
Reinforcement and Imitation Learning
for Diverse Visuomotor Skills

Yuke Zhu† Ziyu Wang‡ Josh Merel‡ Andrei Rusu‡ Tom Erez‡ Serkan Cabi‡

Saran Tunyasuvunakool‡ János Kramár‡ Raia Hadsell‡ Nando de Freitas‡ Nicolas Heess‡
†Computer Science Department, Stanford University, USA

‡DeepMind, London, UK

Abstract—We propose a model-free deep reinforcement learn-
ing method that leverages a small amount of demonstration data
to assist a reinforcement learning agent. We apply this approach
to robotic manipulation tasks and train end-to-end visuomotor
policies that map directly from RGB camera inputs to joint
velocities. We demonstrate that our approach can solve a wide
variety of visuomotor tasks, for which engineering a scripted
controller would be laborious. In experiments, our reinforcement
and imitation agent achieves significantly better performances
than agents trained with reinforcement learning or imitation
learning alone. We also illustrate that these policies, trained with
large visual and dynamics variations, can achieve preliminary
successes in zero-shot sim2real transfer. A brief visual description
of this work can be viewed in this video.

I. INTRODUCTION

Recent advances in deep reinforcement learning (RL) have
performed very well in several challenging domains such
as video games [29] and Go [46]. For robotics, RL in
combination with powerful function approximators such as
neural networks provides a general framework for designing
sophisticated controllers that would be hard to handcraft oth-
erwise. Reinforcement learning methods have a long history
in robotics control but have typically been used with low-
dimensional movement representations [4, 20]. The last few
years have seen a growing number of successful demonstra-
tions of deep RL for robotic manipulation using model-based
(e.g. Levine et al. [23], Yahya et al. [52], Levine et al. [24])
and model-free techniques (e.g. Chebotar et al. [3], Gu et al.
[9], Popov et al. [35]), both in simulation and on real hardware.
Nevertheless, end-to-end learning of visuomotor controllers for
long-horizon and multi-stage manipulation tasks using model-
free RL techniques remains a challenging problem.

Developing RL agents for robotics requires overcoming sev-
eral significant challenges. Policies for robotics must transform
multi-modal and partial observations from noisy sensors, such
as cameras, into coordinated activity of many degrees of free-
dom. At the same time, realistic tasks often come with contact-
rich dynamics and vary along multiple dimensions (visual
appearance, position, shapes, etc.), posing significant general-
ization challenges. Model-based methods can have difficulties
handling such complex dynamics and large variations. Directly
training model-free methods on real robotics hardware can be
daunting due to the high sample complexity. The difficulty of

* This work was done when Yuke Zhu (yukez@cs.stanford.edu)
worked as a summer intern at DeepMind.

3D motion controller

Collecting
demonstrations

physics engine

Training in
simulation

real environment

Running on
real robot

Fig. 1: Our proposal of a principled robot learning pipeline. We
used 3D motion controllers to collect human demonstrations
of a task. Our reinforcement and imitation learning model
leveraged these demonstrations to facilitate learning in a sim-
ulated physical engine. We then performed sim2real transfer
to deploy the learned visuomotor policy to a real robot.

real-world RL training is compounded by safety considerations
as well as the difficulty of accessing information about the
state of the environment (e.g. the position of an object) to
define a reward function. Finally, even in simulation when
perfect state information and large amounts of training data are
available, exploration can be a significant challenge, especially
for on-policy methods. This is partly due to the often high-
dimensional and continuous action space, but also due to the
difficulty of designing suitable reward functions.

In this paper, we present a model-free deep RL method
that can solve a variety of robotic manipulation tasks directly
from pixel input. Our key insights are 1) to reduce the
difficulty of exploration in continuous domains by leveraging
a handful of human demonstrations; 2) to leverage several new
techniques that exploit privileged and task-specific information
during training only which can accelerate and stabilize the
learning of visuomotor policies in multi-stage tasks; and 3)
to improve generalization by increasing the diversity of the
training conditions. As a result, the policies work well under
significant variations of system dynamics, object appearances,
task lengths, etc. Furthermore, we demonstrate promising
preliminary results for two tasks, where the policies trained
in simulation achieve zero-shot transfer to a real robot.

