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Abstract: The fundamental challenge of planning for multi-step manipulation is
to find effective and plausible action sequences that lead to the task goal. We
present Cascaded Variational Inference (CAVIN) Planner, a model-based method
that hierarchically generates plans by sampling from latent spaces. To facilitate
planning over long time horizons, our method learns latent representations that
decouple the prediction of high-level effects from the generation of low-level mo-
tions through cascaded variational inference. This enables us to model dynam-
ics at two different levels of temporal resolutions for hierarchical planning. We
evaluate our approach in three multi-step robotic manipulation tasks in cluttered
tabletop environments given high-dimensional observations. Empirical results
demonstrate that the proposed method outperforms state-of-the-art model-based
methods by strategically interacting with multiple objects. See more details at
pair.stanford.edu/cavin
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1 Introduction

Sequential problem solving is a hallmark of intelligence. Many animal species have demonstrated
remarkable abilities to perform multi-step tasks [1, 2]. Nonetheless, the ability to solve multi-step
manipulation tasks remains an open challenge for today’s robotic research. The challenge involves
high-level reasoning about what are the desired states to reach, as well as low-level reasoning about
how to execute actions to arrive at these states. Therefore, an effective algorithm should not only
make a high-level plan which describes desired effects during task execution, but also produce fea-
sible actions under physical and semantic constraints of the environment.

Conventional methods have formulated this as the task and motion planning problem [3, 4]. How-
ever, the applicability of these methods has been hindered by the uncertainty raised from visual
perception in unstructured environments. To solve multiple tasks in such environments in a data-
efficient manner, model-based methods, powered by deep neural networks, have been proposed to
use data-driven dynamics models for planning [5, 6, 7]. Given the trajectories predicted by the dy-
namics model, a plan can be generated through sampling algorithms, such as uniform sampling and
cross entropy method [8]. These methods have shown successes in many control tasks given visual
inputs, such as pushing objects in a cluttered tray [7] and manipulating deformable objects [9].

However, naı̈ve sampling approaches suffer from the curse of dimensionality when handling the
large sampling space in manipulation domains. In realistic problems, we have to deal with con-
tinuous (and often high-dimensional) state and action spaces and long task horizons, whereas only
a small fraction of actions is valid and effective and a small subset of state sequences could lead
to high rewards. To boost sampling efficiency, recent work has proposed to use generative mod-
els [10, 11, 12] to prioritize the sampling of more promising states and actions. These works do not
exploit the hierarchical structure of multi-step tasks but rather making a flat plan on the low-level
actions. As a result, the methods have mostly focused on short-horizon tasks.

Our key insight for effective planning in multi-step manipulation tasks is to take advantage of the
hierarchical structure of the action space, such that the generation of an action sequence can be
factorized into a two-level process: 1) generating a high-level plan that describes the desired effects
in terms of subgoals, and 2) generating a low-level plan of motions to produce the desired effects.
To this end, we propose Cascaded Variational Inference (CAVIN) Planner to produce plans from
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Figure 1: Hierarchical planning in latent spaces for multi-step manipulation tasks. The manipulation
tasks shown in the figure requires the robot to move the target object to a goal position through
specified regions (denoted by grey tiles). In presence of an obstacle, the planner needs to first clear
the path and then move the target. We propose to use three tightly coupled modules: dynamics
model, meta-dynamics model and action generator (see details in Sec. 3) to hierarchically generate
plans for the task goal. Planning in learned latent spaces, our method first predicts subgoals (yellow)
and then generates plausible actions (blue). The optimal plan is chosen by predicting resultant state
trajectories (green) of the sampled actions. The selected plan is in darker colors.

learned latent representations of effects and motions. As illustrated in Fig. 1, the CAVIN Planner
generates a high-level plan of desired effects predicted at a coarse temporal resolution and a low-
level plan of motions at a fine-grained resolution. By decoupling effects and motions, the proposed
method substantially reduces the search space of the optimal plan, enabling the method to solve
longer-horizon manipulation tasks with high-dimensional visual states and continuous actions. To
achieve this, we propose a cascaded generative process to jointly capture the distribution of actions
and resultant states. We employ variational principles [13] in a cascaded manner to derive lower
bound objectives for learning from task-independent self-supervision.

