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Abstract: Imitation Learning has empowered recent advances in learning robotic
manipulation tasks by addressing shortcomings of Reinforcement Learning such
as exploration and reward specification. However, research in this area has been
limited to modest-sized datasets due to the difficulty of collecting large quantities
of task demonstrations through existing mechanisms. This work introduces ROBO-
TURK to address this challenge. ROBOTURK is a crowdsourcing platform for high
quality 6-DoF trajectory based teleoperation through the use of widely available
mobile devices (e.g. iPhone). We evaluate ROBOTURK on three manipulation tasks
of varying timescales (15-120s) and observe that our user interface is statistically
similar to special purpose hardware such as virtual reality controllers in terms of
task completion times. Furthermore, we observe that poor network conditions, such
as low bandwidth and high delay links, do not substantially affect the remote users’
ability to perform task demonstrations successfully on ROBOTURK. Lastly, we
demonstrate the efficacy of ROBOTURK through the collection of a pilot dataset;
using ROBOTURK, we collected 137.5 hours of manipulation data from remote
workers, amounting to over 2200 successful task demonstrations in 22 hours of
total system usage. We show that the data obtained through ROBOTURK enables
policy learning on multi-step manipulation tasks with sparse rewards and that using
larger quantities of demonstrations during policy learning provides benefits in terms
of both learning consistency and final performance. For additional results, videos,
and to download our pilot dataset, visit roboturk.stanford.edu
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1 Introduction

Large-scale datasets, consisting of millions of data points, have accelerated performance in computer
vision and natural language tasks and enabled many practical applications. Richly annotated data
has provided a fertile ground for developing and evaluating a broad set of learning algorithms for
problems such as image classification and machine translation [1, 2, 3]. Supervised data is similarly
useful for sequential decision making problems in robotics.

Recent research has successfully employed Reinforcement Learning (RL), Self-Supervised Learning
(SSL), and Imitation Learning (IL) for short-horizon skill learning, such as pushing and grasping
objects [4, 5, 6]. However, RL methods require reward specification, face the burden of efficient
exploration in large state spaces, and need large amounts of interaction with the environment to
collect sufficient data for policy learning. SSL has been used successfully to collect and learn from
large quantities of data in both simulated [7, 8, 9] and physical settings [5, 10, 11] for tasks such
as grasping. However, the data has very low signal-to-noise ratio due to random exploration. In
contrast, IL uses expert demonstrations to reduce environment interaction during skill learning.
Imitation Learning is commonly posed either as inverse reinforcement learning [12, 13] or behavioral
cloning [14, 15], both of which require demonstrations. Prior works show that data-driven IL methods
improve both the sample efficiency of policy learning [16, 17, 18] and the performance of the trained
policy [19, 20, 21].
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Figure 1: System overview of ROBOTURK. ROBOTURK enables quick imitation guided skill
learning. Our system consists of the following major steps: 1) specifying a task, 2) collecting a
large set of task demonstrations using ROBOTURK, 3) using demonstration-augmented reinforcement
learning to learn a policy, and 4) deploying the learned skill in the domain of interest.

There are many conventional mechanisms for collecting task demonstrations for robot learning.
One popular option is to kinesthetically guide a robot through a desired trajectory [14]. Although
intuitive, this mechanism for supervision can be tedious, and is often limited to collecting tens of
demonstrations, while policy learning requires hundreds or even thousands of demonstrations [22].
Alternatively, teleoperation-based techniques for collecting task demonstrations have been employed
for over two decades [23, 24, 25]. Teleoperated supervision can be provided through contemporary
game interfaces such as a keyboard and mouse [26, 27], a video game controller [28], a 3D-mouse
[29, 30], special purpose master-slave interfaces[31, 32], or through free-space positioning interfaces
such as virtual reality (VR) [33, 34, 35].

