
SURREAL: Open-Source Reinforcement Learning
Framework and Robot Manipulation Benchmark

Linxi Fan∗ Yuke Zhu∗ Jiren Zhu Zihua Liu Orien Zeng

Anchit Gupta Joan Creus-Costa Silvio Savarese Li Fei-Fei

Stanford Vision and Learning Lab (SVL)
Department of Computer Science, Stanford University

surreal.stanford.edu

Abstract: Reproducibility has been a significant challenge in deep reinforcement
learning and robotics research. Open-source frameworks and standardized bench-
marks can serve an integral role in rigorous evaluation and reproducible research.
We introduce SURREAL, an open-source scalable framework that supports state-
of-the-art distributed reinforcement learning algorithms. We design a principled
distributed learning formulation that accommodates both on-policy and off-policy
learning. We demonstrate that SURREAL algorithms outperform existing open-
source implementations in both agent performance and learning efficiency. We
also introduce SURREAL Robotics Suite, an accessible set of benchmarking tasks
in physical simulation for reproducible robot manipulation research. We provide
extensive evaluations of SURREAL algorithms and establish strong baseline results.

Keywords: Robot Manipulation, Reinforcement Learning, Distributed Learning
Systems, Reproducible Research

1 Introduction

Reinforcement learning (RL) has been an established framework in robotics to learn controllers
via trial and error [1]. Classic reinforcement learning literature in robotics has largely relied on
handcrafted features and shallow models [2, 3]. The recent success of deep neural networks in learning
representations [4] has incentivized researchers to use them as powerful function approximators to
tackle more complex control problems, giving rise to deep reinforcement learning [5, 6]. Prior work
has explored the potentials of using deep RL for robot manipulation [7, 8]. Recently we have witnessed
an increasing number of successful demonstrations of deep RL in simulated environments [9, 10, 11]
and on real hardware [12, 13].

However, the challenges of reproducibility and replicability in deep RL have impaired research
progress [14]. Today’s deep RL research has not been as accessible as it should be. Reproducing and
validating published results is rarely straightforward, as it can be affected by numerous factors such
as hyperparameter choices, initializations, and environment stochasticity, especially in absence of
open-source code releases. Furthermore, owing to the data-hungry nature of deep RL algorithms,
we have observed a rising number of state-of-the-art results being achieved by highly sophisticated
distributed learning systems [15, 16, 17]. The heavy engineering factor in cutting-edge deep RL
research has increased the barrier of entry even more for new researchers and small labs. Meanwhile,
benchmarking and reproducibility of robotics research have also been a long-standing challenge
in the robotics community [18, 19]. Attempts to improve this situation include annual robotic
competitions [20, 21] and standardized object sets [22]. However, designing robotic benchmarks that
can be both standardized and widely accessible remains to be an open problem.

Many fields of AI, e.g., computer vision, have made significant progress powered by open-source
software tools [23, 24, 25] and standardized benchmarks [26]. To sustain and facilitate the research of
∗These two authors contributed equally. Email: {jimfan,yukez}@cs.stanford.edu

2nd Conference on Robot Learning (CoRL 2018), Zürich, Switzerland.

http://surreal.stanford.edu


Robotics Suite Surreal Distributed RL Framework

Buffer

Manipulation
Task

Actor #1

Robots

Actor #16
Objects

Experiences

Learner

Exp
erie

nce
s

Trained
Policy

Arenas proprioceptioncamera

Actor #2

...

Experiences

Joint command

Batched
experiences

PPO

DDPG

RL
Algorithms

Model

tim
e

Figure 1: SURREAL is an open-source framework that facilitates reproducible deep reinforcement
learning (RL) research for robot manipulation. We implement scalable reinforcement learning
methods that can learn from parallel copies of physical simulation. We also develop Robotics Suite
as an accessible benchmark for evaluating the RL agents’ performances.

deep RL in robotics, we envision that it is vital to provide a flexible framework for rapid development
of new algorithms and a standardized robotics benchmark for rigorous evaluation.

In this paper, we introduce the open-source framework SURREAL (Scalable Robotic REinforcement-
learning ALgorithms). Standard approaches to accelerating deep RL training focus on parallelizing
the gradient computation [27, 28]. SURREAL decomposes a distributed RL algorithm into four
components: generation of experience (actors), storage of experience (buffer), updating parameters
from experience (learner), and storage of parameters (parameter server). This decoupling of data
generation and learning eliminates the need of global synchronization and improves scalability.
SURREAL offers an umbrella support to distributed variants of both on-policy and off-policy RL
algorithms. To enable scalable learning, we develop a four-layer computing infrastructure on which
RL experiments can be easily orchestrated and managed. The system can be deployed effortlessly on
commercial cloud providers or personal computers. Thanks to the layered design, our system can be
fully replicated from scratch, which also contributes to the reproducibility of our experiments.

Furthermore, we introduce SURREAL Robotics Suite, a diverse set of physics engine-based robotic
manipulation tasks, as an accessible benchmark for evaluating RL algorithms. Simulated systems
have been traditionally used as a debugging tool in robotics to perform mental rehearsal prior to
real-world execution [1]. A series of successful attempts have been made in utilizing simulated data
for learning robot controllers [9, 10, 11, 29, 30]. We expect the simulation-reality gap to be further
narrowed with more advanced simulation design and policy transfer techniques. We hope that this
standardized benchmark, along with the open-source SURREAL codebase, will accelerate future
research in closing the reality gap.

To this end, we develop well performing and distributed variants of PPO [31] and DDPG [6], called
SURREAL-PPO and SURREAL-DDPG. We examine them in six of the Robotics Suite tasks with
single-arm and bimanual robots. We report performance in various setups, including training on
physical states or raw pixels, RL from scratch or aided by VR-based human demonstrations. We
also quantify the scalability of distributed RL framework compared to popular open-source RL
implementations [32, 33] in OpenAI Gym environments [34], the de facto standard continuous RL
benchmark. The experiments show that SURREAL algorithms are able to achieve strong results and
high scalability with increased numbers of parallel actors.

2 Related Work

Deep Reinforcement Learning in Robotics Deep RL methods have been applied to mobile robot
navigation [35, 36] and robot arm manipulation [7, 8, 12, 13, 37]. Both model-based and model-free
RL approaches have been studied. Model-based methods [7, 8, 38] often enjoy sample efficiency
of learning, but pose significant challenges of generalization due to their strong model assumptions.
Model-free methods [10, 12, 13, 37] are more flexible, but usually require large quantity of data. In
this work, we build a distributed learning framework to offer a unified support of two families of
model-free continuous RL methods: value-based methods based on deterministic policy gradients [6]
and trust-region methods [39, 40, 31]. Our focus on developing model-free RL methods and building
simulated robotic benchmarks is encouraged by a series of recent progress on simulation-to-reality
policy transfer techniques [9, 10, 11, 29, 30].