Our contributions of this work are three-fold:

1. We introduce a model-based method using hierarchical planning in learned latent spaces. By
performing predictive control (MPC) at two temporal resolutions, the proposed method substantially
reduces the computational burden of planning with continuous action spaces over long horizons.
2. We propose a cascaded variational inference framework to learn latent representations for the
proposed planner. The frameworks trains the model end-to-end with variational principles. Only
task-agnostic self-supervised data is used during training.
3. We showcase three multi-step robotic manipulation tasks in simulation and the real world. These
tasks involve a robotic arm interacting with multiple objects in a cluttered environment for achieving
predefined task goals. We compare the proposed approach with the state-of-the-art baselines. Em-
pirical results demonstrate that our hierarchical modeling improves performance in all three tasks.

2 Preliminaries

We consider robotic manipulation in an environment with unknown dynamics. Each manipu-
lation task in the environment can be formulated as a Markov Decision Process (MDP) with
high-dimensional state space S and continuous action space A. We denote the dynamics as
p : S × A → S, where p(st+1|st, at) is the transition probability from st to st+1 by taking ac-
tion at. In our tabletop environments, st is the processed visual observations of the workspace from
RGB-D cameras and at is the control command of the robot (see Sec. 4). Our objective is to find a
sequence of actions a1:H to maximize the cumulative reward Eπ[

∑H
t=1R(st, at, st+1)] across plan-

ning horizon H , where R : S × A × S → R is the given immediate reward function. In this work,
we consider the immediate reward function in the form of R(st+1) which can be directly evaluated
from the next state. This enables planning in the state space while abstracting away actions.

We address the problem of finding the optimal action sequence a∗1:H with model-based methods. At
the core of such an approach is a model predictive control (MPC) algorithm using a dynamics model
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of the environment [14]. Given the known or learned dynamics model, we can predict resultant states
of sampled actions by rolling out the actions with the dynamics model. The robot receives new
observed state st from the environment every T steps and plans for the action sequence at:t+T−1.
The planned actions are executed in a closed-loop manner for T steps.

3 Method

We present a hierarchical planning algorithm in learned latent spaces to prioritize promising plans.
Our key insight is to factorize the generation of an action sequence into a two-level process: 1)
generating a high-level plan that describes the desired effects in terms of subgoals in the state space,
and 2) generating a low-level plan of motions that produces the desired effects. We propose Cascaded
Variational Inference (CAVIN) to learn the model and the latent representations.

3.1 Cascaded Generative Process of Dynamics

We propose to use a cascaded generative process to capture the distribution of actions and resultant
states for efficient sampling-based planning. Instead of sampling in the original action space A, we
construct two latent spaces to facilitate the planning. We define C as the latent effect space, where
an effect code c ∈ C describes the desired effect of the action, and Z as the latent motion space,
where a motion code z ∈ Z defines the detailed motion of the action. Intuitively, each effect code
represents a subgoal reachable from the current state in a T steps, while each motion code represents
a distinctive action sequence of T steps that leads to the subgoal. In our model, both c and z are
continuous variables drew from priors as standard normal distribution N (0, I).

Dynamics of the environment can be defined on two levels by introducing three tightly-coupled
model components as shown in Fig. 1. On the low-level, we use the dynamics model f to esti-
mate the transition probability in the original state and action spaces. On the high-level, we use
the meta-dynamics model h to characterize the distribution of the subgoal state st+T that is T
steps away from the current state st with the effect code ct. Compared to the low-level dynamics
model, the meta-dynamics model operates at a coarser temporal resolution T and abstracts away
the detailed actions, which enables effective hierarchical planning in long-horizon tasks. The two
levels of dynamics are related by the action generator g, which characterizes the distribution of
the action sequences that will transit the current state st into the chosen subgoal st+T in T steps.
The action generator produces the action sequence at:t+T−1 using both of the effect code ct and the
motion code zt given the current state st. Given the same ct and st, the meta-dynamics model and
the action generator are supposed to produce consistent outputs. In other words, by taking action
sequence at:t+T−1 generated by the action generator, the environment should approach the subgoal
state st+T predicted by the meta-dynamics model.