Game interfaces frequently introduce artifacts in trajectories that reduce the utility of this data for
imitation [36]. For instance, due to concurrent control of only a subspace of actions, the trajectories
can be longer, exhibit axis-aligned movement, and lack natural variations in motion. By contrast,
free-space positioning interfaces such as VR enable the user to directly move the robot’s end effector
by moving a hand controller in 3D space, enabling fine-grained dexterous control. Interestingly,
Zhang et al. [34] showed that simpler algorithms such as variants of behavior cloning can be made to
learn short-horizon manipulation tasks with data on the order of a few hundred VR demonstrations.
However, the requirement of special purpose VR hardware and client-side compute resources has
limited the deployment of these interfaces on crowdsourcing platforms such as Amazon Mechanical
Turk where a typical worker is more likely to have a smartphone than VR hardware [37, 38].

In other domains, large-scale supervision for datasets is often collected with the assistance of
crowdsourcing [1, 3]. This enables a scalable mechanism for diverse human supervision on an
extensive set of problem instances. However, collecting large amounts of data has been a challenge
for continuous control tasks, as they demand real-time interaction and feedback from annotators,
placing difficult constraints on remote teleoperation platforms. Data collection mechanisms for
skill learning in robotics need demonstrations from remote users that are both natural (which game
interfaces tend to lack) and plentiful (which free-space positioning interfaces tend to lack).

This paper proposes ROBOTURK, a platform to address the challenge of collecting large, crowd-
sourced sets of task demonstrations for robot manipulation tasks. ROBOTURK enables: (a) real-time
control of simulated systems, (b) accessibility to a large population of users, and (c) simultane-
ous platform use by many concurrent users. ROBOTURK is one of the first platforms to facilitate
crowdsourcing of trajectory-level supervision.

Contributions. The main contributions of this paper are:

1. We introduce ROBOTURK, a data collection platform that allows remote workers to log on to a
website and collect task demonstrations using a smartphone as a motion controller. ROBOTURK is
supported by a cloud-based simulation backend that streams video to a client’s web browser using
low-latency communication protocols. This ensures homogeneous quality of service regardless of
a client’s compute resources, resulting in a platform that is intuitive to use and has a low barrier to

2



(a) New User Connection

New user 
joins

Teleoperation Server  
instance createdCoordination 

Server

Current Users Current Servers

Connection 
bridged

1 2

3

(b) Teleoperation Session

Teleoperation Server

Cloud Storage

Live Video Stream  
in Web Browser

User

Phone Motion Control

Created by Luis Prado
from the Noun Project

Figure 2: System diagram of ROBOTURK. A new user connects to a website to join the system,
and a coordination server launches a dedicated teleoperation server for the user, as shown in (a).
The coordination server then establishes direct communication channels between the user’s web
browser and iPhone and the teleoperation server to start the teleoperation session. The user controls
the simulated robot by moving their phone, and receives a video stream as feedback in their web
browser, as shown in (b). After every successful demonstration, the teleoperation server pushes the
collected data to a cloud storage system.

entry – the core requirements of a crowdsourced task. ROBOTURK supports multiple robots, tasks,
and simulators, and can easily be extended to support others.

2. We conduct a user study comparing the performance of three other interfaces, including a VR
interface, on simulated lifting and bin picking tasks. Our platform is similar to VR in perfor-
mance and better than 3D-mouse and keyboard interfaces. We also evaluate the performance of
ROBOTURK under poor network conditions using a network simulator.

3. We present an initial dataset consisting of over 2200 task demonstrations, amounting to 137 hours
of data collected in 20 hours of system usage with contracted workers.

4. We show that the data collected through ROBOTURK enables policy learning on challenging
manipulation tasks with sparse rewards and that using larger quantities of demonstrations during
policy learning provides benefits in terms of both learning consistency and final performance.

2 ROBOTURK: Design and Development of the Proposed Platform

We present ROBOTURK, a cloud-based large-scale data collection platform for robot learning tasks
that enables the collection of thousands of task demonstrations within days.

2.1 Platform Features

1. Real-time control of simulated robots. ROBOTURK enables users to control robots in simulated
domains and provides users with real-time video and haptic feedback.

2. Accessible to a large population of users. In order to enable large-scale data collection, ROBO-
TURK is easily accessible to the typical workers on crowdsourcing platforms such as Amazon MTurk.
ROBOTURK limits the hardware requirements necessary to use it, minimizes the complexity of any
client-side application users interact with, and makes its internal communication protocols agnostic
to the geographic proximity of users.

