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Abstract

Humans possess an extraordinary ability to learn new
skills and new knowledge for problem solving. Such learn-
ing ability is also required by an automatic model to deal
with arbitrary, open-ended questions in the visual world.
We propose a neural-based approach to acquiring task-
driven information for visual question answering (VQA).
Our model proposes queries to actively acquire relevant
information from external auxiliary data. Supporting evi-
dence from either human-curated or automatic sources is
encoded and stored into a memory bank. We show that
acquiring task-driven evidence effectively improves model
performance on both the Visual7W and VQA datasets;
moreover, these queries offer certain level of interpretability
in our iterative QA model.

1. Introduction
Imagine that you asked your 5-year-old niece “what is

the color of the food inside the pan?” to check if the food
is ready. Then she saw something like the image in Fig. 1.
Unfortunately, this poor kid didn’t know what a pan is, and
had to ask you “which one is the pan?” before answering
that the food is yellow. Just like in this scenario above, our
daily interactions often involve asking follow-up questions
and collecting “clues” – in order to communicate with oth-
ers, answer their questions, and serve their needs.

Can machines also ask for and collect “clues” to solve
a visual question answering (VQA) task? Most of today’s
VQA methods make their predictions based on a predefined
set of information, typically a mixed representation of the
image and the question sentence [3, 9, 23, 39, 41]. As
a result, these VQA models have been shown to be “my-
opic” (tend to fail on novel instances) [1]. Meanwhile,
current state-of-the-art VQA models have also indicated
that they could benefit from better visually grounded evi-
dence [9, 17]. Hence, we push one step further by enabling
a VQA model to ask for and collect “clues” – in particu-
lar, visually grounded evidence from human-curated or al-
gorithmically generated data sources.

You: What is the color of 
the food inside the pan?

Niece: Which is the pan?

You: The round one with a 
handle.

Niece: Yellow!

You: What is the color of 
the food inside the pan?

Niece: Which is the pan?

You: The round one with a 
handle.

Niece: Yellow!

Figure 1: A human being can understand a scene better by
actively asking relevant questions to gain more background
information behind the scene, as illustrated in the dialog
above. Inspired by this, we propose a dynamic VQA model
that can ask queries to get supporting evidence for the task.

Till now, deep learning-based models have dominated
standard VQA benchmarks [3, 25, 31, 41]. Among these
models, one of the most popular choices is to use CNN to
encode images and LSTM to encode words [3, 26, 31]. Fur-
thermore, attention mechanism has been adopted by many
top-performing models [9, 23, 41] to achieve better results.
Recently Jabri et al. [17] proposed a new alternative model,
a two-layer MLP that takes answers as input and makes bi-
nary predictions. This simple network has shown highly
competitive results in comparison to other more complex
architectures. We extend their model with our proposed it-
erative querying framework to gather and reason about sup-
porting evidence to tackle the VQA tasks.

While our goal is to gather evidence to solve VQA tasks,
not all evidence is equally valuable. In fact, most pieces of
evidence are irrelevant, and only a few of them are helpful.
Therefore, a model has to be selective – ask for and use only
relevant information to the task. To this end, we propose
a dynamic VQA model that can iteratively ask queries for
new evidence and collect relevant evidence from external
sources. To be more specific, our model obtains supporting
evidence through a series of queries from external auxiliary
data, called knowledge sources. The acquired evidence is
encoded and added to a memory bank. Then, the model
with the newly updated memory can propose another round
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of queries, or produce an answer to the target question.
Our experiments show that our model can work well

with both human-curated knowledge sources, such as Vi-
sual Genome scene graphs [20], and algorithmically gen-
erated knowledge sources by the state-of-the-art object de-
tectors [32]. In spite of its simplicity our model achieves
new state-of-the-art performance on the Visual7W telling
task [41], as well as on par with the top-performing
model [9] on the VQA Real Multiple Choice challenge. An-
other advantage of our model is its interpretability. At every
iteration, the model actively seeks new evidence with a tex-
tual query. It enables us to examine the model’s “rationale”
in its iterative process of seeking the final answer.