Formally, the generative process of the two-level dynamics can be written as:

st+1 ∼ f(·|st, at; θf ) (1)
st+T ∼ h(·|st, ct; θh) (2)

at:t+T−1 ∼ g(·|st, ct, zt; θg) (3)

where f , h and g are Gaussian likelihood functions parameterized by neural networks with parame-
ters θf , θh and θg respectively. We implement the modules using relation networks [15].

3.2 Hierarchical Planning in Latent Spaces

The hierarchical planning algorithm in the latent spaces C and Z is shown in Algorithm 1. Every T
steps, the planning algorithm receives the current state st and plans across the planning horizon H .
We assume that H is divisible by T . The action sequence at:t+T−1 is produced by the algorithm
and executed in the environment in a closed-loop manner for T steps. By choosing the sequences
of effect and motion codes, the optimal action sequence a∗t:t+T−1 is computed using the action
generator described in Equation (3).

Effect-Level Plan. On the high-level, we plan for subgoals towards reaching the final task goal
by choosing the optimal sequence of effect codes c∗1:K , where K = T/H is the number of sub-
goals. N sequences of effect codes are sampled from the prior probability p(c), which we denote
as {ci1:K}Ni=1. Using Equation (2), the trajectory of subgoals corresponds to each ci1:K are recur-
rently predicted as sit+T , s

i
t+2T , . . . , s

i
t+KT . During this process, episodes which fail early will be
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Algorithm 1 Hierarchical Planning with Cascaded Generative Processes

Require: initial state s0, planning horizon H , temporal abstraction T , number of plan samples N
1: K = H/T
2: t = 0
3: while episode not done do
4: Receive the new st from the environment.
5: Sample N sequences of effect codes of length K as {ci1:K}Ni=1.
6: Predict subgoals {sit+T , sit+2T , . . . , s

i
t+KT }Ni=1 by recursively using Equation (2) with

{ci1:K}Ni=1 and interpolate the state trajectory.
7: Choose c∗1:K and corresponding subgoals with the highest cumulative reward

∑T
t=1R(st).

8: Sample N sequences of motion codes of length K as {zj1:K}Nj=1.
9: Predict sequences of actions {ajt , ..., a

j
t+H−1}Nj=1 and states {sjt+1, ..., s

j
t+H}Nj=1 with

c∗1:K and {zj1:K}Nj=1 by recursively using Equation (3) and (1).
10: Choose z∗1:K and corresponding a∗t:t+H−1 which lead to states closest to the subgoals.
11: Execute a∗t:t+T−1 for T steps.
12: Update t = t+ T .
13: end while

replaced by duplicating episodes that are still active. Between every two adjacent subgoals, we lin-
early interpolate the states of each time step and evaluate the immediate reward R(st). We use the
cumulative rewards to rank the predicted sequence of states. The highest-ranked sequence c∗1:K and
the corresponding subgoals are selected to serve as intermediate goals in the low-level planning.

Motion-Level Plan. On the low-level, we generate the sequence of actions in the context of the de-
sired effects indicated by ct, by choosing the optimal sequence of motion codes z∗1:K . N sequences
of motion codes are sampled from the prior probability p(z) as {zj1:K}Nj=1. Each sequence is paired
with the selected c∗1:K to produce the action sequence. Each pair of effect and motion codes is pro-
jected to a segment of action sequence of T steps using the action generator g as in Equation (3).
Then the resultant state trajectories are predicted by the dynamics model f using Equation (1). We
choose z∗1:K which leads to states that are closest to the chosen subgoals in the high-level planning.

