing the marginal benefit of
a new policy w.r.t to an old policy.

The distance between parameters
is essentially the same as the
distance between policies.

CS391R: Robot Learning (Fall 2023) 11

Trust Region Policy Optimization (Theoretical)
TRPO introduces an iterative procedure for
optimizing policies with guaranteed
monotonic improvements.

First, the authors prove that minimizing a
surrogate objective function guarantees
policy improvement with non-trivial step
size.

Next, the authors use numerical
approximations to yield a practical
algorithm, namely TRPO.

θk+1 ← θk + update

θk+1 = arg max
θ

ℒ(θk, θ)

DKL(πθ | |πθk
) ≤ δ

Surrogate loss, , that
is simpler to optimize.

ℒ(θk, θ)

Average KL-divergence
between policies across states
visited by the old policy

Parameter update rule
guarantees the next policy
iterate is better than the last.

⟹ η(πθk+1
) ≥ η(πθk

)

ℒ(θk, θ) = 𝔼s,a∼πθk
[πθ(a |s)

πθk(a |s)
Aπθk

(s, a)]

D̄KL(θ | |θk) = DKL(πθ | |πθk
)

The surrogate loss is computed by
comparing the marginal benefit of
a new policy w.r.t to an old policy

The distance between parameters
is equivalent to the distance
between policies.

CS391R: Robot Learning (Fall 2023) 12

Trust Region Policy Optimization (Theory)
We need a notion of improvement between policies:

Suppose we have two policies. and and
two corresponding reward function values.

π π̃

We know there will be
improvement if this holds.

But there lies a problem because this value
is not applicable to general stochastic policy
classes

However, due to the large state and action
spaces, we find a local approximation of
the loss function w.r.t. the two policies.

Which represents our “surrogate loss”.

Measures the relative difference between
rewards gathered with in comparison to
rewards gathered with .

π̃
π

π̃, η(π̃)

η(π̃) = η(π) + ∑
s

ρπ̃(s)∑
a

π̃ (a |s)Aπ(s, a) We can compare the difference
between two policies associated reward
function values using the advantage
function.

∑
a

π̃ (a |s)Aπ(s, a) ≥ 0

⟹ η(π̃) ≥ η(π)

ℒπ(π̃) = η(π) + ∑
s

ρπ(s)∑
a

π̃ (a |s)Aπ(s, a)

π, η(π)

CS391R: Robot Learning (Fall 2023) 13

Trust Region Policy Optimization (Theory)
Now with a stochastic, parameterized policies, we need a notion for the
difference between policies, , w.r.t the parameterization, :πθ, πθ̃ θ, θ̃

Define some maximum
distance between the two
policies

Use this distance as a constraint
in our optimization problem.

TRPO Theoretical update.

KL Divergence between
parameters, , is the same as
distance between policy,

θ
πθ

DKL(πθ | |πθ̃) ≤ δ

θk+1 = arg max
θ

ℒ(θk, θ)

s.t. DKL(πθ | |πθk
) ≤ δ

DKL(θ | | θ̃) := DKL(πθ | |πθ̃)

CS391R: Robot Learning (Fall 2023) 14

Trust Region Policy Optimization (TRPO)
TRPO introduces an iterative procedure for
optimizing policies with guaranteed
monotonic improvements.

First, the authors prove that minimizing a
surrogate objective function guarantees
policy improvement with non-trivial step
size.

Next, the authors use numerical
approximations to yield a practical
algorithm, namely TRPO.

θk+1 ← θk + some improvement

θk+1 = arg max
θ

ℒ(θk, θ)

DKL(πθ | |πθk
) ≤ δ

Surrogate loss, , that
is simpler to optimize.

ℒ(θk, θ)

Average KL-divergence
between policies across states
visited by the old policy

Parameter update rule
guarantees the next policy
iterate is better than the last.

⟹ η(πθk+1
) ≥ η(πθk

)

ℒ(θk, θ) = 𝔼s,a∼πθk
[πθ(a |s)

πθk(a |s)
Aπθk

(s, a)]

D̄KL(θ | |θk) = DKL(πθ | |πθk
)

The surrogate loss is computed by
comparing the marginal benefit of
a new policy w.r.t to an old policy

The distance between parameters
is equivalent to the distance
between policies.

CS391R: Robot Learning (Fall 2023) 15

Trust Region Policy Optimization (Implementation)

We need a practical method to relate the relative goodness of
two policies.

Importance Sampling computes the marginal benefit of a new
policy with respect to an old policy.

ℒ(θk, θ) = 𝔼s,a∼πθk
[πθ(a |s)

πθk
(a |s)

Aπθk
(s, a)]

Directly comparing a new policy
with data from the old policy.

θk+1 = arg max
θ

𝔼s,a∼πθk
[πθ(a |s)

πθk
(a |s)

Aπθk
(s, a)]

s.t. DKL(πθ | |πθk
) ≤ δ

Now, for each iterate, we can compute optimal next parameter by
solving:

The surrogate objective represents
the marginal improvement by a
policy w.r.t an old policy.

The constraint measures the
distance between two policies.

Key Insight: The objective
function is rewritten using
samples from an old policy.