We evaluate our method on six manipulation tasks, includ-
ing stacking, pouring, etc. The set of tasks includes multi-
stage and long-horizon tasks, and they require full 9-DoF joint

https://youtu.be/EDl8SQUNjj0


velocity control directly from pixels. The controllers need to
be able to handle significant shape and appearance variations.

To address these challenges, our method combines imitation
learning with reinforcement learning into a unified training
framework. Our approach utilizes demonstration data in two
ways: first, it uses a hybrid reward that combines the task
reward with an imitation reward based on Generative Ad-
versarial Imitation Learning [15]. This aids with exploration
while still allowing the final controller to outperform the
human demonstrator on the task. Second, it uses demonstration
trajectories to construct a curriculum of states along which
to initialize the episodes during training. This enables the
agent to learn about later stages of the task earlier in training,
facilitating the solving of long tasks. As a result, our approach
solves all six tasks, which neither the reinforcement learning
nor imitation learning baselines can solve alone.

To sidestep the constraints of training on real hardware
we embrace the sim2real paradigm which has recently shown
promising results [17, 39, 47]. Through the use of a physics
engine and high-throughput RL algorithms, we can simulate
parallel copies of a robot arm to perform millions of com-
plex physical interactions in a contact-rich environment while
eliminating the practical concerns of robot safety and system
reset. Furthermore, we can, during training, exploit privileged
and task-specific information about the true system state with
several new techniques, including learning policy and value in
separate modalities, an object-centric GAIL discriminator, and
auxiliary tasks for visual modules. These techniques stabilize
and speed up policy learning, without imposing any constraints
on the system at test time.

Finally, we diversify training conditions such as visual
appearance, object geometry, and system dynamics. This
improves both generalization with respect to different task
conditions as well as transfer from simulation to reality.

We use the same model and the same algorithm with only
small task-specific modifications of the training setup to learn
visuomotor controllers for six diverse robot arm manipulation
tasks. As illustrated in Fig. 1 this instantiates a visuomotor
learning pipeline going from collecting human demonstration
to learning in simulation, and back to real-world deployment
via sim2real policy transfer.

II. RELATED WORK

Reinforcement learning methods have been extensively used
with low-dimensional policy representations such as move-
ment primitives to solve a variety of control problems both in
simulation and in reality. Three classes of RL algorithms are
currently dominant for continuous control problems: guided
policy search methods (GPS; Levine and Koltun [22]), value-
based methods such as the deterministic policy gradient (DPG;
Silver et al. [45], Lillicrap et al. [26], Heess et al. [12])
or the normalized advantage function (NAF; Gu et al. [10])
algorithm, and trust-region based policy gradient algorithms
such as trust region policy optimization (TRPO) and proximal
policy optimization (PPO). TRPO [42] and PPO [43] hold ap-
peal due to their robustness to hyperparameter settings as well

as their scalability [14] but the lack of sample efficiency makes
them unsuitable for training directly on robotics hardware.

GPS [22] has been used e.g. by Levine et al. [23], Yahya
et al. [52] and Chebotar et al. [3] to learn visuomotor policies
directly on a real robotics hardware after a network pretraining
phase. Gupta et al. [11] and Kumar et al. [21] use GPS
for learning controllers for robotic hand models. Value-based
methods have been employed, e.g. by Gu et al. [9] who use
NAF to learn a door opening task directly on a robot while
Popov et al. [35] demonstrate how to solve a stacking problem
efficiently using a distributed variant of DPG.

The idea of using large-scale data collection for training
visuomotor controllers has been the focus of Levine et al. [24]
and Pinto and Gupta [33] who train a convolutional network
to predict grasp success for diverse sets of objects using a
large dataset with 10s or 100s of thousands of grasp attempts
collected from multiple robots in a self-supervised setting.

An alternative strategy for dealing with the data demand
is to train in simulation and transfer the learned controller to
real hardware, or to augment real-world training with synthetic
data. Rusu et al. [40] learn simple visuomotor policies for
a Jaco robot arm and transfer to reality using progressive
networks [39]. Viereck et al. [50] minimize the reality gap
by relying on depth. Tobin et al. [47] use visual variations to
learn robust object detectors that can transfer to reality; James
et al. [17] combine randomization with supervised learning.
Bousmalis et al. [2] augment the training with simulated data
to learn grasp prediction of diverse shapes.