2. Related Work

VQA Models. Existing VQA models vary from symbolic
approaches [25, 38], neural-based approaches [9, 23, 24, 26,
31], to a hybrid scheme of the former two [2]. Attention
mechanisms [9, 23, 39, 41] have been shown effective in
fusing the multimodal representations of the question words
and the images. In addition to these models, some efforts
have been spent on better understanding the behavior of ex-
isting VQA models [1], as well as evaluating model atten-
tion maps against human attention [8]. Jabri et al. [17] pro-
posed a simple alternative model that takes answers as in-
put and performs binary predictions. Their model competes
well with other more complex VQA systems. Our work
extends their model [17] with a memory bank, achieving
better performances on both the Visual7W dataset [41] and
the VQA challenge [3].

Interactive Knowledge Acquisition. Knowledge acquisi-
tion has been a major interest of AI research for decades.
One remarkable pioneer work, dating back to the 1970s, is
SHRDLU [36], which provided a dialog system for users
to query a computer about the state of a simplified blocks
world. Other works have developed interactive interfaces to
acquire knowledge from human experts [37], to efficiently
label new training samples [35], or to propose the next ques-
tion in a restricted visual Turing test [10]. Another line
of work is never-ending learning, such as NELL [6] and
NEIL [7]. However, knowledge harvested in a never-ending
loop is often arbitrary and suffers from semantic drift. Sev-
eral works have investigated a variety of strategies to ac-
quire knowledge from external sources [4, 14, 19, 29, 30,
34]. In contrast to previous work, our work builds a neural-
based framework, capable of handling multimodal data. In-
stead of devising a handcrafted query strategy in previous
work, we learn a query strategy in a data-driven fashion.

Memory Networks. A large amount of efforts have de-
voted to augmenting neural networks with memory. An
early prominent innovation is long short-term memory [15],
which introduces memory cells to vanilla recurrent neural

networks. Recent work [11, 12, 18, 21, 33, 40] focuses
on developing different types of external memory repre-
sentations based on attention mechanism. A work, simi-
lar to ours, is dynamic memory network [5], which has an
episodic memory module to encode task-dependent infor-
mation for VQA. However, this work only encodes image
features into the episodic memory module, rather than in-
corporating semantic information. In addition, unlike ours,
their model does not learn a strategy to select task-driven
evidence based on its relevance to the task.

3. Methods
Many visual questions require open-ended common

sense reasoning [3, 10, 16, 41]. A recent study on today’s
VQA models [1] revealed that most models are “myopic”
such that they fail on sufficiently novel concepts. Instead
of learning within a closed set, it requires a more flexible
and principled model that learns and reasons with an assort-
ment of new information. To the end, our goal is to design
a model that proposes queries and acquires task-driven ev-
idence (Fig. 2) from knowledge source – specifically, we
focus on visually grounded evidence from human-curated
or algorithmically generated data sources. We introduce a
model that dynamically and constantly learns from external
environments in a multi-step fashion. The key challenge
here is to learn a querying strategy to gather the most infor-
mative evidence for the task.

3.1. Model Overview

Our goal is to iteratively obtain task-driven evidence in
order to produce an answer to a given visual question. This
process requires a model that can ask for necessary informa-
tion from the external sources. Here, we use query and re-
sponse as the means of communication between the model
and the knowledge sources. Also, the model needs to en-
code new evidence from a response in its own internal rep-
resentation, which we call memory. We define these data
types as the following:

• question: a natural language question that the model
aims to answer about the image. We use a sentence-
image pair (q, i) to denote an individual question q on
image i;

• answer: a natural language answer to the question. We
consider the multiple choice tasks, where the goal is to
select the correct one from a set of candidate answers;

• query: a sentence describing a piece of task-driven in-
formation that the model is requesting, e.g., “How does
the man’s shirt look?”;

• response: a response to a query that contains a piece
of evidence from knowledge sources, e.g., “Striped.”;
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Figure 2: (a) An illustration of a standard VQA model. (b) An overview of our iterative model. (c) Detailed flowchart of
our model. The model consists of two major components: core network (green) and query generator (blue). The query
generator proposes task-driven queries to fetch evidence from external sources. Acquired knowledge is encoded and stored
as memories in the core network for answering a question.