2



Buffer
DDPG: replay

PPO: FIFO

Parameter Server

Cluster Manager

Actor #1

Actor #2

Actor #3

. . .

GPU #1

Learner

GPU #2

. . .

Figure 2: The SURREAL distributed components consists of actors, buffer, learner, and parameter
server. The red arrows denote experience data flow and the blue arrows denote neural network
parameter flow. All components report learning and system statistics to the cluster manager.

Distributed Deep RL Frameworks As the learning community tackles problems of growing sizes
and wider varieties, distributed learning systems have played an integral role in scaling up today’s
learning algorithms to unprecedented scales [15, 41]. The high sample complexity and exploration
challenge in deep RL have accentuated the advantages of distributed RL frameworks. Prior approaches
have relied on asynchronous SGD-style learning (e.g., A3C [27], Gorila [42], ADPG-R [28]), batched
data collection for high GPU throughput (e.g., batched A2C [43], GA3C [44], BatchPPO [32]), and
more recently, multiple CPU actors for experience generation and single GPU learner for model
update (e.g., Ape-X [16] and IMPALA [17]). SURREAL differs from asynchronous gradient methods
like A3C, because the latter shares gradients between decentralized learners instead of sending
experience, which is less desirable because gradients become outdated more rapidly than experience
data. To date, Ape-X and IMPALA have reported state-of-the-art results with off-policy RL in several
benchmarks. SURREAL resembles these two methods, which also separate experience generation
from centralized learning. The major difference is that SURREAL provides a unified approach towards
both on-policy trust region algorithms [31, 40] and off-policy value-based algorithms [6, 45].

3 SURREAL Distributed Reinforcement Learning Framework
SURREAL’s goal is to provide highly scalable implementations of distributed RL algorithms for
continuous control. We develop distributed variants of the on-policy PPO [31] and off-policy DPG [6]
algorithms, and unify them under a single algorithmic framework. We further develop a distributed
computing infrastructure that can be easily replicated and deployed. Here we start with a brief review
of the basics of the PPO and DPG algorithms.

Proximal Policy Optimization Policy gradient algorithms are a robust family of continuous control
techniques that directly maximize the expected sum of rewards. The vanilla policy gradient estimator
is given by ∇θJPG = Eτθ [

∑
t∇θ log πθ(at|st)At], where τθ are the trajectories induced by the

stochastic policy πθ and At is the advantage function. Trust Region Policy Optimization (TRPO) [39]
reduces the variance of policy gradients by enforcing a hard constraint on the Kullback-Leibler (KL)
divergence of the old and new policies. More recently, Proximal Policy Optimization (PPO) [31] has
been proposed as a first-order approximation to TRPO that adaptively regulates the strength of the KL
regularization. PPO can be easily integrated with recurrent neural networks (RNN) in a distributed
setting [40], and has been shown robust towards hyperparameters [31].

Deterministic Policy Gradient Value-based methods learn to maximize state-action value function
Qπ(s, a) = E [Rt|s, a], i.e., the expected value of total returns over successive steps, via the Bellman
update. Deterministic Policy Gradient (DPG) [45] is an off-policy actor-critic method to learn a
policy (actor) that maximizes the estimated expected return computed by a Q-value function (critic):
∇θJDPG = Eτθ

[
∇aQπ(s, a)|a=π(s)∇θπθ(s)

]
. Deep DPG (DDPG) [6] represents both the actor

and the critic by neural networks. We use the experience replay technique [5] to store past experiences
and sample them in batches to train the policy with DPG gradient updates.

3.1 SURREAL Distributed RL Design

The distributed RL formulation in SURREAL consists of four major components illustrated in Fig. 2:
actors, buffer, learner, and parameter server. Our key idea is to separate experience generation
from learning. Parallel actors generate massive amount of experiences in the form of state-action
transition tuples (st, at, st+1, rt), while a centralized learner performs model updates. Each actor
explores independently, which allows them to diversify the collectively-encountered state spaces.

3



      PROVISIONER

Automates Surreal cluster 
setup on all major cloud 
providers.

   ORCHESTRATOR

Replicates hardware 
resources, networking,
& runtime dependencies.

     PROTOCOL

Scalable communication 
for experience data 
& parameter tensors. 

ALGORITHM

Surreal 
RL

-1.2 3.3 0.6

-4.5 0.7 -0.1

0.8 -1.4 2.7

Figure 3: SURREAL reproducible and scalable learning infrastructure. The four layers from left to
right are increasingly abstracted away from the hardware.

This alleviates the exploration challenge in long-horizon robotic manipulation tasks. The centralized
learning eliminates global locking and reduces implementation complexity. Based on these design
principles, we develop distributed versions of PPO and DDPG algorithms, which we will refer to as
SURREAL-PPO and SURREAL-DDPG (pseudocode in Appendix).

On-policy and off-policy deep RL methods employ two different mechanisms of consuming expe-
riences for learning. We introduce a centralized buffer structure to support both. In the on-policy
case, the buffer is a FIFO queue that holds experience tuples in a sequential ordering and discards
experiences right after the model updates. In the off-policy case, the buffer becomes a fixed-size
replay memory [5] that uniformly samples batches of data upon request to allow experience reusing.
The buffer can be sharded on multiple nodes to increase networking capacity.

The learner continuously pulls batches of experiences from the buffer and performs algorithm-specific
parameter updates. Because learning is centralized, it can take advantage of multi-GPU parallelism.
Periodically, the learner posts the latest parameters to the parameter server, which then broadcasts to
all actors to update their behavior policies.

Due to our design’s asynchronous nature and inevitable network latency, the actors’ behavior policies
that generate the experience trajectories can lag behind the learner’s policy by several updates at
the time of gradient computation. This would cause harmful off-policyness for on-policy methods.
IMPALA [17] addresses this discrepancy by using a correction technique called V-trace. We propose
a simpler alternative. SURREAL-PPO learner keeps a target network that is broadcasted to all actors
at a lower frequency. This ensures that a much larger portion of the experience trajectories are
on-policy, except for those generated within the policy lag (i.e. system delay between parameter
server broadcasting target network parameters, to actors actually updating the behavior policy to
the target network). Empirically, we find that the target network mechanism balances the trade-off
between learning speed and algorithmic stability, which is crucial for agent performance.

3.2 SURREAL Heterogeneous Computing Infrastructure
Distributed RL, unlike data parallelism commonly used in supervised learning, requires complex
communication patterns between heterogeneous components as seen in Fig. 2. This has increased the
burden of engineering in distributed RL research. Our goal is to open source a set of well-engineered
computing infrastructure that makes the runtime setup effortless to upper-level algorithm designers,
with reproducibility and scalability as our guiding principles.