Suitable cost functions and exploration strategies for control
problems are challenging to design, so demonstrations have
long played an important role. Demonstrations can be used
to initialize policies, design cost functions, guide exploration,
augment the training data, or a combination of these. Cost
functions can be derived from demonstrations either via
tracking objectives (e.g. Gupta et al. [11]) or via inverse
RL (e.g. Boularias et al. [1], Finn et al. [6]), or, as in our
case, via adversarial learning [15]. When expert actions or
expert policies are available, behavioral cloning can be used
(Rahmatizadeh et al. [36], James et al. [17], Duan et al. [5]).
Alternatively, expert trajectories can be used as additional
training data for off-policy algorithms such as DPG (e.g.
Vecerik et al. [49]). Most of these methods require observation
and/or action spaces to be aligned between the robot and
demonstrations. Recently, methods for third person imitation
have been proposed (e.g. Sermanet et al. [44], Liu et al.
[27], Finn et al. [7]).

Concurrently with our work several papers have presented
results on manipulation tasks. Rajeswaran et al. [37], Nair
et al. [30] both use human demonstrations to aid exploration.
Nair et al. [30] extends the DDPGfD algorithm [49] to learn a
block stacking task on a position-controlled arm in simulation.
Rajeswaran et al. [37] use the demonstrations with a form
of behavioral cloning and data augmentation to learn several
complex manipulation tasks. In both cases, controllers observe
a low-level state feature and these methods inherently require
aligned state and action spaces with the demonstrations. In



pixel
observation

proprioceptive
feature

object-centric
feature

CNN

MLP

LSTM

LSTM
joint 

velocity

value
function

state prediction
auxiliary tasksMLP

deep visuomotor policy

MLP

discriminator
score

GAIL
Discriminator

(MLP) D (s, a)

⇡✓(a|s)

V�(s)

Fig. 2: Model overview. The core of our model is the deep visuomotor policy, which takes the camera observation and the
proprioceptive feature as input and produces the next joint velocities.

contrast, our method learns end-to-end visuomotor policies
without reliance on demonstrator actions. Thus, it can utilize
demonstrations when raw demonstrator actions are unknown
or generated by a different body. Pinto et al. [34] and Peng
et al. [32] address the transfer from simulation to reality,
focusing on randomizing visual appearance and robot dynam-
ics respectively. Peng et al. transfer a block-pushing policy
operating from state features to a 7-DoF position controlled
Fetch robotics arm. Pinto et al. consider different tasks using
visual input with end-effector position control. These concur-
rent works have each introduced a subset of techniques that
our model employs. This work, developed independently from
concurrent works, integrates several new techniques into one
coherent method. Our experimental results demonstrate that
good performances come from the synergy of these combined
techniques.

III. MODEL

Our goal is to learn a visuomotor policy with deep neu-
ral networks for robot manipulation tasks. The policy takes
both an RGB camera observation and a proprioceptive fea-
ture vector that describes the joint positions and angular
velocities. These two sensory modalities are also available
on the real robot, allowing us to train in simulation and
subsequently transfer the learned policy to the robot without
modifications. Fig. 2 provides an overview of our model. The
deep visuomotor policy encodes the pixel observation with a
convolutional network (CNN) and the proprioceptive feature
with a multilayer perceptron (MLP). The features from these
two modules are concatenated and passed to a recurrent long
short term memory (LSTM) layer before producing the joint
velocities (control commands). The whole network is trained
end-to-end. We start with a brief review of the basics of
generative adversarial imitation learning (GAIL) and proximal
policy optimization (PPO). Our model extends upon these two
methods for visuomotor skills.

A. Background: GAIL and PPO
Imitation learning (IL) is the problem of learning a behavior

policy by mimicking a set of demonstrations. Here we assume
that human demonstrations are provided as a dataset of state-
action pairs D = {(si, ai)}i=1...N . Some IL methods cast the
problem as one of supervised learning, i.e., behavior cloning.
These methods use maximum likelihood to train a parameter-
ized policy πθ : S → A, where S is the state space and A is
the action space, such that θ∗ = argmaxθ

∑
N log πθ(ai|si).