3. Capable of providing real-time feedback and low-latency robot control for many simulta-
neous users. In order to collect thousands of robot demonstrations quickly, ROBOTURK is capable
of interacting with many users at the same time. This requires careful system design with respect to
user session management, communication protocols used to connect users to simulator instances, and
the quality of the cloud machines used to host the platform.

4. Modular design to enable platform extensibility. ROBOTURK adopts a modular design
paradigm to decouple task and controller design from the rest of the infrastructure — this makes it
easy to extend ROBOTURK to new tasks, physical simulators, and robots.
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Figure 3: Tasks: We evaluated our platform on three simulated manipulation tasks which contain a
7-DoF Sawyer robot arm and various objects. In the lifting task (left) the objective is to control the
robot arm to grab the cube and lift it. In the picking task (middle) the objective is to place each object
into its corresponding bin. In the assembly task (right), the objective is to place a round nut and a
square nut onto their corresponding pegs.

2.2 Platform Design and Implementation

ROBOTURK implements the features listed in Sec. 2.1 by deploying its core components on cloud
infrastructure. ROBOTURK offloads robot simulation to powerful cloud machines instead of local
execution. The robot simulation machines communicate over low-latency channels with users to
receive commands controlling the position of the simulated robot arms; simulator camera views
of the robots are rendered in real-time and transmitted to the users over separate low-latency links.
ROBOTURK leverages Web Real-Time Communication (WebRTC), an open-source framework for
low-latency transmission of both robot control commands and the rendered camera views from
the robot simulator. Fig. 2 outlines how system components are involved in (1) letting a new user
seamlessly connect to the platform and (2) allowing a user to collect demonstrations inside a dedicated
teleoperation session.

By taking this design approach, ROBOTURK eliminates the need for users to have a powerful local
workstation and to install or configure any software. Instead, users only need to have (1) an iPhone
that is compatible with Apple’s ARKit framework (iPhone 6S and above) and (2) access to a separate
device with a web browser, both of which are ubiquitous [38].

User Endpoint. The user receives a real-time video stream of the robot arm in their browser window
and moves their iPhone to control the robot arm. The phone’s pose is tracked via Apple’s ARKit
platform, which uses a combination of camera frames and motion sensor data. The phone’s pose is
packaged along with some status information and transmitted through our platform to a teleoperation
server instance, which is a dedicated process responsible for controlling the robot. The teleoperation
server sends back task-specific information, allowing the user to receive haptic feedback through
phone vibrations when the robot arm makes contact with objects in the simulation environment.

Coordination Server. The coordination server is responsible for creating and maintaining user
teleoperation sessions. As Fig. 2a shows, when a new user enters the system, the coordination server
spawns a dedicated teleoperation server instance, so that every user can control their own simulated
robot arm. The coordination server then establishes two low latency WebRTC communication
channels — one between the user’s browser and the teleoperation server and another between the
user’s phone and the teleoperation server.

Teleoperation Server. Each teleoperation server receives phone commands from exactly one user
and processes them to control the robot arm in the simulator. Phone poses are mapped to a set of
joint velocities to control the simulated robot at a regulated rate. Additional details in Appendix A.6.

3 System Analysis

In this section, we benchmark ROBOTURK and evaluate some of our design choices. In particular, we
evaluate our iPhone interface against other common interfaces motivated by prior work [27, 30, 34]
and the performance of our platform under low bandwidth and high delay network conditions.
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Keyboard 3D Mouse VR Controller Phone

Keyboard - 0.575 0.900 0.725
(0.000) (0.000) (0.000)

3D Mouse 0.575 - 0.375 0.325
(0.000) (0.005) (0.022)

VR Controller 0.900 0.375 - 0.225
(0.000) (0.005) (0.231)

Phone (ours) 0.725 0.325 0.225 -(0.000) (0.022) (0.231)

Figure 4: UI Comparison: (a) Illustration of Interfaces and the movement they allow — axis-aligned
(Keyboard), 6-DoF (3D Mouse), and Free-Space (VR and Phone). (b) Table: Kolmogorov-Smirnov
statistics between distributions for completion times in the picking task across different interfaces,
followed by associated p-values. Pairwise K-S statistic is used as a measure of difference between
underlying distributions. Based on statistical significance level of 5%, we observe that the completion
times follow the order: Phone ≈ VR Controller � 3D Mouse � Keyboard