The optimal action sequence a∗1:H is produced as the one that corresponds to the selected c∗1:K and
z∗1:K . The first T steps of planned actions are provided to the robot for execution. Re-planning
occurs every T steps when the new state is received.

3.3 Learning with Cascaded Variational Inference

The dynamics model f , meta-dynamics model h and action generator g are learned with respect
to parameters θh, θf and θg by fitting the transition data D = {(sit, ait, sit+1)}Mi=1 observed from
the environment. D can be collected either by self-supervision from the robot’s own experiences or
human demonstrations. In this paper, we use a heuristic policy that randomly samples actions that
are likely to have plausible effects to the environment. The learning algorithm aims to maximize the
marginal likelihoods p(st+1|st, at; θf ), p(st+T |st; θh), and p(at:t+T−1|st, ct; θg) on the dataset D
under the entire generative process as described in Sec.3.1.

For the low-level dynamics, the likelihood is directly maximized by observed tuples of st, at and
st+1 from D. We define f(st+1|st, at; θf ) as a function to predict the mean of st+1 with a fixed
covariance matrix, so maximizing the likelihood is equivalent to minimizing a reconstruction loss
between the observed st+1 and the prediction.

The meta-dynamics model and the action generator are trained with transition sequences of consec-
utive T steps from D. As the effect code c and the motion code z are latent variables, the likeli-
hoods p(st+T |st; θh) and p(at:t+T−1|st, ct; θg) cannot be directly maximized. Instead, we follow
the variational principle [13] to derive a lower bound objective on these two marginal likelihoods by
constructing inference models of c and z. For succinctness, we drop the subscripts from the symbols
in the following equations using s′ to denote the next subgoal state st+T , s′′ to denote the next state
st+1, and a to denote the action sequence at:t+T−1.

Lower Bound Objective. We construct inference models which consist of approximate posterior
distributions qh(c|s, s′;φh) and qg(z|s, a, c;φg) both as inference neural networks with trainable pa-
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rameters denoted as φh and φg . Thus the evidence lower bound objective (ELBO) [13] for marginal
likelihoods can be derived as below.

For the meta-dynamics h, the variational bound Jh on the marginal likelihood for a single transition
is defined to be a standard conditional variational autoencoder (CVAE) [13] conditioned on s as:

log p(s′|s; θh) ≥ Eqh(c|s,s′;φh)[log h(s′|s, c; θh)]−DKL(qh(c|s, s′;φh) ‖ p(c)) = −Jh (4)

For the action generator g, directly maximizing p(a|s, c; θg) conditioned on the unobserved c is
intractable. Instead, we maximize p(a|s, s′; θg) by marginalizing over the inferred c given observed
transitions from s to s′:

p(a|s, s′; θg) = Eqh(c|s,s′;φh)[p(a|s, s
′, c; θg)] = Eqh(c|s,s′;φh)[p(a|s, c; θg)] (5)

Assume c is given, the variational bound Jg|c of the marginal likelihood p(a|s, c; θg) is:

log p(a|s, c; θg) ≥ Eqg(z|s,a,c;φg)[log g(a|s, c, z; θg)]−DKL(qg(z|s, a, c;φg) ‖ p(z)) = −Jg|c
(6)

Thus the variational lower bound Jg of marginal likelihood p(a|s, s′) can be derived as:

p(a|s, s′; θg) = Eqh(c|s,s′;φh)[p(a|s, c; θg)] ≥ −Eqh(c|s,s′;φh)[Jg|c] = −Jg (7)

The maximum likelihood estimation of p(s′|s; θh) and p(a|s, c; θg) now becomes minimizing the
objective function Jh + Jg on D with respect to parameters θh, θg , φh and φg end-to-end.

4 Experiments

We design our experiments to investigate the following three questions: 1) How well does our
method perform on different multi-step manipulation tasks? 2) How important does it perform in
various scene complexities? 3) What kind of robot behaviors does our method produce?