CS391R: Robot Learning (Fall 2023) 16

Trust Region Policy Optimization (Implementation)

θθ

η (πθ)

Main Idea: Algorithm Implementation:

θk+1 = arg max
θ

ℒ(θk, θ)

s.t. DKL(πθ | |πθk
) ≤ δ

Actually, the author’s work around the work around…

Appendix C: Efficiently Solving the Trust-Region
Constrained Optimization Problem
Taylor Expansion of the objective and the constraint around θk

ℒ(θk, θ) ≈ ̂∇θ η(πθ)
⊤
(θ − θk)

DKL(πθ | |πθk
) ≈

1
2

(θ − θk)⊤H(θ − θk) ≤ δ

for k = 0, 1, 2, do:

1. Collect trajectories by running policy

2. Compute rewards-to-go and advantage estimate

3. Estimate the policy gradient

4. Use Conjugate Gradient method to compute search

direction

5. Update the policy with backtracking line search

6. Fit the value function by regression on MSE

πθk

TRPO Algorithm Sketch

The constraint is solved
through a Quadratic
Program, which means we
have an exact solution at
the cost of inverting a
Hessian matrix, H.

Linear Approximation

Quadratic Approximation

https://spinningup.openai.com/en/latest/algorithms/trpo.html

CS391R: Robot Learning (Fall 2023) 17

Proximal Policy Optimization (PPO)

Motivation: Take the biggest possible improvement step
on a policy within a local, “trusted” region.

TRPO:

θk+1 = arg max
θ

ℒ(θk, θ)

s.t. DKL(πθ | |πθk
) ≤ δ

Theoretical update equation is
optimizing in a local region:

Practical Implementation:

ℒ(θk, θ) ≈ ̂∇θ η(πθ)
⊤
(θ − θk)

DKL(πθ | |πθk
) ≈

1
2

(θ − θk)⊤H(θ − θk) ≤ δ The main problem lies in
numerically computing the
Quadratic Program, i.e. the
second order constraint.

PPO:

θk+1 = arg max
θ

ℒCLIP(θk, θ)

Theoretical update equation is
optimizing in a local region:

The solution is to use a
clipping function to constrain
the distance beween the two
policies.

ℒCLIP(θk, θ) = min (πθ
πθk

Aπθk
(s, a), clip(1 − ϵ,1 + ϵ)Aπθk

(s, a))
In plain English, PPO uses no formal
constraints and instead clips the distance
between policies in the loss function.

… i.e. PPO doesn’t have to solve a
Quadratic Program for the constraint.

CS391R: Robot Learning (Fall 2023) 18

Experimental Setup: Simulated Robotic Locomotion
Swimmer

• Observation: 10-d state space

• Reward: linear reward for forward

progress, quadratic penalty on joint
effort

• Action: Torque applied to rotors

Hopper

• Observation: 12-d state space

• Reward: linear reward for forward

progress, quadratic penalty on joint
effort

• Action: Torque applied to rotors

Walker

• Observation: 18-d state space

• Reward: linear reward for forward

progress, quadratic penalty on joint
effort. Penalty for strong impacts.
Action: Torque applied to rotors

Neural Network Architecture:

Dmax
KL (θold, θ) ≤ 0.2

KL Divergence constraint hardcoded:

CS391R: Robot Learning (Fall 2023) 19

Experimental Results: Simulated Robotic Locomotion

Key Insights:

• TRPO achieves the largest reward with

a steady increase.

• TRPO Vine method shows low variance

throughout policy iterations.

Learning curves contrast the two TRPO
implementations against previous methods.

Questions:

• Why did they choose this NN architecture?

• Why did 0.2 for the KL Divergence

constraint?

• How much compute time and resources is

the local optimization consuming?

CS391R: Robot Learning (Fall 2023) 20

Experimental Setup: Playing Games from Images
Atari games use non-stationary, raw images as input.

Policies must learn complex sequences of behaviors and
manage delayed rewards.

CS391R: Robot Learning (Fall 2023) 21

Experimental Results: Playing Games from Images

Key Insights:

• TRPO is not always better in this case,

which may imply TRPO is better for
continuous control examples.

What’s missing:

• Statistics explaining the reward variance

over games and other error statistics.

• An explanation why the vine method

never improves.

CS391R: Robot Learning (Fall 2023) 22

Critique / Limitations / Open Issues

• How computationally expensive is the Quadratic Program necessary to solve the

constraint?

• How much data is required to form function estimates?

• How do we form intution on policy distance constraint? Can we alternatively use an

adaptive distance?

• How does the trust-region constraint impact the trade-off between exploration and

exploitation?

• From the results, TRPO seems to only work on continuous control tasks, why?

CS391R: Robot Learning (Fall 2023) 23

Extended Readings

• TRPO is a very established and well-trusted algorithm. There exists many sources to explain the

theory and implementation: Pieter Abeel Deep RL video, Spinning Up from OpenAI, Medium Article.

• Trust Regions are not invented by TRPO! They exist in nonlinear optimization literature.

• And of course, PPO is the follow-up paper to TRPO.

https://www.youtube.com/watch?v=KjWF8VIMGiY
https://spinningup.openai.com/en/latest/algorithms/trpo.html
https://jonathan-hui.medium.com/rl-trust-region-policy-optimization-trpo-explained-a6ee04eeeee9
https://www.amazon.com/Numerical-Optimization-Operations-Financial-Engineering/dp/0387303030
https://arxiv.org/abs/1707.06347

CS391R: Robot Learning (Fall 2023) 24

Summary

• TRPO proposes a trust region method for optimizing stochastic control policies

• The theoretical contributions include proving monotonic increase in policy
optimization through a trust region method.

• The practical contributions show how to approximate the necessary functions
with collected data.

• Experimentation show better results for continuous control tasks, where inputs
are low-dimensional states rather than pixels.