We design a four-layer distributed learning pipeline shown above, which decouples the RL algorithms
from the underlying infrastructure (Fig. 3). SURREAL pipeline starts with the provisioner that
guarantees the reproducibility of our cluster setup across Google Cloud, AWS, and Azure. The next
layer, orchestrator, uses a well-established cloud API (Kubernetes) to allocate CPU/GPU resources
and replicate the networking topology of our experiments. We use docker images to ensure that
the runtime environment and dependencies can be exactly reproduced. Further down the pipeline,
the protocol implements efficient communication directives. Some components can be sharded and
load-balanced across multiple nodes to boost performance even further. We implement our algorithms
in PyTorch [25] with benefits of fast prototyping and dynamic computation graphs.

Among open-source distributed RL libraries, TensorFlow-Agent [32], OpenAI Baselines [33], and
GA3C [44] provide very limited support for multi-node training, while SURREAL can easily scale to
hundreds of CPUs and GPUs. Ray [46] is one of the systems that natively feature multi-node training.
It has preliminary support for cloud, but only applies to AWS and does not automate cluster setup in
a systematic manner as we do.

4



Block
Lifting

Block
Stacking

Bimanual
Peg-in-hole

Bimanual
Lifting

Bin
Picking

Nut-and-peg
Assembly

Figure 4: Six robot benchmarking environments. The first row shows initial configurations and the
second row shows the states of task completion. When trained on raw pixel inputs, the agents take
the RGB observations from the same cameras as illustrated in the second row.

4 Robotics Suite: Simulated Robot Manipulation Benchmark

We aim to build a standardized and widely accessible benchmark with high-quality physical simula-
tion, motivated by a series of recent work on leveraging simulated data for robot learning [9, 10, 29].
We develop the Robotics Suite in the MuJoCo physics engine [47], which simulates fast with multi-
joint contact dynamics. It has been a favorable choice adopted by existing continuous control
benchmarks [34, 48]. We provide OpenAI gym-style interfaces [34] in Python with detailed API
documentations, along with tutorials on how to import new robots and create new environments and
new tasks. We highlight four primary features in our suite: 1) procedural generation (Fig. 1): we
provide a modularized API to programmtically generate combinations of robot models, arenas, and
parameterized 3D objects, enabling us to train policies with better robustness and generalization; 2)
control modes: we support joint velocity controllers and position controllers to command the robots;
3) multi-modal sensors: we support heterogeneous types of sensory signals, including low-level phys-
ical states, RGB cameras, depth maps, and proprioception; and 4) teleoperation: we support using 3D
motion devices, such as VR controllers, to teleoperate the robots and collect human demonstrations.
Our current release of the benchmark consists of six manipulation tasks as illustrated in Fig. 4. We
plan to keep expanding the benchmark with additional tasks, new robot models, and more advanced
physics and graphics engines.

Block Lifting: A cube is placed on the tabletop. The Sawyer robot is rewarded for lifting the cube
with a parallel-jaw gripper. We randomize the size and the placement of the cube.

Block Stacking: A red cube and a green cube are placed on the tabletop. The Sawyer robot is
rewarded for lifting the red cube with a parallel-jaw gripper and stack it on top of the green cube.

Bimanual Peg-in-hole: The Baxter robot holds a board with a squared hole in the center in its right
hand, and a long stick in the left hand. The goal is to move both arms to insert the peg into the hole.

Bimanual Lifting: A pot with two handles is placed on the tabletop. The Baxter robot is rewarded
for lifting the pot above the table by a threshold while not tilting the pot over 30 degrees. Thus the
robot has to coordinate its two hands to grasp the handles and balance the pot.

Bin Picking: The Sawyer robot tackles a pick-and-place task, where the goal is to pick four objects
from each category in a bin and to place them into their corresponding containers.

Nut-and-peg Assembly: Two colored pegs are mounted to the tabletop. The Sawyer robot needs to
declutter the nuts lying on top of each other and assembles them onto their corresponding pegs.

Our rationale of designing these tasks is to offer single-arm and bimanual manipulation tasks of large
diversity and varying complexity. The complexity of a task is measured by the estimated number
of steps an optimal agent can solve it and from the mean and variance of the time required by an
experienced human operator using teleoperation routines that interface with a virtual reality controller.
These mean episode durations from the successful human demonstrations — taken to be a proxy
for task difficulty — are shown in Fig. 5. We infer that the Nut-and-peg Assembly and Bin Picking

5



Block
Lifting

Bimanual
Peg­in­hole

Bimanual
Lifting

Block
Stacking

Bin
Picking

Nut­and­peg
Assembly

101

102

H
um

an
 o

pe
ra

to
r 

tim
e 

(s
)

Human VR Teleoperation Performances

Figure 5: We report training curves of our SURREAL-DDPG and SURREAL-PPO on six SURREAL
Robotics Suites tasks. The training curve represents the mean with standard deviation as the translu-
cent band. We train the agents on both ground-truth physical states and raw pixel observations. We
measure the complexity of the tasks as the median completion time by an experienced human operator
using VR controllers to teleoperate the robots using APIs in Robotics Suite.

tasks are the hardest, whereas the Block Lifting and Block Stacking tasks are relatively easier. These
human demonstrations were also used by our RL algorithms to accelerate exploration, as explained
in Sec. 5.1. In the next section, we provide quantitative evaluations of SURREAL algorithms on these
benchmarking tasks.

5 Experiments

We evaluate our SURREAL distributed RL algorithms in all six benchmarking tasks introduced in
Sec. 4. For each task, we train RL agents with SURREAL-PPO and SURREAL-DDPG algorithms
on two settings: ground-truth physical states and raw pixel observations. In the former case, we
use low-dimensional object features (object positions, rotations, etc.) and proprioceptive features
(robot joint positions and velocities) as input. In the latter case, we use RGB camera observations
and proprioceptive features, which are usually available on real robots. We provide detailed experi-
ment specifications, such as network architectures, hyperparameters, training configurations, in the
Appendix. Qualitative results can be viewed at http://surreal.stanford.edu.

5.1 Performances: Robotics Suite
Fig. 5 shows learning curves of our SURREAL-DDPG and SURREAL-PPO implementations on
six Robotics Suite environments. We notice that SURREAL-PPO is able to converge to policies
with lower standard deviations than SURREAL-DDPG. This is because SURREAL-PPO adjusts
its exploration noise standard deviation throughout training, whereas SURREAL-DDPG uses fixed
exploration noise. This is also reflected by the fact that the mean reward of SURREAL-PPO varies
more smoothly than that of SURREAL-DDPG.

Block Lifting and Bimanual Peg-in-hole are the easiest tasks that consist of a single stage. Both
algorithms can solve the tasks with policies trained on both input modalities. We notice that training
time for Block Lifting is longer than Bimanual Peg-in-hole even though these two tasks are similar in
complexity measured by median human completion time illustrated in Fig. 5. We hypothesize that
this is caused by random initialization of object size in addition to position and orientation. Thus,
convergence of training indicates that our algorithms can find robust solutions capable of adapting to
environment variations.