3.1 Tasks

Our experiments use three simulated tasks: Block Lifting (lifting), Bin Picking (picking), and Nut-and-
peg Assembly (assembly), as illustrated in Fig. 3. Lifting, a simple task where a Sawyer robot arm
must lift a cube, serves as a diagnostic example, while the picking and assembly tasks, which consist
of sorting objects into bins and fitting nuts onto pegs respectively, are more challenging settings.
These are a part of the SURREAL Robotics Suite [39], a set of manipulation tasks developed using
the MuJoCo physics engine [40] inspired by the tasks in World Robot Summit [41]. Please refer to
Appendix A.1 for task details.

To evaluate our platform, we conducted a user study with 8 university students aged 18-30. Each user
provided 20 demonstrations on the lifting task and 5 on the picking task for each of 8 different test
conditions. In the first 4 test conditions, we varied the control interfaces. In the latter 4 test conditions,
we varied the network conditions that users experienced while controlling the robot arm.

3.2 User Interface Evaluation

As Fig. 4a shows, we compare four user interfaces for robot control: Keyboard, 3D Mouse, Virtual
Reality (VR) Controller, and Phone (ours). The HTC Vive is special-purpose VR hardware that uses
external-tracked pose for hand-held controllers, which we map one-to-one to the robot end effector
pose. The tracking is high fidelity, but every remote teleoperator would require access to specialized
VR hardware. The 3D mouse interface is a joystick that can translate simultaneously along x, y, and
z and rotate about these axes as well. The local movements of the 3D mouse are mapped to the robot
end effector. While it may not offer the same accuracy as the HTC Vive, it is only a fraction of the
cost, and can be seen as a compromise between cost and performance. The keyboard is the most
ubiquitous of the four interfaces considered, but it lacks natural 3D control and could easily lead to
degenerate, axis-aligned demonstrations that do not resemble free-form, 6-DoF movement. In our
implementation, we used different keys to translate or rotate by a fixed amount in each direction, and
a separate key to open and close the gripper. An ideal control interface would be as commonplace as
a keyboard while as intuitive as a VR controller.

We designed the user interface on the phone to try and combine the ease of control and accuracy of
the VR controller with the ubiquity of the keyboard. Pose-tracking on phones has been massively
improved in the last few years, especially with the advent of ARKit and ARCore platforms. We
utilize ARKit to track the phone’s pose using the camera and internal gyroscope. While the phone’s
tracking mechanism is often noisy and does not match the fidelity of the VR controllers, we observed
that our subjects often adapted to account for tracking noise after collecting a few demonstrations
and getting familiar with the interface.

We compare all four user interfaces on both the lifting task and the picking task. Results on both tasks
show that the keyboard interface was significantly slower than the other three. Fig. 5A shows that
the 3D mouse requires a mean completion time of 112.57 seconds on the picking task, being slower
than both the phone and VR controller. Please refer to Appendices A.2 and A.3 for detailed data on
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Figure 5: System Analysis: (A) Comparison of completion time distributions of different user
interfaces on the picking task. (B) Comparison of completion time distributions of different network
conditions using the phone interface for the picking task.

completion times. Fig. 4b summarizes the results of Kolmogorov-Smirnov tests over distribution
of completion times for each interface on the picking task. We observe that the keyboard (mean
151.45 seconds) and 3D mouse (mean 112.57 seconds) interfaces are statistically slower than the
Phone (mean 89.97 seconds) and VR (mean 79.36 seconds) at a 5% significance level. However, we
were unable to conclude that the distribution of completion times on the Phone interface was different
than that of the VR controller. These results support our hypothesis that the ROBOTURK phone
interface is similar in performance to the VR interface, but widely available owing to the ubiquity of
the iPhone.