4.1 Experimental Setup

Environment. We construct a simulated platform to evaluate multi-step manipulation tasks using a
real-time physics simulator [16]. As shown in Fig. 1, the workspace setup includes a 7-DoF Sawyer
robot arm, a table surface, and a depth sensor (Kinect2) installed overhead. Up to 5 objects are
randomly drawn from a subset of the YCB Dataset [17] and placed on the table. The Sawyer robot
holds a short stick as the tool to interact with the objects to complete a specified task goal.

The observation consists of segmented point cloud represented by m× n× 3 Cartesian coordinates
in the 3D space, where m is the number of movable objects and n = 256 is the fixed number of
points we sample on each object. The state is composed of the m × 3 object centers and m × 64
geometric features processed from the segmented point cloud, where the geometric features are
extracted using a pretrained PointNet [18]. The PointNet has three layers with dimensions of 16, 32,
64 and followed by a 64-dimensional FC layer.

The robot performs planar pushing actions by position control. Each push is a straight line motion
with maximum moving distance of 0.1 meters along x- and y-axes. The action of each step is defined
as a tuple of coordinates which represents the initial and delta-positions of the robot end-effector.
The planning horizon is H = 30 steps and each episode terminates after 60 steps. Every T = 3
steps, the robot arm moves out of the camera view to take an unoccluded image for replanning.

Tasks. We design three multi-step manipulation tasks Clearing, Insertion, and Crossing. A reward
function is given to the robot for achieving the task goal. All tasks share the same MDP formulation
in Sec. 2, while the arrangement of the scene and the reward functions are constructed differently
in each task. None of the tasks are seen by the model during training time. The three tasks are
illustrated in Fig. 2 with additional details in the Appendix.

In each task, dense and sparse reward functions are defined respectively. The dense reward function
moderates the task complexity by providing intermediate reward signals, such as the Euclidean
distance to the goal. While the sparse reward function only returns a positive value at the end of task
completion, which poses a more intense challenge to plan ahead in a large search space requiring
strategic interaction with different objects in diverse yet meaningful manner.
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Clearing Insertion Crossing
Figure 2: The environments of the three tabletop multi-step manipulation tasks in simulation and
the real world. Objects and their initial placements are randomized in each episode.

Baselines. We compare our method with a set of baselines, all of which use learned dynamics model
coupled with model-based planning by sampling actions from the original action space or a latent
space. These include MPC [5, 6, 7] which samples from original state and action spaces, CVAE-
MPC [10] which learns a flat generative model to sample actions, and SeCTAR [11] which learns a
latent space model for states and actions for planning. More details are in the Appendix.

4.2 Quantitative Comparisons

Our method and baselines are compared across the three different multi-step manipulation tasks. We
evaluate each method in each experiment below with 1, 000 episodes given the same random seed.
Each method draws 1, 024 samples in every planning step. We analyze the task success rate of each
method in the three tasks by providing dense or sparse rewards and varying the scene complexity.

Task performance given dense and sparse rewards. We compare all methods with dense and
sparse rewards as shown in Fig. 3(top row). The number is evaluated with 3 objects initialized
in each environment: one target object and two obstacles in Insertion and Crossing. Across all
tasks, our method outperforms all other model-based baselines under both dense and sparse rewards.
Given the dense reward functions, it has considerable margins compared to the second best methods
(10.0% in Clearing, 11.7% in Insertion, 13.9% in Crossing). Especially for the latter two tasks
which requires longer-term planning, the performance gap is telling. The planning becomes harder
under sparse rewards, where a naı̈ve or greedy algorithm cannot easily find the good strategy. In this
case, performances of most methods drops under sparse rewards. However, our method suffers less
than 5% drop across all 3 tasks. The margins over the second best are 20.1% in Clearing, 14.6%
in Insertion, 11.1% in Crossing. This result demonstrates a strong advantage of the multi-scale
hierarchical-dynamics model of our method for long-term planning under sparse rewards.