The tasks of Block Stacking (grasping, lifting, and stacking) and Bimanual Lifting (grasping handles
and lifting the pot) have longer horizons. Our algorithms can solve subtasks and achieve intermediate

6

http://surreal.stanford.edu


Figure 6: PPO agent trained on state for the
Bimanual Lifting task with different types of
demonstration curricula.

Figure 7: Training curves with 16 actors: our SUR-
REAL algorithms and baselines on OpenAI Gym
HalfCheetah and Hopper environments.

rewards: in the Bimanual Lifting task, actors learn to place the grippers on the handles but not
to lift. We hypothesize that we need better exploration strategies to solve these tasks. Following
[10], we build a curriculum from human demonstration to assist exploration. With some probability
α, we initialize episodes with states taken along successful trajectories from the demonstrations.
We experiment with three different curricula: in the “uniform” case the state is chosen uniformly
at random from the entire demonstration dataset; “forward” samples states from the beginning
of demonstration trajectories with a slowly growing window; “reverse” samples from the end of
trajectories instead. Fig. 6 shows training results for Bimanual Lifting (states) with these curricula,
using 64 actors. We see that with proper strategies, SURREAL-PPO is able to complete the full task,
which is previously only partially solved.

Bin Picking and Nut-and-peg Assembly are intrinsically more difficult because they have long
horizons and multiple stages. As indicated in Fig. 5, they take the longest time to complete for
humans. RL agents are able to perform a specific subtask but unable to proceed. In the Bin Picking
task, for example, the PPO agents are able to successfully pick up, move, and drop at most one out of
the four items. We believe solving these tasks is beyond the scope of our current algorithms.

5.2 Performances: OpenAI Gym

To put the performances of our distributed RL implementations in context, we run SURREAL on de
facto continuous RL benchmark environments used in previous work [14, 49]. We compare with
OpenAI Baselines DDPG [33] and TensorFlow Agent BatchPPO [32], which are among the popular
open-source distributed reference implementations. Fig. 7a compares the learning curves of our
DDPG and PPO implementations against the baselines on wall-clock time. All algorithms are trained
with 16 actors with the same hardware allocation. Except for OpenAI-DDPG that does not support
GPU out of the box, all other experiments use a single Nvidia P100 GPU for the learner.

Our algorithms outperform all baselines on HalfCheetah by a large margin and perform on a
comparable level as BatchPPO on Hopper. We hypothesize that the differences in both algorithmic
and system design contribute to the performance gap. BatchPPO distribute the experience genera-
tion by producing a batch of actions synchronously, which would be bottlenecked by the slowest
simulation. OpenAI-DDPG collects gradients in a synchronous fashion, which is not as desirable as
communicating experiences asynchronously (see Sec. 3.1).

5.3 Scalability

Fig. 8 shows our system characteristics on Robotics Suite (training on pixels) and Gym environments
(training on states). The total actor throughput is number of environment frames collected by all
actors per second. Our Buffer is sharded and load-balanced to reduce network congestion, which
yields an almost linear speedup with respect to the number of actors. The scalability of our algorithms
becomes more remarkable in our tasks, where complex dynamics and graphical rendering makes
simulation slower than OpenAI Gym by an order of magnitude .

We evaluate the scalability of our methods with respect to varying numbers of actors. Fig. 9 shows
episode rewards on Gym HalfCheetah and Hopper environments. Both our methods and the

7



1 4 16 64
Actors

0

5

10

15

20

25

Fr
am

es
/s

 (×
10

3 )

OpenAI Gym

DDPG
PPO

1 4 16 64
Actors

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Fr
am

es
/s

 (×
10

2 )

Robotics Suite (Pixel)

DDPG
PPO

Figure 8: Total actor throughput: environment
FPS from all actors combined scales linearly
with the number of actors in both algorithms.

Figure 9: Scalability with respect to the number
of actors: our methods v.s. baselines on gym
HalfCheetah and Hopper environments.

Figure 10: Learning curves for SURREAL-PPO and SURREAL-DDPG trained on the block lifting
and bimanual peg-in-hole tasks with raw pixel inputs using different number of actors, ranging from
1, 4, 16, 64. Both algorithms learn sizeably faster with more actor experience throughput.

baselines are trained for 3 hours using 1, 4, 16 and 64 actors with the same hardware resource
allocation. Our methods generally obtain better performance with growing number of actors, and
score higher than the baselines across all actor settings. SURREAL-PPO is on-policy and uses every
experience once; its learner speed is bound by total actor throughput until the learner machine capacity
is saturated. Thus increasing the number of actors speeds up the learner, as demonstrated by the
monotonically increasing curves in Fig. 9. In contrast, the DDPG learner samples from a replay
buffer and reuses experiences; its speed is not directly correlated with the total actor throughput.
If a small number of actors is enough to explore the environment extensively, the learner can still
learn at the maximal possible speed. This is the case for Gym environments where simulation is fast.
SURREAL-DDPG achieves the maximum score with as few as 1 or 4 actors.

In comparison, on Robotics tasks with slower simulation, a large number of actors is needed for
both SURREAL-PPO and SURREAL-DDPG to learn; they show better performance when trained
with more actors. Fig. 10 compares the learning curves of our DDPG and PPO on Block Lifting and
Bimanual Peg-in-hole with pixel inputs. Training with 64 actors results in faster learning and better
final performance. We hypothesize that, given fewer actors (especially 1 and 4 actors), both DDPG
and PPO suffer from inadequate exploration, which causes them to learn much slower or become
trapped at sub-optimal policies.

6 Conclusion

We address the challenge of reproducibility and benchmarking in deep reinforcement learning and
robot manipulation research. We introduce SURREAL, a highly-scalable distributed framework that
supports on-policy and off-policy deep RL algorithms. We develop a novel system infrastructure to
enable reproducibility and extensibility. To rigorously evaluate the performance of the RL algorithms,
we introduce Robotics Suite, which contains a set of manipulation tasks with varying levels of
complexity. We illustrate that our distributed RL algorithms outperform widely used RL libraries on
standard benchmarks, and perform well in manipulation tasks in our new benchmark. In the future,
we plan to expand SURREAL with new algorithms and enrich the benchmark with new tasks. We
hope SURREAL will become a valuable resource for a broad range of manipulation related research,
as a training resource, a standardized benchmark, and a framework for rapid algorithm development.

8



Acknowledgments

We would like to thank many members of the Stanford People, AI & Robots group and the anonymous
reviewers for their constructive feedback. This work is funded by ONR - MURI (1175361-6-TDFEK),
Toyota Research Institute (S-2015-09-Garg), Weichai America Corp. (1208338-1-GWMZY), Tecent
(1198791-1-GWMVE). We would also like to acknowledge Google Cloud for providing the computa-
tional support for the development and experimentation of this project.