• memory: an encoded evidence. Raw evidence is en-
coded into a vector of memory that the model can store
and process.

There are two major challenges in designing an itera-
tive VQA model: 1) proposing the next query at the cur-
rent model state, and 2) updating the model state with ac-
quired evidence, potentially in various forms from different
sources. Our model consists of core network (Sec. 3.2) and
query generator (Sec. 3.3), as shown in Fig. 2(b). The core
network handles updating the memory state and generating
an answer, while the query generator handles proposing the
next query based on the memory state.

3.2. Core Network

The core network is the main component of our model.
It takes a question input, predicts an answer, and also main-
tains its internal memory bank while iteratively obtaining
new evidence through querying (see Fig. 3). While the en-
tire core network is jointly trainable in an end-to-end man-
ner, we describe its four sub-networks separately based on
their roles:

1. memory encoders fK transform raw evidence e into
a memory vector m = fK(e) that the memory bank
can store and process. Raw evidence can be heteroge-
neous and multimodal. We encode different types of
evidence into vectors of the same size;

2. memory bank M stores a collection of memo-
ries acquired via iterative querying, where M =
{m(1),m(2), . . . ,m(t)}. The memory bank supports
both read/write operations. It can generate a repre-
sentation of current memory state φM (read). Also, a

new memory can be encoded and added to the memory
bank, whereM :=M∪ {e(t+1)} (write);

3. question encoder Eq encodes a question-image pair
into a vector embedding v = Eq(q, i);

4. answer decoder Ga takes the question encoding v and
the memory state φM, and produces an answer a =
Ga(v, φM). The question encoder and answer decoder
can also be coupled in a single network [17].

Fig. 2 illustrates the interactions between these sub-
networks. The formulation of the core network above pro-
vides a generic framework, where the design of each sub-
network is modularized. In this work, we demonstrate the
effectiveness of our model even without complex network
design. We use a simple MLP model [17] as the question
encoder and answer decoder. This model is a two-layer
MLP, which competes well with state-of-the-art models.
It takes as input a concatenation of pretrained image fea-
tures [13], an average of word embeddings of the question
and the answers, and predicts whether an image-question-
answer triplet is correct. The memory encoder transforms
raw evidence from external knowledge sources into fixed-
dimensional memory vectors. We represent each memory
as a 300-dimensional averaged word2vec embedding [27].
We provide more details of memory encoders in the sup-
plementary material. To retain the simplicity of our model,
we use a stack as our memory bank. It keeps the encoded
memory vectors, and updates itself by adding a new mem-
ory to the stack. We compute the memory state by summing
the memory vectors, normalized by `2-norm, in the mem-
ory bank. We concatenate this memory state vector with the
image-question-answer triplet as input to our MLP model.
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Figure 3: An example iterative query process. At each time,
the model proposes a task-driven query (Q) to request use-
ful evidence from knowledge sources. The response (R) is
encoded into a memory and added to the memory bank.

3.3. Query Generator

The query generator bridges our model with the external
knowledge sources. It proposes queries based on the mem-
ory state to obtain best relevant evidence. While the most
straightforward strategy would be to paraphrase the target
question as a query to an omniscient source, we don’t have
such oracle in practice. Hence, it is essential to define useful
query types for communication and to devise a good query
strategy for effectiveness.