Compared to the baselines, our method efficiently rules out trajectories of unsuccessful effects in
the high-level planning process and effectively finds the reachable sequence of states that will lead
to the task goal. In the low-level planning, our method focuses on sampling actions that lead to such
effects. We also observe that different baseline fail for different reasons. Intuitively, in a large search
space, uniformly sampled actions are largely ineffective or infeasible. Therefore, only a small frac-
tion of samples in MPC actually lead to plausible solutions, while others are fruitless. CVAE-MPC
uses the action generator in a flat planning framework. It produces task performance comparable to
our method with dense rewards which provide intermediate guidance for correction. But under the
sparse rewards, its performance is significantly undermined due to increasing difficulty of finding a
long-horizon plan. SeCTAR effectively eliminates the undesired sequence of states using the meta-
dynamics model similar to our method. However, using an entangled latent space for generating
both states and actions leads to poor quality of generated action samples. While out method avoids
such problem by introducing an additional latent variable as the motion code. Empirically, we also
found the training of SeCTAR requires a careful balance between the reconstruction losses of state
and action in order to yield reasonable results, which is a challenge in itself.

Task performance against number of objects. Given sparse rewards, we vary the number of
objects in the workspace to evaluate the model performance under different task complexity as
shown in Fig. 3. More objects lead to a exponentially growing search space of feasible plans, due
to the combinatorial nature of subtask dependencies. We see that increasing the number of objects
leads to performance drop in all methods. However, our method shows the highest robustness and
maintains the best performance. Especially in Clearing, the performance of our method only drops
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Figure 3: Top Row: Task performance with 3 objects given Dense and Sparse Rewards. In both
cases, our method consistently outperforms all baseline methods. Compared to planning methods
without hierarchies, our method is more robust under sparse rewards. Bottom Row: Task perfor-
mance against number of objects. We evaluate the models’ scalability and robustness with growing
number of objects. We demonstrate that our method suffers the least from the increased complexity
due to the cascaded generation of actions.

by 9.4% when increasing the number of objects from 1 to 5. While the performances of baseline
methods drops 51.1%, 53.3% and 70.2% respectively.

Real-world experiments. We also evaluate our method in the real-world environments for the three
tasks. The environment setup and the reward functions are identical to the simulated experiments.
Since the observations of these tasks are based on point clouds which has relatively little reality
gap, we can directly apply the model trained in the simulation in the real world without explicit
adaptation. In each episode, we randomly initialize the environment with real-world objects includ-
ing packaged foods, metal cans, boxes and containers. Among 15 evaluated episodes, out method
achieves success rates of 93.3% in Clearing, 73.3% in Insertion, and 80.0% Crossing, which
is comparable to our simulated experiments.

4.3 Qualitative Results

In Fig. 4, we visualize the planned trajectories predicted by our method. Example episodes of the
three tasks are shown in each row from left to right. We observe that the robot adopts diverse
strategies planned by our method. In presence of obstacles, the robot moves each obstacle aside
along the path of the target object. Given a pile of obstacles between the target and the goal, the
robot pushes the target around. When the target is surrounded by several obstacles, the robot opens
a path for it towards the goal. When the target object is small and there is a small gap on its way
towards the goal, the robot squeezes the target through the gap. To clear multiple objects in a region,
the robot moves the objects away one by one. Many of these behaviors require strategic interactions
with multiple objects in a specific order.

5 Related Work
Hierarchical Planning. Learning diverse skills for hierarchical policies and controller is a common
practice in control and robotics. One way to learn a set of different skills is to pre-speficy a set of
modes and learn a policy for each mode. Each policy has a different parameterization and trained
for a specific purpose. [19] composes subpolicies of different action modes using policy sketches
provided beforehand and trains the composed policies as modular neural networks [20]. In robot
manipulation, several methods define separate grasping and manipulation policies for pushing/tool
use [21, 22, 23]. In contrast, our approach does not assume the action modes are specified before-
hand. And our training procedure uses self-supervised interactions to learn a hierarchy of latent
effects and motions, instead of relying on pre-specified low-level policy primitives.
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Figure 4: Visualization of the task execution in the real world using our trained model. Each row
shows a different episode in temporal order from left to right. The subgoal is overlaid on the current
state at each step and connected by an orange line. The target objects are marked by dashed circles.

