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Context: Reinforcement Learning
We cast an agent’s decision-making framework in a 
Reinforcement Learning setting:

The goal of the agent is to take actions that maximizes the 
expected sum of future rewards:

goal(agent) = max 𝔼[
∞

∑
t=0

γ tr (st)]
http://incompleteideas.net/book/RLbook2020.pdf



CS391R: Robot Learning (Fall 2023) 4

Motivation: Policy Optimization within RL

In policy optimization, an agent will be represented by a policy, 
, parameterized by .π : S ↦ A θ

In policy optimization, an agent wants to directly learn 
parameters, , such that the choice in parameters result in 
collecting high rewards:

θ

goal(agent) = max
θ

η(π (at |st, θ )) = max
θ

𝔼[
∞

∑
t=0

γ tr (st)]
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An example of Policy Optimization

https://guardianbikes.com/blogs/around-the-block/how-to-teach-a-kid-to-ride-a-bike

When a child learns to ride a bicycle, 
they don’t care about the underlying 
dynamics of the bicyle…

…they only cares about controlling 
their hands and feet to to keep 
balance and not fall.
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Policy Optimization: Notation and Useful Expressions
Functions to help better understand policy optimization by 
assessing the quality of actions w.r.t their underlying 
parameters, , and the objective function, .θ η()

η(πθ) = 𝔼s0,a0,...[
∞

∑
t=0

γ tr (st)]

Qπ(st, at) = 𝔼st+1,at+1,...[
∞

∑
l=0

γ tr (sl+1)]

Vπ(st) = 𝔼at,st+1,...[
∞

∑
l=0

γ tr (sl+1)]

Aπ(s, a) = Qπ(s, a) − Vπ(s)

The discounted sum of 
future rewards

The value of a state-action pair

The value of a state

The advantage function quantifies the 
marginal improvement of taking a 
particular action against any action.

at ∼ π (at |st; θ )

st+1 ∼ P(st+1 |st, at)

Goal: Move towards the object


Reward: End-effector distance to the object


States: Joint angles


Actions: Commanded joint torques

Actions conditioned on the state and 
parameterized by θ

Probabilistic transition dynamics

Snapshot of a manipulator during an episode.
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θθ

η(πθ)
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Policy Optimization: Refresher
Let’s focus on this optimization problem:

max
θ

η(π (at |st, θ )) = max
θ

η(πθ)

What is the maximum of the function?

η(π*θ ) ≥ η(πθ)

How do we find the maximum of a function?
Iterate Parameter Function 

Value
θk

θk+1

θ* η (π*θ )

η (πθk)

η (πθk+1)
k

k + 1

k + 2 θk+2 η (πθk+2)

??

The gradient gives us 
directional information.

The step-size, , determines 
how far to move from the last 
iterate. 

α

θk+1 ← θk + α∇θ η(πθk
)

Parameter Update Equation:

. . . . . . . . .

}

η (πθk+1) ≥ η (πθk )
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Policy Optimization: Issues with Gradients, Step-Size

max
θ

η(πθ)

θk+1 ← θk + α∇θ η(πθk
)

̂∇θ η(πθ) = 𝔼τ∼πθ[
∞

∑
t=0

γ t ∇θ logπθ(at |st)Aπ(st, at)]

Optimization problem:

(Theoretical) Parameter Update equation:

How do we numerically compute 
the gradient?

θk+1 ← θk + α ̂∇θ η(πθ)

(Numerical) Parameter Update equation:

Policy Gradient Theorem: We can use data 
generated by  to form an estimate of the 
gradient.

πθ

Issues:
The gradient estimate, , is only a first order 
approximation, i.e. the function is assumed to be linear, 
curvature information is not captured, etc.


Globally estimating the gradient can have high variance 
with large state and action spaces.


̂∇θ η(πθ)

The step-size, , is relative to the parameters, , and 
not the objective function, , nor the policy .


Large step-sizes result in overshooting. Small step-size 
result in slow performance.