An error analysis in previous work [17] indicates that
a lack of visual grounding, i.e., facts about the objects
in an image, is a key problem in current VQA systems.
Such visual grounding would help resolving the underly-
ing uncertainty from noisy vision models. Hence, we de-
fine four query types that the model can use to request vi-
sually grounded evidence. In Table 1, the bold words in the
query templates are the free arguments to construct the fi-
nal queries. Such evidence in the responses is sometimes
referred to as episodic memories [21], as they are grounded
on a specific image. These responses can be harvested from
either human annotation or a pretrained predictive model.

Table 1: Query Types and Response Formats

Query types and templates Response formats
What object can you see? (object, x, y, w, h)
Is there object in the image? (object, x, y, w, h)
How does object look? (object, attribute)
What is interacting with object1? (object2, relation)

Now, we need a strategy to generate the best query to
ask at the current memory state. Reinforcement learning
(RL) approaches are commonly used to learn such a query-
ing policy. However, we found that standard deep RL
methods such as DQN [28] have convergence issues in our
problem setting with a large discrete action space. To ad-

dress this limitation, we use a tree expansion method with
a greedy scoring function instead. We use supervised learn-
ing method to train a query scoring network, which evalu-
ates query candidates at the current state.

Our query scoring network is an MLP model, similar to
the core network, followed by two-level hierarchical soft-
max for the query types and the query objects correspond-
ingly (see Fig. 4(a)). It takes an image-question-memory
triplet as input; however in contrast to the core network, it
does not take answer vectors as input. As we don’t have
ground-truth labels of the optimal queries at each step, we
automatically generate the training samples by Monte-Carlo
rollouts. Fig. 4(b) demonstrates a rollout procedure of the
query tree expansion method. Each node in the tree repre-
sents a query candidate. At each step, we maintain a set of
nouns that have been seen in question and responses, and
branch out queries from this set. The noun set is initialized
by all the noun entities in the question. This set constrains
the width of the search tree, making computation tractable.
During test, the query scoring network computes a score
for each terminal node. The model proposes the next query
with the highest score.

3.4. Learning

As mentioned in Sec. 3.2, the core network, therefore,
can be trained end-to-end. However, at each step, the query
generator makes a hard decision on which query to propose,
introducing a non-differentiable operation, yet there exists
interdependence between the core network and the query
generator. Thus, we devise an EM-style training procedure,
where we freeze the core network while training the query
scoring network, and vice versa (see Algorithm 1).

We bootstrap with a uniformly random strategy as the
seed query generator, as we initially don’t have a trained
query scoring network. The initial core network is trained
with random rollouts using backpropagation. In subse-
quent iterations, the core network is trained with rollouts
generated from a trained query generator (i.e., tree expan-
sion + query scoring network) from previous step. Freezing
the core network, we then train the query scoring network.

We train the query scoring network with the image-
question-memory triplets as input. The training set is au-
tomatically generated by the core network on Monte-Carlo
rollouts, as depicted in Fig. 4(c). In each rollout, we add
a pair of input and label (i.e., query type and query object)
to the training set if the newly added memory flipped previ-
ously incorrect predictions to the correct answers.

3.5. Implementation Details

We follow the same network setup and the same hyper-
parameters as [17]. Both the core network and the query
scoring network have 8,192 hidden units. We use dropout
(0.5) after the first layer, and ReLU as the non-linearity.



Algorithm 1 Training Procedure for Iterative QA Model

1: procedure
2: Generate random query rollouts R(0)

3: Train initial core network C(0) with rollout R(0)

4: Generate training samples S(0) for query scoring network with C(0)
5: Train initial query scoring network G(0) with S(0)

6: for t = 1, . . . , N do . Iterate N times
7: Generate query rollouts R(t) with query scoring network G(t−1)
8: Finetune core network C(t) from C(t−1) with rollout R(t)

9: Generate training samples S(t) for query scoring network from C(t)
10: Finetune query scoring network G(t) from G(t−1) with S(t)

11: end for
12: return {G(N), C(N)}
13: end procedure
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Figure 4: (a) Query scoring network. The network uses hierarchical softmax to evaluate each query given the current memory
state and the question; (b) Query search tree expansion. The model starts with a seed set of nouns, which is used to generate
queries; new nouns from query responses are added to the set and used to expand the query tree further; (c) Generating
training samples for query scoring network. We perform Monte-Carlo rollouts on the query search tree, and use feedback
from the core network as the labels.