Skill Learning. Another line of work aims to discover action modes from the data in an unsuper-
vised manner. [24] defines skills as subpolicies that apply to different subsets of states, which can
be learned by minimizing the Q-learning objective. Several multi-modal imitation learning algo-
rithms propose to learn diverse behaviors from demonstrations [25, 26, 27]. These works assume
the demonstration data is generated by multiple expert policies, which can be imitated separately in
an adversarial learning framework. Our approach shares a similar goal as we aim to discover the ac-
tion modes from data. While these works factorize action modes according to trajectories or subsets
of states, our approach learns the structure of the action spaces by how they affect the environment.

Generative Models for Planning. In addition to the baselines discussed in Sec. 4, Visual MPC [7],
CVAE-SBMP [10], and SeCTAR [11], several other methods can be used for dynamics model learn-
ing. [10] uses conditional variational autoencoder (CVAE) [13, 28] to learn a generative model to
draw collision-free samples from the action space. This idea is further extended for collision-free
motion planning [29]. Co-Reyes et al. [11] use a policy decoder to generate sequence of actions and
a state decoder to predict the dynamics given the same latent feature as the input. The two decoders
are jointly trained to encourage the predicted future states are consistent with the resultant states
caused by the generated actions. Both decoders receive the same latent feature as input. The main
notable difference is that most of these methods represent the probability distribution of a single
action mode, where the data is often deliberate for the task. While, the hierarchical dynamics model
in the CAVIN Planner decouples the model learning into latent code for effects and motion codes,
each of which can guide the action sampling. And finally the consistency action sampling is ensured
through dynamics prediction over a self-supervised dataset.

6 Conclusion

In this work, we propose a hierarchical planning framework using learned latent spaces for multi-
step manipulation tasks. Our model improves the efficiency of planning in complex tasks with
high-dimensional continuous state and action spaces by exploiting the hierarchical abstraction of
action spaces. Our model hierarchically performs model-based planning at two different tempo-
ral resolutions: the high-level prediction of effects and the low-level generation of motions. And
the model is learned from task-agnostic self-supervision using cascaded variational inference. We
evaluate our method in three long-horizon robotic manipulation tasks with high-dimensional obser-
vations. The experiment results indicate that our method outperforms strong model-based baselines
by large margins, as a result of its efficient generation of plausible action sequences.
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A Implementation Details

A.1 Network Architectures

The architectures of dynamics model, meta-dynamics model and action generator in the CAVIN
planner are shown in Fig. 5. The design of these network architectures are implemented with relation
networks [15] to aggregate information across objects. In each network, the feature of the current
state st is first computed as three N × 64 arrays: spatial features, geometric features, and relation
features. Spatial features and geometric features are computed from the center and the point cloud
of each object using fully-connected (FC) layers. The relation features are computed by relation
networks. The action at or the effect code ct is processed by another FC layer and then concatenated
with the state features. In dynamics and meta-dynamics models, the change of the state ∆st is
computed from the concatenated features and added to the current state for each object. In the
action generator, we need to aggregate st, ct and zt to compute the action sequence. After the
features of the st and ct are concatenated and processed, we pool the feature across all objects. We
transform the distribution of zt using the pooled feature. Specifically, the mean µ and the variance
Σ are computed from the pooled feature to compute the transformed latent code µ+ Σ · zt. And the
action sequence is computed from the transformed latent code.

The architectures of effect inference network and motion inference network are shown in Fig. 6.
In the effect inference network, we first compute a per-object feature from the concatenation of st
and st+1 − st using FC layers. Then we pool the feature across objects. The mean µc,t and the
covariance Σc,t of the effect code ct is computed as the output. The motion inference network in the
CAVIN Planner uses a similar architecture with the action generator to aggregate the information of
st and ct. Then the mean µz,t and the covariance Σz,t of the motion code zt are computed by the
concatenation of the pooled feature and the action feature.