References
[1] J. Kober and J. Peters. Reinforcement learning in robotics: A survey. In Reinforcement Learning. 2012.

[2] J. Peters and S. Schaal. Policy gradient methods for robotics. In IROS, pages 2219–2225. IEEE, 2006.

[3] J. Peters, K. Mülling, and Y. Altun. Relative entropy policy search. In AAAI. Atlanta, 2010.

[4] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436, 2015.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, et al. Human-level control through deep reinforcement learning. Nature, 2015.

[6] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous
control with deep reinforcement learning. ICLR, 2016.

[7] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies. arXiv
preprint arXiv:1504.00702, 2015.

[8] A. Yahya, A. Li, M. Kalakrishnan, Y. Chebotar, and S. Levine. Collective robot reinforcement learning
with distributed asynchronous guided policy search. arXiv preprint arXiv:1610.00673, 2016.

[9] A. Rusu, M. Vecerik, T. Rothörl, N. Heess, R. Pascanu, and R. Hadsell. Sim-to-real robot learning from
pixels with progressive nets. arXiv preprint arXiv:1610.04286, 2016.

[10] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunyasuvunakool, J. Kramár, R. Hadsell,
N. de Freitas, et al. Reinforcement and imitation learning for diverse visuomotor skills. RSS, 2018.

[11] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-Real Transfer of Robotic Control with
Dynamics Randomization. arXiv preprint arXiv:1710.06537, Oct. 2017.

[12] Y. Chebotar, M. Kalakrishnan, A. Yahya, A. Li, S. Schaal, and S. Levine. Path integral guided policy
search. In ICRA, 2017.

[13] S. Gu, E. Holly, T. P. Lillicrap, and S. Levine. Deep reinforcement learning for robotic manipulation. arXiv
preprint arXiv:1610.00633, 2016.

[14] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep reinforcement learning that
matters. arXiv preprint arXiv:1709.06560, 2017.

[15] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, et al. Mastering the game of go with deep neural
networks and tree search. Nature, 529(7587):484–489, 2016.

[16] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. van Hasselt, and D. Silver. Distributed
prioritized experience replay. arXiv preprint arXiv:1803.00933, 2018.

[17] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, et al. Impala: Scalable distributed
deep-rl with importance weighted actor-learner architectures. arXiv preprint arXiv:1802.01561, 2018.

[18] A. P. del Pobil, R. Madhavan, and E. Messina. Benchmarks in robotics research. In Workshop IROS, 2006.

[19] R. Madhavan, R. Lakaemper, and T. Kalmár-Nagy. Benchmarking and standardization of intelligent robotic
systems. In International Conference on Advanced Robotics, pages 1–7, 2009.

[20] C. G. Atkeson, B. Babu, N. Banerjee, D. Berenson, C. Bove, X. Cui, M. DeDonato, R. Du, S. Feng,
P. Franklin, et al. What happened at the darpa robotics challenge, and why. 2016.

[21] N. Correll, K. E. Bekris, D. Berenson, O. Brock, A. Causo, K. Hauser, et al. Analysis and observations
from the first amazon picking challenge. IEEE Trans. on Automation Science and Engineering, 2016.

[22] B. Calli, A. Singh, A. Walsman, S. Srinivasa, et al. The YCB object and model set: Towards common
benchmarks for manipulation research. In International Conference on Advanced Robotics, 2015.

[23] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, et al. Caffe: Convolutional architecture for fast feature
embedding. In 22nd ACM international conference on Multimedia, pages 675–678. ACM, 2014.

9



[24] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
et al. Tensorflow: A system for large-scale machine learning. In OSDI, volume 16, pages 265–283, 2016.

[25] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer. Automatic differentiation in PyTorch. 2017.

[26] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, et al. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

[27] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In ICML, 2016.

[28] I. Popov, N. Heess, T. P. Lillicrap, R. Hafner, G. Barth-Maron, M. Vecerik, T. Lampe, et al. Data-efficient
deep reinforcement learning for dexterous manipulation. arXiv preprint arXiv:1704.03073, 2017.

[29] S. James, A. J. Davison, and E. Johns. Transferring end-to-end visuomotor control from simulation to real
world for a multi-stage task. arXiv preprint arXiv:1707.02267, 2017.

[30] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization for transferring
deep neural networks from simulation to the real world. arXiv preprint arXiv:1703.06907, 2017.

[31] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

[32] D. Hafner, J. Davidson, and V. Vanhoucke. Tensorflow agents: Efficient batched reinforcement learning in
tensorflow. arXiv preprint arXiv:1709.02878, 2017.

[33] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, and Y. Wu.
Openai baselines. https://github.com/openai/baselines, 2017.

[34] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

[35] Y. Zhu, R. Mottaghi, E. Kolve, et al. Target-driven visual navigation in indoor scenes using deep rl. In
International Conference on Robotics and Automation (ICRA), pages 3357–3364. IEEE, 2017.

[36] E. Parisotto and R. Salakhutdinov. Neural map: Structured memory for deep reinforcement learning. arXiv
preprint arXiv:1702.08360, 2017.

[37] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel. Asymmetric Actor Critic for
Image-Based Robot Learning. ArXiv e-prints, 2017.

[38] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine. Neural network dynamics for model-based deep
reinforcement learning with model-free fine-tuning. arXiv preprint arXiv:1708.02596, 2017.

[39] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization. In ICML,
pages 1889–1897, 2015.

[40] N. Heess, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez, Z. Wang, A. Eslami, M. Riedmiller,
et al. Emergence of locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286, 2017.

[41] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker, et al. Large scale
distributed deep networks. In Advances in neural information processing systems, pages 1223–1231, 2012.

[42] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria, V. Panneershelvam, M. Suleyman,
et al. Massively parallel methods for deep reinforcement learning. arXiv preprint arXiv:1507.04296, 2015.

[43] A. V. Clemente, H. N. Castejón, and A. Chandra. Efficient parallel methods for deep reinforcement
learning. arXiv preprint arXiv:1705.04862, 2017.

[44] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, and J. Kautz. Reinforcement learning thorugh asyn-
chronous advantage actor-critic on a GPU. In ICLR, 2017.

[45] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic policy gradient
algorithms. In ICML, 2014.

[46] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, W. Paul, M. I. Jordan, and I. Stoica.
Ray: A distributed framework for emerging AI applications. 2017.

[47] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In IROS, pages
5026–5033, 2012.

[48] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden, A. Abdolmaleki, J. Merel,
A. Lefrancq, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

[49] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforcement learning
for continuous control. ICML, 2016.

[50] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous control using
generalized advantage estimation. International Conference on Learning Representations (ICLR), 2016.