The behavior cloning approach works effectively when demon-
strations are abundant [38]. However, as robot demonstrations
can be costly and time-consuming to collect, we aim for
a method that can learn from a handful of demonstrations.
GAIL [15] uses demonstration data efficiently by allowing
the agent to interact with the environment and learn from its
own experiences. Similar to Generative Adversarial Networks
(GANs) [8], GAIL employs two networks, a policy network
πθ : S → A and a discriminator network Dψ : S×A → [0, 1].
It uses a min-max objective function similar to that of GANs:

min
θ

max
ψ

EπE [logDψ(s, a)] + Eπθ [log(1−Dψ(s, a))], (1)

where πE denotes the expert policy that generated the demon-
stration trajectories. This objective encourages the policy πθ to
have an occupancy measure close to that of the expert policy.

In this work we train πθ with policy gradient methods
to maximize the discounted sum of the reward function
rgail(st, at) = − log(1−Dψ(st, at)), clipped at a max value
of 10. In continuous domains, trust region methods greatly
stabilize policy training. GAIL was originally presented in
combination with TRPO [42] for updating the policy. Recently,
PPO [43] has been proposed as a simple and scalable ap-
proximation to TRPO. PPO only relies on first-order gradients
and can be easily implemented with recurrent networks in a
distributed setting [14]. PPO implements an approximate trust
region that limits the change in the policy per iteration. This
is achieved via a regularization term based on the Kullback-
Leibler (KL) divergence, the strength of which is adjusted



dynamically depending on actual change in the policy in past
iterations.

B. Reinforcement and Imitation Learning Model

1) Hybrid IL/RL Reward: Shaping rewards are a popular
means of facilitating exploration. Although reward shaping can
be very effective it can also lead to suboptimal solutions [31].
Hence, we design the task rewards as sparse piecewise constant
functions based on the different stages of the respective tasks.
For example, we define three stages for the block stacking task,
including reaching, lifting, and stacking. Reward change only
occurs when the task transits from one stage to another. In
practice, we find defining such a sparse multi-stage reward
easier than handcrafting a dense shaping reward and less
prone to producing suboptimal behaviors. Training agents in
continuous domains with sparse or piecewise constant rewards
is challenging. Inspired by reward augmentation as described
in Li et al. [25] and Merel et al. [28], we provide additional
guidance via a hybrid reward function that combines the
imitation reward rgail with the task reward rtask:

r(st, at) = λrgail(st, at)+(1−λ)rtask(st, at) λ ∈ [0, 1]. (2)

Maximizing this hybrid reward can be interpreted as si-
multaneous reinforcement and imitation learning, where the
imitation reward encourages the policy to generate trajectories
closer to demonstration trajectories, and the task reward en-
courages the policy to achieve high returns on the task. Setting
λ to either 0 or 1 reduces this method to the standard RL or
GAIL setups. In our experiments, with a balanced contribution
of these two rewards the agents can solve tasks that neither
GAIL nor RL can solve alone. Further, the final agents achieve
higher returns than the human demonstrations owing to the
exposure to task rewards.

2) Leveraging Physical States in Simulation: The physics
simulator we employ for training exposes the full state of
the system. Even though such privileged information is un-
available on a real system, we can take advantage of it when
training the policy in simulation. We propose four techniques
for leveraging the physical states in simulation to stabilize and
accelerate learning (1) the use of a curriculum derived from
demonstration states, (2) the use of privileged information for
the value function (baseline), (3) the use of object-centric
features in the discriminator, and (4) auxiliary tasks. We
elaborate these four techniques as follows:

1. Demonstration as a curriculum. The problem of
exploration in continuous domains is exacerbated by the
long duration of realistic tasks. Previous work indicates that
shaping the distribution of start states towards states where
the optimal policy tends to visit can greatly improve policy
learning [18, 35]. We alter the start state distribution with
demonstration states. We build a curriculum that contains
clusters of states in different stages of a task. For instance, we
define three clusters for the pouring task, including reaching
the mug, grasping the mug, and pouring. During training, with
probability ε, we then start an episode from a random initial
state, and with probability 1− ε we uniformly select a cluster

and initialize the episode with a demonstration state from that
cluster. This is possible since our simulated system is fully
characterized by the physical states.