3.3 Robustness to Network Capacity and Delays

We evaluate the performance of ROBOTURK under various network conditions. We used the Cellsim
network simulation tool [42] to regulate the network capacity and delay between the platform and
the users. Cellsim can faithfully replay network conditions recorded from real networks or operate
according to synthetically generated network traces. Using Cellsim, we characterized the platform
under four different network conditions. The first test was a baseline where the network had a
constant 2.4Mbps of up/downlink bandwidth and 20ms of one-way delay. The second test emulated
a low-capacity network link (constant 500Kbps; 20ms delay), the third emulated a high-delay link
(constant 2.4Mbps; 120ms delay), and the last emulated a low-capacity and high-delay link (constant
500Kbps; 120ms delay). We used 500Kbps as a conservative estimate of a slow internet connection
(such as a 3G network) and 2.4Mbps as an estimate of a slow home consumer connection. We used
120ms of one-way delay to approximate a Trans-Pacific connection (e.g. from the US to China)
which was confirmed as a reasonable estimate through real world testing (see Sec. 3.4). Please refer
to Table 6 in the Appendix for further details on Kolmogorov-Smirnov tests over these distributions.

Evaluations performed on the three troublesome network traces produced roughly the same distribu-
tions of completions times as the baseline (see Fig. 5). This robustness evaluation of ROBOTURK
under a wide range of network conditions is a first step to affirm its capacity to serve clients globally
regardless of their locations.

3.4 System Stress Test: Remote Teleoperation from California to China

We also evaluate ROBOTURK for demonstration collection at large distances. We compare the
platform’s performance over real-world networks across different geographic locations. In the first
experiment, users in California performed tasks using a deployment of ROBOTURK running in a
data center in China (approximately 6500 miles away); in the second experiment, the same users
performed the same tasks but with ROBOTURK running in a data center in Oregon (approximately
500 miles away). Qualitatively, the users found that using the data center in China introduced a nearly
constant delay compared to the Oregon servers. Users were able to complete the tasks despite the
high delays in network communication to and from China, but completion times were slower than
when using the Oregon data center (Fig. 6). The mean completion times different by 24 and 28
seconds for the assembly and picking tasks respectively. Overall, this stress test demonstrates that
ROBOTURK is robust to poor real-world network conditions, allowing for tasks to be successfully
completed (albeit at a slower pace) and has potential to connect servers to remote workers worldwide.
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Figure 6: System Stress Test: Left: Comparison of completion time distributions between servers
located in Oregon vs. in China, when tested from California. Right: Comparison of average
throughput of video stream by network experiment, as well as for cross-pacific experiments.

4 Policy Learning from Teleoperated Demonstrations

In this section, we evaluate the utility of the demonstration data collected by ROBOTURK. To this
end, we collected a pilot dataset on two challenging manipulation tasks, and we answer the following
questions: (1) Can the collected demonstrations help enable, accelerate, and improve policy learning?
(2) Is a larger number of task demonstrations valuable to learning? The second question is vital, as
the core goal of ROBOTURK is to scale demonstration collection.

4.1 Data Collection and Task Setup

As an initial pilot for our platform, we collected a dataset of over 1000 demonstrations on both the
picking and assembly tasks with 20 hours of total platform usage by using contractors that were
located remotely. Indeed, this validates the notion that ROBOTURK is a dynamic data collection
platform that can be used to quickly crowdsource data on-demand. The Appendix contains some
additional information and statistics on the dataset.

We evaluate the utility of the collected demonstrations for learning policies with reinforcement
learning from sparse rewards. We consider the Bin Picking (Can) and Nut-and-peg Assembly (Round)
tasks from the Surreal Robotics Suite [39], abbreviated as can picking and round assembly respectively.
These are simplified versions of the full picking and assembly tasks, where the goal is to place a single
can into its corresponding bin and to fit a single round nut onto its corresponding peg respectively. We
do not use reward shaping; a non-zero reward is provided to the agent only if the agent successfully
completes the task. This makes exploration challenging – the agent has little chance of finding a goal
state via random exploration due to the compositional structure of these tasks.

4.2 Demonstration-Guided Reinforcement Learning

To leverage demonstrations during reinforcement learning, we initialize training episodes from states
sampled randomly from the demonstration trajectories and do policy learning using a distributed
implementation of proximal policy optimization (PPO) [43, 44]. This simple method for doing
reinforcement learning with demonstrations has been motivated theoretically by [45] and used in
practice in prior and concurrent work [46, 47, 39]. We encourage using states visited in demos, as
opposed to new experience by setting a myopic horizon of 100 timesteps for training episodes.