10

https://github.com/openai/baselines


A Experiment Details

A.1 SURREAL-PPO

When training with pixel inputs, an 84 × 84 × 3 RGB image is fed into a convolutional neural
network (CNN) feature extractor. The extractor consists of an 8× 8 convolution with 16 filters and
stride 4, followed by a 4 × 4 convolution with 32 filters and stride 2, with ReLU activations. The
convolution outputs are flattened and passed into a linear layer of size 256, which is concatenated
to the proprioceptive inputs. The concatenated feature is fed into a 1-layer long short-term memory
(LSTM) network with cell size 100. The LSTM output is fed into two separate feedforward networks
for actor and critic. Both feedforward networks have hidden layers of size 300 and 200. The actor
network outputs an action mean and log of standard deviation for each action dimension, whereas the
critic network outputs a scalar. The actions are sampled with action mean and standard deviation
kept by the actor network before feeding back to the environment. The critic and actor network are
updated through backpropagation through time with fixed-size LSTM rollouts.

To compute the loss, we first compute advantage for each timestep using generalized advantage
estimate (GAE) [50]. In our implementation, we find the adaptive KL variant of PPO [31] to be more
stable. In the distributed setting, when the learner publishes its parameters, agents may still be doing
rollouts using an outdated set of parameters. This communication latency makes the algorithm not
strictly on-policy, leading to divergent behaviors. In SURREAL-PPO learner, a set of target network
parameters is kept along side of a set of updated model parameters. The target model parameters
are broadcasted to the actors at a lower frequency to stabilize learning. We use the number of model
update steps before broadcasting to measure the target network update frequency: more model update
steps correspond to a lower frequency. The frequency used in our experiments is 64 steps; divergent
behaviors would occur with fewer than 16 steps. One way to interpret the reference target model is
that it maintains a fixed center of the trust region. The learner is encouraged to optimize policy within
the trust region since the adaptive KL-penalty variant of PPO penalizes excess KL-divergence. We
also find that normalizing the low-dimensional states with a running estimate of mean and variance
(z-filtering) helps stability and convergence for SURREAL-PPO.

The learner iteration speed for SURREAL-PPO can vary for different tasks and hyperparameters.
Particularly, LSTM rollout length L and Return horizonH have the most impact. Thus each datapoint
in SURREAL-PPO corresponds to an entire sub-trajectory worth of training data as opposed to one
environment step in DDPG. At the update time, truncated backpropagation through time is performed
at each state within the sub-trajectory rollout. SURREAL-PPO also updates each experience received
from actors multiple times to make the best use of on-policy nature of the algorithm. Thus, we
find that the learner iteration throughput can vary based on hyperparameters used. Incidentally,
increasing LSTM rollout and update epochs per experience can drastically impact learner throughput.
Detailed hyperparameters are provided in Table 1. Notations of these hyperparameters are provided in
parentheses. Algorithm 3 will refer to the same notations. We note that with the listed hyperparameter
choice, SURREAL-PPO achieves 350 iterations per second on Gym benchmark environments and 70
iterations per second on SURREAL robotics benchmark in full capacity.

Table 1: Selected SURREAL-PPO hyperparameters

Parameter Value
z-filtering on states Yes
n-step reward/return horizon (H) 5
discount factor (γ) 0.99
target KL-divergence (KLtarget) 0.02
actor/critic update epoch (E) 5
learning Rate 1e-4
target network hard update interval 4096
initial log-sigma -1.0

11



A.2 SURREAL-DDPG

When training with pixels, we stack the most recent 3 camera observations as input to the DDPG
model. The stacked images are then fed through an 8 × 8 convolution with 16 filters and stride 4,
followed by a 4× 4 convolution with 32 filters and stride 2, with ReLU activations. The convolution
filter parameters are shared between the actor and critic networks. For the purpose of gradient
updates, the convolution parameters are updated only by gradient descent on the critic loss. The
convolution outputs are flattened and passed into a linear layer of size 200, which is concatenated to
the proprioceptive feature.

This combined image and proprioceptive feature is used in both the actor and critic networks. In
the actor network, this feature is passed through two hidden layers of size 300 and 200 before
being converted to the action output, with a layer normalization step after each hidden layer. In the
critic network, this feature is passed through two hidden layers of size 400 and 300, with a layer
normalization after each hidden layer. The action is concatenated to the first hidden layer after the
layer normalization has been performed. Each actor explores using Ornstein-Uhlenbeck noise. Each
actor is assigned an exploration noise σ parameter that remains constant over the course of training,
where σ is scaled linearly between a minimum of 0 and a maximum of 1.0 across the actors.

For the Robotics Suite experiments, we find them to be more sensitive to layer normalization than
the Gym environments. Bimanual Peg-in-hole experiments are run with layer normalization, 6-step
rewards, no weight decay, and a maximum σ value of 1.0. Block lifting experiments use no layer
normalization, 3-step rewards, weight decay of 0.0001, and a maximum σ value of 2.0. Table 2
provides a select list of hyperparameter choices mentioned above.

Table 2: Select SURREAL-DDPG hyperparameters

Parameter Value
image dimension 84× 84× 3
frame stacking 3
batch size 512
clip actor network gradient norm 1.0
clip critic network gradient norm No
actor (θactor) learning rate 1e-4
critic (θcritic) learning rate 1e-4
target network (θtarget) hard update interval (U ) 500
learner parameter publish interval (S) 3 seconds

A.3 Hardware Specifications

We deploy our distributed system onto a Kubernetes cluster based on Google Cloud. For Gym
environments, each actor uses a n1-standard-2 machine with 2 CPUs. For Robot Suite environments,
every 8 actors share a n1-standard-8 machine with 8 CPUs and an Nvidia Tesla K80 GPU. The GPU
speeds up both physical simulation and neural network forward passes of the actors. The buffer and
learner are deployed on a single machine with 16 CPUs and an Nvidia Tesla P100 GPU.

B Algorithm Pseudocode

Detailed Pseudocode for Actor and Learner are provided in Algorithm 1 and Algorithm 2, which pro-
vides a unified abstraction for on-policy and off-policy learning. Detailed Pseudocode for SURREAL-
PPO and SURREAL-DDPG are provided in Algorithm 3 and Algorithm 4.

In SURREAL-PPO, L denotes LSTM rollout lengths. H denotes return horizon. λ denotes constant
parameter for GAE calculation. ξkl denotes the adaptive KL-penalty constant. βlow, βhigh, α denotes
boundary range and scaling constant for ξkl respectively. KLtarget denotes the target KL-divergence.

In SURREAL-DDPG, θcritic, θactor, and θtarget denote the critic, actor, and target network parameters,
and πθ denotes to a policy given actor parameters θ, and Qθ denotes a value estimation function
given critic parameters θ. τ denotes a collection of observations states, actions, and rewards. Target

12



parameters are updated every U gradient updates, and parameters are published to the parameter
server every S seconds.

