
CS391R: Robot Learning (Fall 2023)

Code as Policies:

Language Model Programs for Embodied Control

1

Presenter: Arpit Bahety

31 October 2023

CS391R: Robot Learning (Fall 2023) 2

Motivation

Place the dish a
bit to the left

Move the arm
slowly near the

glass

Put the apple
down when you

see the plate

CS391R: Robot Learning (Fall 2023) 3

Language in Robotics

Do As I Can, Not As I Say: Grounding Language in Robotic Affordances, CoRL 2022

CS391R: Robot Learning (Fall 2023) 4

VLM LLM

Robot Policies

Socratic Models: Composing Zero-Shot Multimodal Reasoning
with Language, ICLR 2023

Language in Robotics

CS391R: Robot Learning (Fall 2023) 5

Instruction: Move the coke can a bit to the right

[14] Language models as zero-shot planners: Extracting actionable knowledge for embodied agents

[17] Do as i can, not as i say: Grounding language in robotic affordances

[18] Inner monologue: Embodied reasoning through planning with language models

[16] Socratic models: Composing zero-shot multimodal reasoning with language

Language in Robotics

CS391R: Robot Learning (Fall 2023) 6

Language in Robotics

CS391R: Robot Learning (Fall 2023) 7

Key insight

Intuition and commonsense is not just a high-level thing but applies to
low-level behaviors too!

But how to extract it?

CS391R: Robot Learning (Fall 2023) 8

Language Model Programs Output Code as Policies

Learn Robot Policies Use LLMs to Plan Code as Policies

Use LLMs to Write Robot Code

CS391R: Robot Learning (Fall 2023) 9

Problem Setting

CS391R: Robot Learning (Fall 2023) 10

Instruction: Move the coke can a bit to the right

And so now..

CS391R: Robot Learning (Fall 2023) 11

Approach

Given examples (via few-shot
prompting), map language
instruction to code snippets

• React to perceptual inputs

• Parametrize control APIs

• Directly compiled and executed

on robot

Put the red block to the left of the rightmost bowl

CS391R: Robot Learning (Fall 2023) 12

[PROMPT - High-level UI]
objects = ['red block', 'green block', 'blue block', 'red bowl', 'green bowl', 'blue bowl']
put the red block to the left of the rightmost bowl.
rightmost_bowl_name = parse_obj_name('the rightmost bowl', f'objects = {get_obj_names()}')
if rightmost_bowl_name:
 say(f'Putting the red block to the left of the {rightmost_bowl_name}')
 left_pos = parse_position(f'a point 10cm left of the {rightmost_bowl_name}')
 put_first_on_second('red block', left_pos)
else:
 say('There are no bowls')

[PROMPT - Parse Object Names]
objects = ['red block', 'green block', 'blue block', 'red bowl', 'green bowl', 'blue bowl']
the rightmost bowl.
bowl_names = ['red bowl', 'green bowl', 'blue bowl']
bowl_positions = get_obj_positions_np(bowl_names)
right_bowl_idx = get_right_most_idx(bowl_positions)
right_bowl_name = bowl_names[right_bowl_idx]
ret_val = right_bowl_name

[PROMPT - Prase Positions]
a point 10cm left of the blue bowl.
blue_bowl_name = parse_obj_name('blue bowl', f'objects = {get_obj_names()}')
blue_bowl_pos = get_obj_pos(blue_bowl_name)
left_obj_pos = blue_bowl_pos + [-0.1, 0]
ret_val = left_obj_pos

LMPs can be composed

LMPs can hierarchically
generate functions

First-party libraries

bowl_positions = get_obj_positions_np(bowl_names)
right_bowl_idx = get_right_most_idx(bowl_positions)

[PROMPT - Function Generation]
define function: bowl_positions = get_obj_positions_np(bowl_names).
def get_obj_positions_np(obj_names):
 obj_positions = []
 for obj_name in obj_names:
 obj_positions.append(get_obj_pos(obj_name))
 return np.array(obj_positions)

define function: right_bowl_idx = get_right_most_idx(bowl_positions).
def get_right_most_idx(points):
 return np.argmax(points[:, 0]) Third-party libraries

CS391R: Robot Learning (Fall 2023) 14

Experiments

● Domains

• Code-generation benchmarks

• Drawing shapes via generated waypoints

• Real-world table-top manipulation

• Simulation table-top manipulation

• Mobile navigation and manipulation

● Hypothesis tested

• Can LLMs help perform low-level reasoning and control?

• Evaluate the impact of using hierarchical code generation

• Analyze modes of generalization

CS391R: Robot Learning (Fall 2023) 15

Code-Generation Benchmarks

HumanEval Python Benchmark

RoboCodeGen Benchmark

Hierarchical Code-Generation is Better!

CS391R: Robot Learning (Fall 2023) 16

Simulation Table Top Manipulation

Code as Policies Leads to Better Generalization

CS391R: Robot Learning (Fall 2023) 17

Real-World Table Top Manipulation

CS391R: Robot Learning (Fall 2023) 18

Mobile Manipulation

●

This is the compost bin.
compost_bin_pos, compost_bin_angle = get_robot_pos_and_angle()
compost_bin_name = 'compost bin'
say('ok')

This is the recycle bin.
recycle_bin_pos, recycle_bin_angle = get_robot_pos_and_angle()
recycle_bin_name = 'recycle bin'
say('ok')

This is the landfill bin.
landfill_bin_pos, landfill_bin_angle = get_robot_pos_and_angle()
landfill_bin_name = 'landfill bin'
say('ok')

The coke can and the apple are on the table.
coke_can_loc = 'table'
apple_loc = 'table'
say('ok')

Put way the coke can and the apple on their corresponding bins.
say('got it - putting the coke can and the apple on their corresponding
bins')
goto_loc(coke_can_loc); pick_obj('coke can')
goto_pos(recycle_bin_pos, angle=recycle_bin_angle)
place_at_obj(recycle_bin_name)
goto_loc(apple_loc); pick_obj('apple')
goto_pos(compost_bin_pos, angle=compost_bin_angle)
place_at_obj(compost_bin_name)

CS391R: Robot Learning (Fall 2023) 19

Discussion of Results

• Can perform low-level reasoning and control

• Hierarchical code generation is useful

• Generalization - interpreting natural language instructions, processing
perception outputs, then parameterizing low-dimensional inputs to
control primitives

CS391R: Robot Learning (Fall 2023) 20

Limitations

• Restricted by Perception APIs:

• Only support having a set of unique objects

• Difficult to describe a certain trajectories

• Restricted to the implemented Control APIs

• Limited to examples provided in prompts. e.g. build a house with
the blocks.

CS391R: Robot Learning (Fall 2023) 21

Future Work and Extended Readings

● Future work for paper

● Chain-of-thought for code generation

● Learn control APIs on-the-fly

● Extended Readings

● Language models as zero-shot planners

● Say-can

● Inner-Monologue

● Socratic Models

● Cliport

CS391R: Robot Learning (Fall 2023) 22

Summary

● Can LLMs help with low-level control and reasoning

● SOTA can generate plans or use pre-defined skills

● Key Idea

● Write code as policies instead of language

● Perform hierarchical code-generation

● Zero-shot generalization to various instructions in sim and real-world tasks