α θ
η(πθ) πθ

Is there a better method for the update equation?
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θθ

η (πθ )
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Trust Region applied to Policy Optimization
Define a local, trust region, to be a region we think we understand 
better.

Find the optimal point within this region.

θk+1 = arg max
θ

ℒ(θk, θ )

s.t. | |α | | ≤ δ
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Trust Region Policy Optimization (TRPO)
TRPO introduces an iterative procedure for 
optimizing policies with guaranteed 
monotonic improvements.

First, the authors prove that minimizing a 
surrogate objective function guarantees 
policy improvement with non-trivial step 
size.

Next, the authors use numerical 
approximations to yield a practical 
algorithm, namely TRPO.

θk+1 ← θk + update

θk+1 = arg max
θ

ℒ(θk, θ )

DKL(πθ | |πθk
) ≤ δ

Surrogate loss, , 
represents a local region we 
understand better and is 
simpler to optimize.

ℒ(θk, θ )

Average KL-divergence 
between policies across states 
visited by the old policy.

Parameter update rule 
guarantees the next policy 
iterate is better than the last.

⟹ η(πθk+1
) ≥ η(πθk

)

ℒ(θk, θ ) = 𝔼s,a∼πθk
[ πθ(a |s)

πθk(a |s)
Aπθk

(s, a)]

D̄KL(θ | |θk) := DKL(πθ | |πθk
)

The surrogate loss is computed by 
comparing the marginal benefit of 
a new policy w.r.t to an old policy.

The distance between parameters 
is essentially the same as the 
distance between policies.
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Trust Region Policy Optimization (Theoretical)
TRPO introduces an iterative procedure for 
optimizing policies with guaranteed 
monotonic improvements.

First, the authors prove that minimizing a 
surrogate objective function guarantees 
policy improvement with non-trivial step 
size.

Next, the authors use numerical 
approximations to yield a practical 
algorithm, namely TRPO.

θk+1 ← θk + update

θk+1 = arg max
θ

ℒ(θk, θ )

DKL(πθ | |πθk
) ≤ δ

Surrogate loss, , that 
is simpler to optimize.

ℒ(θk, θ )

Average KL-divergence 
between policies across states 
visited by the old policy

Parameter update rule 
guarantees the next policy 
iterate is better than the last.

⟹ η(πθk+1
) ≥ η(πθk

)

ℒ(θk, θ ) = 𝔼s,a∼πθk
[ πθ(a |s)

πθk(a |s)
Aπθk

(s, a)]

D̄KL(θ | |θk) = DKL(πθ | |πθk
)

The surrogate loss is computed by 
comparing the marginal benefit of 
a new policy w.r.t to an old policy

The distance between parameters 
is equivalent to the distance 
between policies.
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Trust Region Policy Optimization (Theory)
We need a notion of improvement between policies:

Suppose we have two policies.  and  and 
two corresponding reward function values.

π π̃

We know there will be 
improvement if this holds.

But there lies a problem because this value 
is not applicable to general stochastic policy 
classes

However, due to the large state and action 
spaces, we find a local approximation of 
the loss function w.r.t. the two policies.


Which represents our “surrogate loss”. 


Measures the relative difference between 
rewards gathered with  in comparison to 
rewards gathered with .

π̃
π

π̃, η(π̃)

η(π̃) = η(π) + ∑
s

ρπ̃(s)∑
a

π̃ (a |s)Aπ(s, a) We can compare the difference 
between two policies associated reward 
function values using the advantage 
function.

∑
a

π̃ (a |s)Aπ(s, a) ≥ 0

⟹ η(π̃) ≥ η(π)

ℒπ(π̃) = η(π) + ∑
s

ρπ(s)∑
a

π̃ (a |s)Aπ(s, a)

π, η(π)
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Trust Region Policy Optimization (Theory)
Now with a stochastic, parameterized policies, we need a notion for the 
difference between policies, , w.r.t the parameterization, :πθ, πθ̃ θ, θ̃

Define some maximum 
distance between the two 
policies

Use this distance as a constraint 
in our optimization problem.