Algorithm 1 Actor
1: procedure ACTOR . Run actor in environment simulator and send experiences to Buffer.
2: θ0 ← PARAMETERSERVER.PARAMETERS( ) . subscribe to parameter server updates.
3: s0 ← ENVIRONMENT.INITIALIZE( ) . Get initial state from environment.
4: for t = 1 to T do . loop until max episodes
5: at−1 ← πθt−1(st−1) . Select an action using the current policy.
6: (rt, γt, st)← ENVIRONMENT.STEP(at−1) . Apply the action in the environment.
7: LOCALBUFFER.APPEND(st−1, at−1, rt, γt) . Buffer experience to send in bulk.
8: PERIODICALLY(BUFFER.UPLOAD(LocalBuffer)) . Send experience to Buffer.
9: AFTERUPLOAD(CLEAR(LocalBuffer))

10: PERIODICALLY(θt ← PARAMETERSERVER.PARAMETERS()) . Obtain latest parameters.
11: end for
12: end procedure

Algorithm 2 Learner
1: procedure LEARNER(T ) . Update network using batches sampled from memory.
2: θ0 ← INITIALIZENETWORK( )
3: for t = 1 to T do . Update the parameters T times.
4: id, τ ← BUFFER.SAMPLE( ) . Retrieve a batch of experience from Buffer.
5: θt+1 ← 〈UPDATEPARAMETERS〉(τ ; θt) . See Algorithm 3 for PPO and Algorithm 4 for DDPG.
6: PERIODICALLY(PUBLISHPARAMETERS(θt+1)) . Publish parameters to Parameter Server.
7: end for
8: end procedure

C Benchmark Environment Details

All six environments are simulated at 10Hz control rate. The robots are controlled via joint velocity.
There are three types of observations: proprioceptive features, object features, and camera obser-
vations. Proprioceptive features contain cos and sin of robot joint positions, robot joint velocities
and current configuration of the gripper. Object features contain environment-specific values that
describe the states and relationships of objects of interest. Camera observations are 84× 84 RGB
images. When trained on states, the agent receives proprioceptive and object features. When trained
on pixels, the agent receives proprioceptive features and camera observations.

Block Lifting: A cube is placed on the table. The Saywer robot is rewarded for lifting the cube with a
parallel-jaw gripper. Each episode lasts for 200 timesteps. Each step receives reward at most 2.25 (at
most 450 for an entire episode). The cube is randomized in size, initial position and initial orientation.
Object features contain position and orientation of the cube, absolute position of the gripper and
position difference between the gripper and the cube. The agent gets reward r = r1 + r2 + r3.
r1 ∈ [0, 1] is 1 when the gripper’s grip site is at the cube’s position. It decreases as the grip site is
further away. r2 = 0.25 if both fingers of the gripper are touching the cube and r2 = 0 otherwise.
r3 = 1 if the cube’s center is above a certain value such that the robot must be lifting the cube. It is
zero otherwise.

Block Stacking: A red cube and a green cube are placed on the tabletop. The Saywer robot is
rewarded for lifting the red cube with a parallel-jaw gripper and stacking it on top of the green cube.
Each episode lasts for 500 timesteps. Each step receives reward at most 2 (at most 1000 for an
entire episode). The cubes are randomized in initial positions and initial orientations. Object features
contain position and orientation of both cubes, absolute position of the gripper, position difference
between the gripper and both cubes, position difference between the two cubes and position and
orientation of the gripper. The agent gets reward r ∈ [0, 0.25] for positioning the grip site at the red
cube’s position. If both fingers are touching the red cube, an additional 0.25 is rewarded. r ∈ [1, 1.5]
when the red cube is lifted above the table, where r = 1.5 if the red cube is lifted above the green
cube. r = 2 if the red cube is on the green cube.

13



Algorithm 3 SURREAL-PPO Learner
1: procedure PPO-LEARNER.UPDATEPARAMETERS(τ , θt)
2: if θtarget not initialized then
3: Initialize θtarget with random parameters . Target model to fix trust region center
4: end if
5: Compute TD error for every t ∈ {1, 2, ..., L− 1}, δVt = rt + γVθtarget(τt+1)− Vθtarget(τt)
6: Estimate advantage for every t ∈ {1, 2, ..., L−H}, Ât =

∑H−1
l=0 (γλ)lδVt+l

7: Compute Return for t ∈ {1, 2, ..., L−H} Rt =
∑H−1
l=0 γlrt+l

8: for j ∈ {1, · · · , E} do
9: JPPO(θt) =

∑L−H
t=1

πθt (at|τt)
πtarget(at|τt) Ât − ξklKL[πtarget|πθt ] − ξmaxmax(KL[πtarget|πθt ] −

2KLtarget, 0)2

10: Update θt by a gradient method w.r.t. JPPO(θt) to θ̂t
11: end for
12: for j ∈ {1, · · · , E} do
13: LBL(θ̂t) = −

∑L−H
t=1 (Rt − Vθ̂t(τt))

2

14: Update θ̂t by a gradient method w.r.t. LBL(θ̂t)
15: end for
16: if Updated parameters with N data points without release then
17: PPO-LEARNER.RELEASEPARAMETERS(θt+1) . Controls communication with parameter server
18: Clear update counter . Clears number of data points processed
19: end if
20: end procedure
21:
22: procedure PPO-LEARNER.RELEASEPARAMETERS(θt+1)
23: θref ← θt+1 . Update trust region center
24: PPO-LEARNER.PUBLISHPARAMETER(θt+1) . Send model to parameter server
25: if KL[πref |πθt+1 ] > βhighKLtarget then
26: ξkl ← αξkl
27: else if KL[πref |πθt+1 ] < βlowKLtarget then
28: ξkl ← ξkl/α
29: end if
30: end procedure

Bimanual Peg-in-hole: The Baxter robot holds a board with a squared hole in the center in its right
hand, and a long stick in the left hand. The goal is to move both arms to insert the peg into the hole.
Each episode lasts for 200 timesteps. Each step receives reward at most 5 (at most 1000 for an entire
episode). Initial position of robot joints are randomized. Object features contain the position and
orientation of the hole, the position and orientation of the peg and the relative position and orientation
of the peg in the frame of the hole. The agent gets reward r = r1 + r2 + r3. r1 ∈ [0, 3] gets larger
for positioning the center of the peg near the center of the hole. r2 ∈ [0, 1] is the cos of the desired
direction of the peg and its actual direction to reward putting the peg in the right direction. r3 = 1
when the position and orientation of the peg are within toleration and r3 = 0 otherwise.

Bimanual Lifting: A pot with two handles is placed on the tabletop. The Baxter robot is rewarded
for lifting the pot above the table by a threshold while not tilting the pot over 30 degrees. Thus the
robot has to coordinate its two hands to grasp the handles and balance the pot. Each episode lasts for
500 timesteps. Each step receives reward at most 3 (at most 1500 for an entire episode). The original
position and orientation of the pot are randomized. Object features contain the position of the cube
and both of its handles, the positions of two grippers and the position offset from each gripper to its
target handle. Reward r = r1 + c× r2. r1 = rl + rr with rl, resp. rr, ∈ [0, 0.5] being larger as the
left, resp. right, gripper is closer to the handle and is equal to 0.5 when the gripper touches the handle.
c = 1 if the angle between z-direction of the pot is within 30 degrees of the direction of up and c = 0
otherwise. r2 ∈ [0, 2] is proportional to the height of the pot’s center of mass.