Both networks are trained using SGD with momentum and
a base learning rate of 0.01. We perform Monte-Carlo
rollouts by the query generator using an ε-greedy strategy
(Line 7 in Algorithm 1), where ε is annealed from 1.0 to 0.1
as the iterative training procedure (N = 5) proceeds.

4. Experiments

Our main goal, throughout experiments, is to examine
how the acquired evidence from the iterative QA model im-
pact performances of answering questions on images. We
aim to investigate two major aspects of our model: 1) im-
pacts of querying strategies for task-driven knowledge ac-
quisition, and 2) contributions and limitations of different
knowledge sources to answering questions on images. We
first report quantitative results in Sec. 4.2 and then perform
detailed analysis in Sec. 4.3.

4.1. Experiment Setups

Datasets. Our experiments are conducted on the Visual7W
telling task [41] and the VQA Real Multiple Choice chal-
lenge [3]. The Visual7W telling dataset includes 69,817
questions for training, 28,020 for validation, and 42,031 for
testing. The performance is measured by the percentage of
questions that are correctly answered. The VQA Real Mul-
tiple Choice challenge has 248,349 questions for training,
121,512 for validation, and 244,302 for testing. The perfor-
mance is reported by an evaluation metric proposed by [3].

Knowledge Sources. As indicated by the error analysis in
Jabri et al. [17], the key limitation of today’s VQA mod-
els is a lack of visual grounding of objects and concepts.
We thus design our query types and responses in Table 1
to acquire visually grounding evidence from the knowledge
sources. Such knowledge can be obtained by human an-



notation, or automatically generated by pretrained models.
Based on the availability of knowledge sources, we evalu-
ate our model with human-curated knowledge sources [20]
for the Visual7W dataset, and with automatic knowledge
sources [32] for the VQA challenge.

The Visual7W dataset is collected on a subset of images
from Visual Genome [20]. Visual Genome offers a struc-
tured image representation called scene graphs, a graph
structure of objects, attributes of objects, and their pairwise
relationships. These scene graphs are manually annotated
by AMT workers. We use these scene graphs as the knowl-
edge source for Visual7W. We use these ground-truth anno-
tations of the most frequent 150 objects, 50 attributes, and
20 relations, as the responses to the queries.

The VQA dataset is collected on images from the COCO
dataset [22]. In the absence of scene graph annotations, we
run the state-of-the-art object detector [32], trained with 80
object classes, to predict objects on the images. These auto-
matic predictions are used as the responses to the first two
types of queries in Table 1. We discard detections with low
scores by a cutoff of 0.5. We omit the other query types due
to the lack of a reliable scene graph generation model.

4.2. Quantitative Experiments

Our model is built upon a simple MLP model [17]. The
main novelty of our model is to augment this model with
a memory bank, where task-driven memories are actively
obtained by iterative queries. The iterative querying model
generates up to three queries before producing the final an-
swer. We examine the performance of our query generator
with three querying strategies:

• all knowledge populates the memory bank with the
entire knowledge source, i.e., the entire scene graph or
all detected objects of the image;

• uniform sampling randomly proposes queries without
using the query generator;

• query generator selects queries based on the trained
query generator introduced in Sec. 3.4.

We report the performance on the Visual7W telling test
split in Table 2 and on VQA Real Multiple-Choice test-
dev and test-standard in Table 3. We compare our model
with the state-of-the-art VQA models to date. The current
state-of-the-art results on Visual7W is reported by Jabri et
al. [17]. The winning model on VQA Real Multiple-Choice
challenge is Fukui et al. [9]. For Visual7W, we train our
model on the training split. For VQA, we train our model
on both the train set and train+val set. We follow the setup
of previous work [9, 23], and report the final test-standard
performance with our model trained on the train+val set.