2. Learning value functions from states. PPO uses a learn-
able value function Vφ to estimate the advantage required to
compute the policy gradient. During training, each PPO worker
executes the policy for K steps and uses the discounted sum
of rewards and the value as an advantage function estimator
Ât =

∑K
i=1 γ

i−1rt+i + γK−1Vφ(st+K) − Vφ(st), where γ
is the discount factor. As the policy gradient relies on the
value function to reduce variance, it is beneficial to accelerate
learning of the value function. Rather than using pixels as
inputs similar to the policy network, we take advantage of the
low-level physical states (e.g., the position and velocity of the
3D objects and the robot arm) to train the value Vφ with a
smaller multilayer perceptron. We find that training the policy
and value in two different modalities stabilizes training and
reduces oscillation of the agent’s performance. This technique
has also been been proposed concurrently by Pinto et al. [34].

3. Object-centric discriminator. As for the value func-
tion, we exploit the availability of the physical states for
the GAIL discriminator and provide task specific features
as input. We find that object-centric representations (e.g.,
absolute and relative positions of the objects) provide the
salient and relevant signals to the discriminator. The states
of the robot arm in contrast lead the discriminator to focus
on irrelevant aspects of the behavior of the controller and are
detrimental for training of the policy. Inspired by information
hiding strategies used in locomotion domains [13, 28], our
discriminator only takes the object-centric features as input
while masking out arm-related information. The construction
of the object-centric representation requires a certain amount
of domain knowledge of the tasks. We find that the relative
positions of objects and displacements from the gripper to the
objects usually provide the most informative characterization
of a task. Empirically, we find that our model is not very
sensitive to the particular choices of object-centric features,
as long as they carry sufficient task-specific information. We
provide detailed descriptions in Appendix C.

4. State prediction auxiliary tasks. Auxiliary tasks have
been shown to be effective in improving the learning efficiency
and the final performance of deep RL methods [16]. To fa-
cilitate learning visuomotor policies we add a state prediction
layer on the top of the CNN module to predict the locations of
objects from the camera observation. We use a fully-connected
layer to regress the 3D coordinates of objects in the task,
minimizing the `2 loss between the predicted and ground-truth
object locations. The auxiliary tasks are not required for our
model to learn good visuomotor policies; however, adding the
additional supervision can often accelerate the training of the
CNN module.

3) Sim2Real Policy Transfer: We perform policy transfer
experiments on a real-world Kinova Jaco robot arm. The simu-
lation was manually adjusted to roughly match the appearance
and dynamics of the laboratory setup: a Kinect camera was
visually calibrated to match the position and orientation of the



pouring
liquid

block
lifting

order
fulfillment

clearing 
table with
a box

block
stacking

clearing
table with
blocks

block
lifting
(real)

block
stacking
(real)

Fig. 3: Visualizations of the six manipulation tasks in our experiments. The left column shows RGB images of all six tasks
in the simulated environments. These images correspond to the actual pixel observations as input to the visuomotor policies.
The right column shows the two tasks with color blocks on the real robot.

simulated camera, and the simulation’s dynamics parameters
were manually adjusted to match the dynamics of the real
arm. Instead of using professional calibration equipment, our
approach to sim2real policy transfer relies on domain ran-
domization of camera position and orientation [17, 47]. In
contrast to some previous works our trained policies do not
rely on any object position information or intermediate goals
but rather learn a mapping end-to-end from raw pixel input
joint velocities. In addition, to improve the robustness of our
controllers to latency effects on the real robot, we also fine-
tune our policies while subjecting them to action dropping. A
detailed description is available in Appendix B.

IV. EXPERIMENTS

Here we demonstrate that our approach offers a flexible
framework to visuomotor policy learning. To this end we eval-
uate its performance on the six manipulation tasks illustrated in
Fig. 3. We provide additional qualitative results in this video.