TRPO Theoretical update.

KL Divergence between 
parameters, , is the same as 
distance between policy, 

θ
πθ

DKL(πθ | |πθ̃) ≤ δ

θk+1 = arg max
θ

ℒ(θk, θ )

s.t. DKL(πθ | |πθk
) ≤ δ

DKL(θ | | θ̃ ) := DKL(πθ | |πθ̃)
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Trust Region Policy Optimization (TRPO)
TRPO introduces an iterative procedure for 
optimizing policies with guaranteed 
monotonic improvements.

First, the authors prove that minimizing a 
surrogate objective function guarantees 
policy improvement with non-trivial step 
size.

Next, the authors use numerical 
approximations to yield a practical 
algorithm, namely TRPO.

θk+1 ← θk + some improvement

θk+1 = arg max
θ

ℒ(θk, θ )

DKL(πθ | |πθk
) ≤ δ

Surrogate loss, , that 
is simpler to optimize.

ℒ(θk, θ )

Average KL-divergence 
between policies across states 
visited by the old policy

Parameter update rule 
guarantees the next policy 
iterate is better than the last.

⟹ η(πθk+1
) ≥ η(πθk

)

ℒ(θk, θ ) = 𝔼s,a∼πθk
[ πθ(a |s)

πθk(a |s)
Aπθk

(s, a)]

D̄KL(θ | |θk) = DKL(πθ | |πθk
)

The surrogate loss is computed by 
comparing the marginal benefit of 
a new policy w.r.t to an old policy

The distance between parameters 
is equivalent to the distance 
between policies.
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Trust Region Policy Optimization (Implementation)

We need a practical method to relate the relative goodness of 
two policies.

Importance Sampling computes the marginal benefit of a new 
policy with respect to an old policy.

ℒ(θk, θ ) = 𝔼s,a∼πθk
[ πθ(a |s)

πθk
(a |s)

Aπθk
(s, a)]

Directly comparing a new policy 
with data from the old policy.

θk+1 = arg max
θ

𝔼s,a∼πθk
[ πθ(a |s)

πθk
(a |s)

Aπθk
(s, a)]

s.t. DKL(πθ | |πθk
) ≤ δ

Now, for each iterate, we can compute optimal next parameter by 
solving:

The surrogate objective represents 
the marginal improvement by a 
policy w.r.t an old policy.


The constraint measures the 
distance between two policies.

Key Insight: The objective 
function is rewritten using 
samples from an old policy.
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Trust Region Policy Optimization (Implementation)

θθ

η (πθ )

Main Idea: Algorithm Implementation:

θk+1 = arg max
θ

ℒ(θk, θ )

s.t. DKL(πθ | |πθk
) ≤ δ

Actually, the author’s work around the work around…

Appendix C: Efficiently Solving the Trust-Region 
Constrained Optimization Problem
Taylor Expansion of the objective and the constraint around θk

ℒ(θk, θ ) ≈ ̂∇θ η(πθ)
⊤
(θ − θk)

DKL(πθ | |πθk
) ≈

1
2

(θ − θk)⊤H(θ − θk) ≤ δ

for k = 0, 1, 2, do:

1. Collect trajectories by running policy 

2. Compute rewards-to-go and advantage estimate

3. Estimate the policy gradient

4. Use Conjugate Gradient method to compute search 

direction

5. Update the policy with backtracking line search

6. Fit the value function by regression on MSE

πθk

TRPO Algorithm Sketch

The constraint is solved 
through a Quadratic 
Program, which means we 
have an exact solution at 
the cost of inverting a 
Hessian matrix, H.

Linear Approximation

Quadratic Approximation

https://spinningup.openai.com/en/latest/algorithms/trpo.html
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Proximal Policy Optimization (PPO)

Motivation: Take the biggest possible improvement step 
on a policy within a local, “trusted” region.