To investigate the benefits of leveraging more demonstrations to guide reinforcement learning, we
compared utilizing None (pure RL), 1, 10, 100, and 1000 demonstrations on the two tasks. We trained
policies from 10 different random seeds for each task and demonstration count and report the mean
and standard deviation of the final policy return after 24 hours on the can picking task and 48 hours
on the round assembly task. The results are presented in Table 1 and additional details are described
in Appendix A.8.

4.3 Results

Table 1 demonstrates the value of leveraging large numbers of demonstrations to guide reinforcement
learning. Using 1000 demonstrations (nearly the entire ROBOTURK pilot dataset) resulted in the best

7



Number of Demonstrations
Task None 1 10 100 1000
Bin Picking (Can) 0± 0 278± 351 273± 417 385± 466 641± 421
Nut-and-peg Assembly (Round) 0± 0 381± 467 663± 435 575± 470 775± 388

Table 1: Quantitative results of learning with demonstrations. This table shows how the average
performance of trained policies varies with the number of demonstrations utilized during policy
learning. The maximum possible return for each task is 1000 — this would correspond to a policy
that instantaneously solves the task. We observe that utilizing more demonstrations generally leads
to better average task performance, and our best experimental results were obtained by using 1000
demonstrations (nearly the entire ROBOTURK dataset) on each task.

mean task performance on both tasks. This implies that leveraging larger numbers of demonstrations
can help policies learn to solve the task more consistently. The results reported in Table 1 exhibit
high variance since every setup had some fraction of the 10 different policies that were unable to
solve the task successfully in the allotted time, and consequently had a return of 0. There are also
policies that could not solve the task consistently from every start state, or policies that took longer
to solve the task. Both behaviors result in lower average returns for the policy. Thus, the high
average performance for the 1000 demonstration experiments suggest that the increased number of
demonstrations enable consistently training near-optimal policies that solve the task.

We observed a much higher gap in performance between the 1000 demonstration results and the other
results for the can picking task than for the round assembly task. We suspect that this is because
policies on the round assembly task were given more time to train. We allowed a period of 48 hours
for the round assembly task because we found that 24 hours was an insufficient amount of time for
policies to solve the task. The larger quantity of agent experience collected during the 48 hours
could explain how some agents trained with only 10 demonstrations were able to achieve comparable
performance to agents trained with 100 demonstrations. Over longer time periods, the benefits of
experience diversity present in the 1000 demonstration dataset could plausibly be mirrored by using
10 demonstrations and giving our distributed agents enough time to explore from demonstration
states. However, we emphasize that tasks that exhibit greater diversity between episodes or are
compositionally complex (such as the full version of our simulated tasks) will extend this gap,
needing more supervisory data. Similarly, policy learning methods that leverage the demonstrations
in more sophisticated ways might also overcome these limitations. Nevertheless, our findings indicate
that a large and diverse dataset of demonstrations can encourage agents to explore and learn more
effectively.

5 Conclusion

We presented ROBOTURK, a platform that supports large-scale on-demand data collection for robot
learning tasks. We conducted a user study to evaluate the efficacy of our iPhone user interface and
WebRTC-based communication backend, and also demonstrated that our platform is able to support
real-time trans-Pacific communication and control without a significant difference in performance and
task completion times. These results suggest that ROBOTURK can be used by a significant portion of
the worldwide population, regardless of geographic location.

As an initial pilot for ROBOTURK, we collected a large pilot dataset consisting of over 2200 total
successful demonstrations in only 22 hours of total platform usage on the Bin Picking and Nut-and-
peg Assembly tasks. We used demonstrations collected from our platform to train policies on the Bin
Picking (Can) and Nut-and-peg Assembly (Round) tasks, which are simplified variants of the original
tasks, showed that the data allows the policies to solve the tasks with reinforcement learning from
sparse rewards, and found that performance generally improves with the quantity of demonstrations
used. Our final model is a very simple way to utilize the demonstrations by controlling the start state
distribution that the agent sees during training — we envision that more sophisticated algorithms can
better leverage the demonstrations we collected. Future work will involve utilizing the platform to
collect more data on a larger collection of diverse tasks, extending the platform to support remote
teleoperation of real robot arms, and developing more sophisticated algorithms that can leverage large
quantities of data collected for policy learning. For additional results, videos, and to download our
pilot dataset, visit roboturk.stanford.edu.
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A Appendix