A. Environment Setup

We use a Kinova Jaco arm that has 9 degrees of freedom: six
arm joints and three actuated fingers. The robot arm interacts
with a diverse set of objects on a tabletop. The visuomotor
policy controls the robot by setting the joint velocity com-
mands, producing 9-dimensional continuous velocities in the
range of [−1, 1] at 20Hz. The proprioceptive features consist
of the positions and angular velocities of the arm joints and the
fingers. Visual observations of the table-top scene are provided
via a suitably positioned real-time RGB camera. The propri-
oceptive features and the camera observations are available
in both simulation and real environments thus enabling policy
transfer. The physical environment is simulated in the MuJoCo
physics simulator [48].

We use a large variety of objects, ranging from basic
geometric shapes to procedurally generated 3D objects built
from ensembles of primitive shapes. We increase the diver-
sity of objects by randomizing various physical properties,

including dimension, color, mass, friction, etc. We collect
demonstrations using a SpaceNavigator 3D motion controller,
which allows us to operate the robot arm with a position con-
troller, and gather 30 episodes of demonstration for each task
including observations, actions, and physical states. As each
episode takes less than a minute to complete, demonstrating
each task can be done within half an hour.

B. Robot Arm Manipulation Tasks

Fig. 3 shows the six manipulation tasks in our experiments.
The first column shows the six tasks in simulated environ-
ments, and the second column shows the real-world setup of
the block lifting and stacking tasks. We see obvious visual
discrepancies of the same task in simulation and reality. These
six tasks exhibit learning challenges to varying degrees. The
first three tasks use simple colored blocks, which makes it
easy to replicate a similar setup on the real robot. We study
sim2real policy transfer with the block lifting and stacking
tasks in Sec. IV-D.

Block lifting. The goal is to grasp and lift a randomized
block, allowing us to evaluate the model’s robustness. We
vary several random factors, including the robot arm dynamics
(friction and armature), lighting conditions, camera poses,
background colors, as well as the properties of the block. Each
episode starts with a new configuration with these random
factors uniformly drawn from a preset range.

Block stacking. The goal is to stack one block on top of
the other block. Together with the block lifting task, this is
evaluated in sim2real transfer experiments.

Clearing table with blocks. This task requires lifting two
blocks off the tabletop. One solution is to stack the blocks and
lift them both together. This task requires longer time and a
more dexterous controller, introducing a significant challenge
for exploration.

The next three tasks involve a large variety of procedurally
generated 3D shapes, making them difficult to recreate in real

https://youtu.be/EDl8SQUNjj0


(a) Block lifting (b) Block stacking (c) Clearing table with blocks

(d) Clearing table with a box (e) Pouring liquid (f) Order fulfillment

Fig. 4: Learning efficiency of our reinforcement and imitation model against baselines. The plots are averaged over 5 runs
with different random seeds. All the policies use the same network architecture and the same hyperparameters (except λ).

environments. We use them to examine the model’s ability to
generalize across object variations in long and complex tasks.

Clearing table with a box. The goal is to clear the tabletop
that has a box and a toy car. One strategy is to grasp the toy,
put it into the box, and lift the box. Both the box and the toy
car are randomly generated for each episode.

Pouring liquid. Modeling and reasoning about deformable
objects and fluids is a long-standing challenge in the robotics
community [41]. We design a pouring task where we use
many small spheres to simulate liquid. The goal is to pour
the “liquid” from one mug to the other container. This task
is particularly challenging due to the dexterity required. Even
humans struggled to demonstrate the task with our 3D motion
controller after extensive practice.

Order fulfillment. In this task we randomly place a variable
number of procedurally generated toy planes and cars on the
table. The goal is to place all the planes into the green box and
all the cars into the red box. This task requires the policy to
generalize at an abstract level. It needs to recognize the object
categories, perform successful grasps on diverse shapes, and
handle tasks with variable lengths.

C. Quantitative Evaluation

Our full model can solve all six tasks, with only occasional
failures, using the same policy network, the same training
algorithm, and a fixed set of hyperparameters. On the contrary,
neither reinforcement nor imitation alone can solve all tasks.
We compare the full model with three baselines which cor-

respond to pure RL, pure GAIL, and RL w/o demonstration
curriculum. These baselines use the same setup as the full
model, except that we set λ = 0 for RL and λ = 1 for GAIL,
while our model uses a balanced contribution of the hybrid
reward, where λ = 0.5. In the third baseline, all training
episodes start from random initial states rather than resetting
to demonstration states. This is a standard RL setup.