Table 2 and Table 3 illustrate the effectiveness of our it-
erative querying model. It achieves new state-of-the-art re-
sults in Visual7W and on par with the best single model
(MCB + Att. + GloVe [9]) on VQA.1 Comparing to the two
querying strategy baselines, our query generator learns to
query selectively, offering the best performances. Our sim-
ple MLP model augmented by the memory bank show com-
petitive results compared to existing models [9, 23] that
have a much complex design. Besides its simplicity, the
iterative queries offer us a chance to interpret the model’s
“rationale”. Fig. 5 shows some qualitative question exam-
ples from both datasets. We notice how the answer predic-
tions are changed as the querying process goes when new
evidence is being acquired. The model can often correct its
previously false predictions when a relevant memory is ac-
quired and added to the memory bank. However, in some
cases, a digressive piece of evidence can conversely mis-
guide the model. For instance, a false detection of train in
the last example of Fig. 5 causes the model to over-count.

4.3. Model Analysis

Despite of comparable performance gains on Visual7W
and VQA, they have used two distinct types of knowledge
sources respectively. The Visual7W model uses ground-
truth scene graph annotations (including testing phase) from
Visual Genome [20], which is costly and tedious to collect.
In contrast, the VQA model uses predictions from faster R-
CNN detectors [32], which is cheap and efficient to obtain.

One intuitive explanation of the modest performance
gain by using ground-truth scene graphs is the sparsity and
ambiguity of human annotation. Scene graphs are sparse
(e.g., about 20 objects per image) and open-vocabulary (e.g,
“kid” vs “boy”). Consequently, only 28% objects in an-
swers can be mapped to scene graphs. Furthermore, based
on the grounding annotations of Visual7W, only 43% an-
swers mention at least one object. Hence, a naı̈ve keyword
matching baseline with random tie breaker would yield a
poor accuracy of 35.7%, only 10% above chance. In con-
trast, the automatic knowledge sources generated by predic-
tive models do not suffer from the sparsity and ambiguity of
human annotation. A perfect object detector would be able
to find every object instances within its predefined vocab-
ulary. However, in reality its value is undermined by the
imperfect performance of these models. For instance, the
faster R-CNN detector that we used has 42.7% mAP@.5 on
COCO test-dev. Thus, we observe that the trade-off of the
hand-crafted and automatic knowledge sources from differ-
ent perspectives. An ideal knowledge source would com-
bine the strengths of both types, and provide a precise and

1The best number reported on the VQA challenge to date is 0.701
on test-standard by Fukui et al. [9]. However, this model is an ensem-
ble of 7 MCB models that trained with additional QA pairs from Visual
Genome [20], which is only 1.2% better than our results.



Table 2: Model Performance on the Visual7W test split

method what where when who why how overall
LSTM-Attention [41] 0.515 0.570 0.750 0.595 0.555 0.498 0.543
MCB [9] 0.603 0.704 0.795 0.692 0.582 0.511 0.622
MLP [17] 0.628 0.735 0.797 0.709 0.623 0.538 0.648
MLP + all knowledge 0.633 0.741 0.806 0.752 0.644 0.540 0.658
MLP + uniform sampling 0.624 0.740 0.805 0.762 0.629 0.537 0.653
MLP + query generator 0.651 0.778 0.807 0.814 0.653 0.541 0.679