Bin Picking: The Sawyer robot tackles a pick-and-place task, where the goal is to pick four objects
from each category in a bin and to place them into their corresponding containers. Each episode lasts
for 2000 timesteps. Each step receives reward at most 4 (at most 8000 for an entire episode). The
original positions and orientations of the objects are randomized. Object features contain the position
and orientation of the gripper, the positions and orientations of the objects and relative positions and

14



Algorithm 4 SURREAL-DDPG Learner
1: procedure DDPG-LEARNER.TRAINPOLICY
2: Initialize θcritic, θactor with random parameters
3: Initialize θcritic target = θcritic, θactor target = θactor
4: for i ∈ {1, · · · , N} do
5: Collect a batch of observations τ = {τt, at, rt, τt+n} . Uniformly sample from replay memory
6: θ ← DDPG-Learner.ParameterUpdate(τ, θ)
7: if Updated parameter U times without target update then
8: Set θtarget ← θ
9: end if

10: if S seconds have passed without parameter publish then
11: DDPG-Learner.PublishParameters(θ) . Send model to parameter server
12: end if
13: end for
14: end procedure
15:
16: procedure DDPG-LEARNER.PARAMETERUPDATE(τ, θ)
17: if Terminal(τt+n) then
18: Set y = Σn−1

k=0γ
krt+k

19: else
20: Set y = (Σn−1

k=0γ
krt+k) + γnQtarget(τt+n, πtarget(τt+n))

21: end if
22: Compute Lcritic = (Qθ(τt, at)− y)2

23: Update θcritic by gradient descent w.r.t. Lcritic . Update critic linear and convolution parameters
24:
25: Compute Lactor = −Qθ(τt, πθ(τt)) . Update actor linear layer parameters
26: Update θactor by gradient descent w.r.t. Lactor
27: end procedure

orientations of of the objects in the gripper frame. Reward 1 is given to every object successfully
placed into the bin. An additional reward max(r1, r2, r3, r4) is given to 1) r1 ≤ 0.1: placing the
gripper near an unplaced object, 2) r2 ≤ 0.35: touching an unplaced object, 3) r3 ≤ 0.5: lifting an
unplaced object or 4) r4 ≤ 0.7: hovering an unplaced object over the desired bin.

Nut-and-peg Assembly: Two colored pegs are mounted to the tabletop. The Sawyer robot needs to
declutter the nuts lying on top of each other and assemble them onto their corresponding pegs. Each
episode lasts for 2000 timesteps. Each step receives reward at most 4 (at most 8000 for an entire
episode). The initial positions and orientations of the nuts are randomized. Object features contain
the position and orientation of the gripper, positions and orientations of the nuts and their positions
and orientations with respect to the gripper. Reward 1 is given to every object successfully placed
into the bin. An additional reward max(r1, r2, r3, r4) is given to 1) r1 ≤ 0.1: placing the gripper
near an unplaced nut, 2) r2 ≤ 0.35: touching an unplaced nut, 3) r3 ≤ 0.5: lifting an unplaced nut or
4) r4 ≤ 0.7: hovering an unplaced nut over the desired hole.

C.1 Human Benchmarking

In order to evaluate the difficulty of the tasks, a human operator repeatedly solved the tasks using a
custom teleoperation rig. HTC Vive Virtual Reality (VR) controllers were used to get six degrees
of freedom to control the end-effector position and orientation on each arm. We used one VR
controller for the Sawyer robot and two for the Baxter robot, with target joint positions computed
using inverse kinematics. This setup was also used to collect demonstrations for reverse curriculum
training. For each environment, we collected 10 to 20 successful demonstrations and recorded the
reward trajectories and time required. These are shown in Fig. 11. From the data we can infer that
nut-and-peg assembly and bin picking are the hardest, with both a higher mean and more variance
across successful runs.

D Details for Learning from Demonstrations

We provide details for the demonstration curricula used to facilitate exploration of the learning agents,
as discussed in Sec. 5.1. To reiterate, uniform curriculum samples start states uniformly at random

15



0 5 10 15

0.0

0.5

1.0

1.5

2.0

Block
Lifting

0 5 10 15

3.0

3.5

4.0

4.5

Bimanual
Peg­in­hole

0 10 20 30

1.0

1.5

2.0

2.5

3.0

Bimanual
Lifting

0 20 40

0.0

0.5

1.0

1.5

2.0

Block
Stacking

0 50 100 150

0

1

2

3

4

Bin
Picking

0 50 100 150

0

1

2

3

4

Nut­and­peg
Assembly

Time taken (seconds)

Figure 11: Sample immediate reward trajectories for successful task completions, collected using
robot teleoperation facilities.

from demonstrations. Forward curriculum samples start states from a window of states starting
from the first state of demonstration trajectories. Periodically, we increase the width of the window
to incorporate more states from later stages of demonstrations for sampling. Similarly, reverse
curriculum also maintains a growing window of the same length, but instead, the sampling window
always ends at the last state of the demonstration trajectories and grows to incorporate states from
earlier timesteps. Empirically it is important to include previously sampled sections of demonstration
data, namely earlier states for forward curriculum and later states for reverse curriculum, to prevent
catastrophic forgetting.

For each of the three curricula experimented, we mix in training episodes with natural start states
to ensure that we do not simply overfit trained policy on the dataset of demonstrations. We note
that there are three different hyperparameters at play: mixing ratio of sampling from curriculum (α),
frequency of sampling window width update, number of new states to include in sampling window.
Sec. 5.1 indicates that such simple engineering can produce tremendous benefits to tasks such as
Bimanual Lifting. It remains an interesting problem for better designed curriculum to produce more
better effects. Table 3 provides tested parameters in curricula.

Table 3: Demonstration curriculum hyperparameters

Parameter Uniform Forward/Reverse
mixing ratio (α) 0.5 0.5
window update frequency None 100 episodes sampled
new states incorporated None 50 states

16


	Introduction
	Related Work
	Surreal Distributed Reinforcement Learning Framework
	Surreal Distributed RL Design
	Surreal Heterogeneous Computing Infrastructure

	Robotics Suite: Simulated Robot Manipulation Benchmark
	Experiments
	Performances: Robotics Suite
	Performances: OpenAI Gym
	Scalability

	Conclusion
	Experiment Details
	Surreal-PPO
	Surreal-DDPG
	Hardware Specifications

	Algorithm Pseudocode
	Benchmark Environment Details
	Human Benchmarking

	Details for Learning from Demonstrations