TRPO:

θk+1 = arg max
θ

ℒ(θk, θ )

s.t. DKL(πθ | |πθk
) ≤ δ

Theoretical update equation is 
optimizing in a local region:

Practical Implementation:

ℒ(θk, θ ) ≈ ̂∇θ η(πθ)
⊤
(θ − θk)

DKL(πθ | |πθk
) ≈

1
2

(θ − θk)⊤H(θ − θk) ≤ δ The main problem lies in 
numerically computing the 
Quadratic Program, i.e. the 
second order constraint.

PPO:

θk+1 = arg max
θ

ℒCLIP(θk, θ )

Theoretical update equation is 
optimizing in a local region:

The solution is to use a 
clipping function to constrain 
the distance beween the two 
policies. 

ℒCLIP(θk, θ ) = min ( πθ
πθk

Aπθk
(s, a), clip(1 − ϵ,1 + ϵ)Aπθk

(s, a))
In plain English, PPO uses no formal 
constraints and instead clips the distance 
between policies in the loss function.

… i.e. PPO doesn’t have to solve a 
Quadratic Program for the constraint.
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Experimental Setup: Simulated Robotic Locomotion
Swimmer

• Observation: 10-d state space

• Reward: linear reward for forward 

progress, quadratic penalty on joint 
effort


• Action: Torque applied to rotors

Hopper

• Observation: 12-d state space

• Reward: linear reward for forward 

progress, quadratic penalty on joint 
effort


• Action: Torque applied to rotors

Walker

• Observation: 18-d state space

• Reward: linear reward for forward 

progress, quadratic penalty on joint 
effort. Penalty for strong impacts. 
Action: Torque applied to rotors

Neural Network Architecture:

Dmax
KL (θold, θ ) ≤ 0.2

KL Divergence constraint hardcoded:
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Experimental Results: Simulated Robotic Locomotion

Key Insights:

• TRPO achieves the largest reward with 

a steady increase.

• TRPO Vine method shows low variance 

throughout policy iterations.

Learning curves contrast the two TRPO 
implementations against previous methods.

Questions:

• Why did they choose this NN architecture?

• Why did 0.2 for the KL Divergence 

constraint?

• How much compute time and resources is 

the local optimization consuming?
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Experimental Setup: Playing Games from Images
Atari games use non-stationary, raw images as input.

Policies must learn complex sequences of behaviors and 
manage delayed rewards.
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Experimental Results: Playing Games from Images

Key Insights:

• TRPO is not always better in this case, 

which may imply TRPO is better for 
continuous control examples.

What’s missing:

• Statistics explaining the reward variance 

over games and other error statistics.

• An explanation why the vine method 

never improves.
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Critique / Limitations / Open Issues

• How computationally expensive is the Quadratic Program necessary to solve the 

constraint?


• How much data is required to form function estimates? 


• How do we form intution on policy distance constraint? Can we alternatively use an 

adaptive distance?


• How does the trust-region constraint impact the trade-off between exploration and 

exploitation?


• From the results, TRPO seems to only work on continuous control tasks, why?
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Extended Readings

• TRPO is a very established and well-trusted algorithm. There exists many sources to explain the 

theory and implementation: Pieter Abeel Deep RL video, Spinning Up from OpenAI, Medium Article.


• Trust Regions are not invented by TRPO! They exist in nonlinear optimization literature.


• And of course, PPO is the follow-up paper to TRPO.


https://www.youtube.com/watch?v=KjWF8VIMGiY
https://spinningup.openai.com/en/latest/algorithms/trpo.html
https://jonathan-hui.medium.com/rl-trust-region-policy-optimization-trpo-explained-a6ee04eeeee9
https://www.amazon.com/Numerical-Optimization-Operations-Financial-Engineering/dp/0387303030
https://arxiv.org/abs/1707.06347
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Summary

• TRPO proposes a trust region method for optimizing stochastic control policies


• The theoretical contributions include proving monotonic increase in policy 
optimization through a trust region method.


• The practical contributions show how to approximate the necessary functions 
with collected data.


• Experimentation show better results for continuous control tasks, where inputs 
are low-dimensional states rather than pixels.