Table 3: Model Performance on the VQA test-dev and test-standard

method test-dev test-standard
yes/no number other all yes/no number other all

Two-layer LSTM [3] - - - 0.627 0.806 0.377 0.536 0.631
Co-Attention [23] - - - 0.658 0.800 0.395 0.599 0.661
MCB + Att. + GloVe [9] - - - 0.691 - - - -
MCB Ensemble + Genome [9] - - - 0.702 0.833 0.410 0.652 0.701
MLP [17] 0.787 0.402 0.608 0.659 - - - -
MLP + all knowledge 0.787 0.405 0.625 0.668 - - - -
MLP + uniform sampling 0.788 0.404 0.622 0.666 - - - -
MLP + query generator 0.803 0.395 0.626 0.674 - - - -
MLP + query generator (train+val) 0.814 0.421 0.646 0.691 0.814 0.417 0.642 0.689

complete coverage of the visual concepts in an image.
We further analyze the limits of our visually grounded

evidence in improving VQA performance. We hypothesize
that the VQA tasks cannot be completely reduced to a vi-
sual grounding problem, as some of the questions involve
common sense reasoning about novel concepts [1]. To test
our hypothesis, we conduct a human study where we asked
5 human subjects to answer questions from both datasets.
These subjects are shown the entire knowledge sources for
each image, without seeing the images. They are asked to
select the best multiple choices of each question given the
knowledge sources. We randomly sample 500 questions
from each question type (six types in Visual7W and three
types in VQA). The human accuracy is reported as the ma-
jority vote among the subjects. The results (Q + KS) is re-
ported in Table 4. We compare with previous records [3, 41]
of majority human performances when subjects answered
questions without images (Q) and with images (Q + I).

Table 4: Ablation Study of Human Performance

Q Q + I Q + KS
Visual7W 0.353 0.957 0.522
VQA - 0.879 0.476

Not surprisingly, our knowledge sources greatly im-
proved human performance without showing images. Yet
they still do not compensate the absence of images. We
observe more than 40% performance gap between Q + KS
and Q + I on both datasets. This validates our hypothesis
that our knowledge sources cannot obsolete the rich visual

content of images for the VQA tasks. We provide human
performance by question type in the supplementary mate-
rial. We observe that our model and human subjects exhibit
different patterns on different question types. Our model
offers the most performance gain (10.5%) over the baseline
on who questions, as persons are among the most common
object categories in scene graphs [20]. However, human
subjects have the largest improvement (25.4%) on where
questions by seeing the scene graph, as they can often in-
fer the scene category based on the objects (e.g., inferring
“baseball field” after seeing mitt and bat). That implies,
humans can take advantage of the knowledge sources in
a more sophisticated way, e.g., utilizing common sense to
jointly reason about a large variety of concepts.

In this work, we intentionally retain the simplicity of the
model design while showing its effectiveness. Our simple
MLP model requires the presence of multiple choices as in-
put. As our model is modularized, each component can be
independently substituted by a more complex system (e.g.,
a sequence generator as the answer decoder for open-ended
VQA tasks). Our analysis sheds light on two possible direc-
tions to improve our model: 1) to augment our knowledge
sources to increase the variety and coverage of visual con-
cepts; and 2) to explore better approaches to encoding mem-
ory with common sense. Furthermore, our proposed itera-
tive querying model can be viewed as a generic framework
to acquire task-driven information, and is easily plugged
into other types of visual tasks by appending the memory
bank to a predictive model. A future direction would be to
explore the potential of our model in other tasks.
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Figure 5: Qualitative results of our final model. We show the model’s predictions with no query (i.e., MLP baseline [17]),
one, two and three queries. The left shows the question, the image, and a subset of multiple choices, followed by three queries
proposed by our model. Answers below the arrows are predictions at each time step, where green shows correct predictions,
and red incorrect. We showcase examples where our model switches to correct/incorrect answers in the querying process.

5. Conclusion

We propose a new scheme to tackle the task of visual QA
via iterative knowledge acquisition. Our model actively ac-
quires new evidence from external sources via task-driven
querying. Our experiments have shown that the model man-
ages to leverage newly obtained evidence and significantly

boosts the performance of answering visual questions. Our
model is a preliminary attempt for a system that learns to
interact with external environments for prolonged, continu-
ous learning. Future directions include exploration of bet-
ter ways to represent common sense, to harvest information
from less curated knowledge sources, and to generalize our
model to other problem domains.
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