The latent codes c and z are both 16-dimensional. All FC layers are 64-dimensional and followed
by a rectified linear unit (ReLU). The network weights for computing the spatial features, geometric
features, and relation features are shared across modules.

A.2 Baselines

We adapt baseline methods to the multi-step manipulation tasks evaluated in this paper. Here we de-
scribe these baselines and compare with our model design in the context of this paper. MPC [5, 6, 7]
runs sampled-based planning by directly drawing samples from the original action space without a
learned action generator. We adapt [10] as CVAE-MPC to learn a conditional VAE to sample
collision-free trajectories for motion planning without a high-level dynamics model. The CVAE
is used to sample action sequences as our action generator. SeCTAR [11] uses a VAE for jointly
sampling trajectories states and actions from the latent space in a self-consistent manner. In SeC-
TAR, both state and actions are decoded from a single latent variable (which can be considered as
the effect code c in our case). In this way, the generative process of the states is equivalent to our
high-level dynamics model, while the generative process of actions can be considered as a action
generator given only c but not z. To enable replanning every T steps, we use the same action gen-
erator as in this paper to generate action sequences of T steps at once instead recursively predicting
for each time step as in [11]. Baselines use the same network architectures as in CAVIN for their
counterparts except for modules in Fig. 7. These different network designs are due to different mod-
ule inputs in baselines. To this end, we design the adapted architectures by removing unused layers
from Fig. 5 and Fig. 6. We use 32-dimensional latent codes for CVAE-MPC and SeCTAR to have
fair comparisons with the CAVIN Plannar in which the latent codes are totally 32-dimensional.

A.3 Training

To train all methods, we collect 500, 000 random transitions of planar pushing using a heuristic
pushing policy. The dataset is partitioned for training (90%) and validation (10%) for hyperparam-
eter tuning. Training terminates after one million steps when no further decrease in the total loss is
observed on the validation set. We use L2 losses for reconstructing actions and states in the ELBO
of cascaded variational inference. For states, we sum up the L2 losses of the positions and geometric
features of all objects. We use Adam optimizer [30] with a learning rate of 0.0001.
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Clearing Insertion Crossing

Figure 8: Task variations in simulation (top) and the real world (bottom).

B Task Details

In this section, we describe the details of the three multi-step manipulation tasks evaluated in
the paper. The simulated and real-world environments for the three tasks are illustrated in
Fig. 2. In Fig. 8, we show variations of objects and maps in simulation and the real world. We
use all maps for qualitative analysis but only the maps on the top row for quantitative evalua-
tion. In simulation, we select a subset of objects from YCB Dataset [17] including sugar box,
tomato soup can, tuna fish can, pudding box, gelatin box, potted meat can, banana,
mug, a cups, rubiks cube. In the real world, we use the object set as shown in Fig. 9.

Clearing: The goal is to clear all objects within a region denoted by blue masks on the table. The
success is achieved when none of the objects remains in the region.

Insertion: A slot is placed randomly along one side of the table, surrounded by restricted area
denoted by red masks. A target object is specified while other movable objects are treated as dis-
tracting obstacles. The success is achieved when the target object is moved into the slot. The task
fails if any object moves into the restricted area.

Crossing: A bridge denoted by grey tiles is placed on the table. A target object is randomly placed
on a starting position on the bridge. The robot needs to move the target object to a goal position (in
golden masks) on the other side of the bridge and moves away obstacles on the way. If the target
object leaves the bridge the task fails.

Figure 9: Real-world object set.

The position of an object is defined by the center of its
point cloud. In addition to the task constraints mentioned
above, we also terminates an episode when objects leave
the workspace of the robot. The model receives a reward
of 100 when reaching the goal in each of the task and a
penalty of -100 when the episode terminates because of
violation of the task constraints. A time penalty of -1
is added to the reward every step to encourage efficient
plans. For dense rewards, we include the distance that the
target object moves towards the goal position in terms of
meters. Since there is no goal position in the clearing task, we set virtual goals at the edge of the
tables to encourage the robot to move objects out of the masked region.
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