A.1 Simulation Environment Details

Picking

Assembly

Lifting 

Figure 7: Task Details: A detailed depiction of the tasks used to evaluate our system. Each simulated
manipulation environment contains a 7-DoF Sawyer robot arm and various objects. In the lifting
task (top row) the objective is to control the robot arm to grab the cube and lift it. In the picking
task (middle row) the objective is to place each object into its corresponding bin. In the assembly
task (bottom row), the objective is to place a round nut and square nut onto their corresponding pegs.
These screenshots were taken along successful demonstrations of each task.

Environment design. In this work, we aim at demonstrating the effectiveness of our system in
challenging multi-staged tasks which require both low-level dexterity and high-level reasoning. We
evaluate our system in three simulated manipulation tasks with the Sawyer robot. The manipulation
tasks were developed in the MuJoCo physics engine [40], which provides a high-speed simulation of
contact dynamics with rigid 3D objects. The robot interacts with a set of objects in the workspace.
Each operator observes the robot workspace from a camera facing the robot.

We describe the three tasks in Fig. 7. First, we use a lifting task as a diagnostic example to evaluate
our choice of control interface and our system’s characteristics. We also evaluate our system with
two complex tasks: the picking task and assembly task. We perform large-scale data collection and
model training on the picking task and the assembly task. These tasks involve a variety of dexterous
manipulation skills, such as grasping, pick-and-place, nut assembly, and high-level perception tasks
of understanding object categories and geometries.

The above tasks resemble subtasks necessary for robot automation of part assembly. These tasks
were inspired by the assembly challenge in the industrial robotics category of the World Robot
Summit [41]. The picking task is similar to the kitting task, where parts need to be picked and laid
out in preparation for assembly, and the assembly task is similar to the task board task, where nuts
must be placed onto designated pegs on a board. Fig. 7 shows screenshots taken along a successful
demonstration of each of the three tasks.

A.2 UI Experiments: Lifting Task

In Sec. 3 we described the UI and network experiments we performed. We ran experiments testing
four different user interfaces on both the lifting and picking tasks. Here, we describe the results of
these experiments on the lifting task. As Fig. 8 shows, users took significantly longer to complete the
lifting task using the keyboard interface as compared to the other three interfaces, which all perform
roughly equally. The lifting task is relatively simple and every episode of interaction is around 10
seconds, which was too short to reveal any significant differences between the phone, VR, and 3D
mouse interfaces.
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Figure 8: Comparison of completion time distributions of different user interfaces on the lifting task.

A.3 UI Experiments: Details

In Sec. 3 and Sec. A.2 we described the general trends that we found during our UI experiments. In
Table 2 and Table 3, we detail the concrete results of those same experiments.

A.4 Network Experiments

We ran tests on four different network conditions, with bandwidth at 2.4Mbps or 500kbps and delay
at 20ms or 120ms. The baseline condition had 2.4Mbps bandwidth and 20ms delay. The low capacity
condition had bandwidth reduced to 500kbps and the high delay condition had delay increased to
120ms. The both condition had the worst bandwidth and delay. Each user completed the lifting
and picking task at varying network condition levels. Fig. 8 shows how similar the completion time
distributions were for the lifting task, and Table 4 shows the same results with the mean and standard
deviation for each distribution.

Table 6 shows the KolmogorovSmirnov statistic between distributions of completion times for
each of our network experiments. Based on a statistical significance level of 5%, we found no
statistically significant difference in performance between network conditions, despite worsened
network conditions. This is largely due to WebRTC’s adaptive video compression keeping quality
high and delays at a minimum. Table 5 shows the mean and standard deviation for each distribution
compared in Table 6.

A.5 Analysis of object difficulty on the Bin Picking task

For the picking task, we compared the time to grasp a target object and the time to place an object in
a bin across the different user control interfaces. Fig. 9 shows a qualitative comparison of how users
struggled with the various objects and interfaces. Fig. 10 implies that milk tended to be the easiest
object to grasp for all interfaces, while the rest of the objects were comparably difficult. Furthermore,
we found that the phone experiments tended to have the most consistent results while the keyboard
experiments showed a large increase in completion times.