We report the mean episode returns as a function of the
number of training iterations in Fig. 4. Our full model achieves
the highest returns in all six tasks. The only case where the
baseline model is on par with the full model is the block
lifting task, in which both the RL baseline and the full model
achieved similar levels of performance. We hypothesize that
this is due to the short length of the lifting task, where
random exploration can provide a sufficient learning signal
without the aid of demonstrations. In the other five tasks, the
full model outperforms both the reinforcement learning and
imitation learning baselines by a large margin, demonstrating
the effectiveness of combining reinforcement and imitation for
learning complex tasks. Comparing the two variants of RL
with and without using demonstration as a curriculum, we
see a pronounced effect of altering the start state distribution.
We see that RL from scratch leads to very slow learning
progress; while initiating episodes along demonstration tra-
jectories enables the agent to train on states from different
stages of a task. As a result, it greatly reduces the burden
of exploration and improves the learning efficiency. We also
report the mean episode returns of human demonstrations in



0.0 0.5 1.0 1.5 2.0

iteration (in millions)

100

200

300

400

500

600

a
v
e
ra

g
e
 e

p
is

o
d
e
 r

e
tu

rn
full model

no auxiliary task

no RNN policy

no action to discriminator

no discriminator mask

GAIL w/ demo curriculum

RL w/ demo curriculum

learning value on pixels

(a) Ablation study of model components (b) Model sensitivity to λ values

Fig. 5: Model analysis in the stacking task. On the left we investigate the impact on performance by removing each individual
component from the full model. On the right we investigate the model’s sensitivity to the hyperparameter λ that moderates the
contribution of reinforcement and imitation.

these figures. Demonstrations with the 3D motion controller
are imperfect, especially for pouring (see video), and the
trained agents exceed the performance of the human operator.

Two findings are noteworthy. First, the RL agent learns
faster than the full model in the clearing blocks task, but the
full model eventually outperforms. This is because the full
model discovers a novel strategy, different from the strategy
employed by human operators (see video). In this case, imi-
tation gave contradictory signals but eventually, reinforcement
learning guided the policy towards a better strategy. Second,
pouring liquid is the only task where GAIL outperforms its
RL counterpart. Imitation can effectively shape the agent’s
behaviors towards the demonstration trajectories [51]. This
is a viable solution for the pouring task, where a controller
that generates similar-looking behaviors can complete the task.
In contact-rich domains with sufficient variation, however, a
controller trained only from a small number of demonstrations
will struggle to handle the complex dynamics and to generalize
appropriately to novel instances of the task. We hypothesize
that this is why the baseline RL agent outperforms the GAIL
agent in the other five tasks.

We further perform an ablation study on the block stacking
task to understand the impact of different components of our
model. In Fig. 5a, we trained our agents with a number of
configurations, each with a single modification to the full
model. We see that these ablations cluster into two groups:
agents that learn to stack (with average returns greater than
400) and agents that only learn to lift (with average returns
between 200 and 300). These results indicate that the hybrid
RL/IL reward, learning value function from states, and object-
centred features for the discriminator play an integral role in
learning good policies. Using only the RL or GAIL reward,
learning the value function from pixels, or providing the full
arm state as discriminator input (no discriminator mask) all

result in inferior performance. In contrast, the optional com-
ponents include the recurrent policy core (LSTM), the use of
state prediction auxiliary tasks, and whether to include actions
in discriminator input. This result suggests that our model
can learn end-to-end visuomotor policies without a pretraining
phase or the need of auxiliary tasks, as opposed to previous
work on visuomotor learning [3, 23, 52]. Furthermore, it can
work when the GAIL discriminator only has access to the
demonstration states without the accompanying demonstrator
actions. Therefore, it can potentially use demonstrations col-
lected with a different body where the underlying controls
are unknown or different from the robot’s actuators. We then
examine the model’s sensitivity to the λ values in Eq. 2. We
see in Fig. 5b that, our model works well with a broad range
of λ values from 0.3 to 0.7 that provide a balanced mix of the
RL and GAIL rewards.