A.6 Teleoperation Controller Details

The teleoperation server maps received user phone poses and controls the simulated robot arm
appropriately. Upon receiving a new phone pose with respect to the AR world coordinates of the
phone, the controller matches this to a desired robot end effector pose. Next, an Inverse Kinematics
procedure is invoked to compute a desired set point for the robot joint positions q∗. These target joint
positions are fed to a controller which computes joint velocities q̇ = −kv(q− q∗) and uses them to
control the arm.

A.7 Pilot Dataset Distribution

Using ROBOTURK, we were able to collect a total of 3224 demonstrations over the course of 22 hours
of total system usage. A total of 2218 demonstrations were successful and included in the dataest
with 1171 demonstrations on the picking task and 1147 on the assembly task. These successful
demonstrations correspond to 137.5 hours of trajectories.
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Table 2: Statistics on completion times of the lifting task across different user interfaces.
Mean Standard Deviation Num. Demonstrations

Keyboard 22.34 7.92 187
3D Mouse 16.58 12.27 193
VR Controller 14.29 8.38 160
Phone 14.26 8.27 167

Table 3: Statistics on completion times of the picking task across different user interfaces.
Mean Standard Deviation Num. Demonstrations

Keyboard 151.45 23.69 40
3D Mouse 112.57 43.65 40
VR Controller 79.36 29.41 40
Phone 89.97 34.94 40

Table 4: Statistics on completion times of the lifting task across different network conditions.
Mean Standard Deviation Num. Demonstrations

Baseline 15.66 8.22 160
Low Capacity 16.13 9.41 168
High Delay 14.19 5.07 164
Both 16.31 8.29 160

Table 5: Statistics on completion times of the picking task across different network conditions.
Mean Standard Deviation Num. Demonstrations

Baseline 111.54 39.84 40
Low Capacity 113.93 51.62 40
High Delay 106.4236 34.72 40
Both 113.85 41.81 41

Table 6: Kolmogorov-Smirnov statistic between distributions and p-value for completion times in the
picking task across the different network configurations.

Baseline Low Capacity High Delay Both

Baseline - 0.125 0.165 0.150
(0.893) (0.598) (0.724)

Low Capacity 0.125 - 0.165 0.150
(0.893) (0.603) (0.724)

High Delay 0.165 0.165 - 0.077
(0.598) (0.603) (0.999)

Both 0.150 0.150 0.077 -(0.724) (0.724) (0.999)
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Figure 9: Comparison of environment rewards, which measure the completion of the pick and place
operation.

Figure 10: Time taken to grasp and place the four different types of objects in the pick and place task
averaged across eight users for different user interfaces.

The mean completion time for the assembly task is 112.12 seconds, with a standard deviation of
59.95. The mean completion time for the picking task is 146.71 seconds, with a standard deviation of
52.67. The distribution of completion times in this dataset is shown in Fig.11.

A.8 Policy Learning From Demonstrations

We ran our policy learning experiments on the can picking and round assembly tasks. For both tasks,
the agent is given 100 time steps to solve the task, and is provided a sparse reward that is 1 on task
completion.

We used the distributed PPO implementation from [39] with 32 actors to train policies. We used
neural networks with an LSTM layer of size 100 followed by two fully-connected layers of size 300
and 200 for both the actor network (mean) and the value function network. The policy is a Gaussian
distribution parametrized by the mean network and a separate log standard deviation parameter. See
[39] for additional hyperparameter details.

On every environment reset, with 90% probability, a demonstration was sampled uniformly at random
from the demonstration set, and the simulator was reset to a state sampled uniformly from the selected
demonstration, and with 10% probability, the environment was reset normally.
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Figure 11: ROBOTURK Pilot Dataset Distribution: Distribution of task completion times across
all users in the large-scale dataset.

Experiments on the can picking task were each given 24 hours of training time, while those on the
round assembly task were given 48 hours of training time. These cutoff times were experimentally
determined to be sufficient for training policies to complete the tasks.
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