D. Sim2Real Policy Transfer Results

To assess the robustness of the simulation-trained policy, we
evaluate zero-shot transfer (no additional training) on a real
Jaco arm. The real-world setup was roughly matched to the
simulation environment (including camera positions and robot
kinematics and approximate object size and color). We execute
the trained policy network on the robot and count the number
of successful trials for both the lifting and stacking tasks. The
arm position is randomly initialized and the target block(s)
are placed in a number of repeatable start configurations for
each task. The zero-shot transfer of the lifting policy has a
success rate of 64% over 25 trials (split between 5 block
configurations). The stacking policy has a success rate of
35% over 20 trials (split between 2 block configurations).
80% of the stacking trajectories, however, contain success-
ful lifting behavior, and 100% contains successful reaching
behavior. It is impractical to conduct a fair comparison with

https://www.youtube.com/watch?v=EDl8SQUNjj0&feature=youtu.be&t=2m43s
https://www.youtube.com/watch?v=EDl8SQUNjj0&feature=youtu.be&t=3m0s


previous work [17, 47, 50] that implemented different tasks
and different configurations. The state-of-the-art sim2real work
closest to our setup is progressive network [39, 40], which has
demonstrated block reaching behaviors with a pixel-to-action
RL policy on a Jaco arm. Their work did not demonstrate any
lifting or stacking behavior, while our method has achieved
reaching behaviors with a 100% success rate. Qualitatively,
the policies are notably robust even on failed attempts. The
stacking policy repeatedly chases the block to get a successful
grasp before trying to stack (see video). For more detailed
descriptions of the sim2real results, refer to Appendix B.

Several aspects of system mismatch have constrained the
policies from attaining a better performance on the real robot.
Although the sim and real domains are similar, there is still a
sizable reality gap that makes zero-shot transfer challenging.
For example, while the simulated blocks are rigid the objects
employed in the real-world setup are non-rigid foam blocks
which deform and bounce unpredictably. Furthermore, neural
network policies are sensitive to subtle discrepancies between
simulated rendering and the real camera frame. Nonetheless,
the preliminary successes achieved by these policies offer a
good starting point for future work to leverage a small amount
of real-world experience to enable better transfer.

V. DISCUSSION

In this paper, we have described a general model-free
deep reinforcement learning method for end-to-end learning
of policies that operate from RGB camera images and per-
form manipulation using joint velocity control. Our method
combines the use of demonstrations via generative adversarial
imitation learning [15] with model-free RL to achieve both
effective learning of difficult tasks and robust generalization.
The approach only requires a small number of demonstration
trajectories (30 per task in the experiments). Additionally, this
approach works from state trajectories (without demonstrator
actions) combined with the use of only partial/featurized
demonstrations being seen by the discriminator – this can
simplify and increase the flexibility during data collection
and facilitate generalization beyond conditions seen in the
demonstrations (e.g. demonstrations could potentially be col-
lected with a different body, such as a human demonstrator
via motion capture). Demonstrations were collected via tele-
operation of the simulated arm in less than thirty minutes per
task. Our method integrates several new techniques to leverage
the flexibility and scalability afforded by simulation, such as
access to privileged information and the use of large-scale
RL algorithms. The experimental results have demonstrated
its effectiveness in complex manipulation tasks in simulation
and achieved preliminary successes of zero-shot transfer to
real hardware. We trained all the policies with the same
policy network, the same training algorithm, and the same
hyperparameters. The approach makes some use of task-
specific information especially in the choice of the object-
centric features for the discriminator and the RL reward. In
practice we have found the specification of these features
intuitive, and our method was reasonably robust to specific

choices, thus striking favorable balance between the need for
(limited) prior knowledge and the generality of the solutions
that can be learned for complex tasks.

In order to fulfill the potential of deep RL in robotics, it
is essential to confront the full variability of the real-world,
including diversity of object appearances, system dynamics,
task semantics, etc. We have therefore focused on learning
controllers that could handle significant task variations along
multiple dimensions. To improve a policy’s ability to gener-
alize, we have increased the diversity of training conditions
with parameterized, procedurally generated 3D objects and
randomized system dynamics. This has resulted in policies that
exhibit robustness to large variations in simulation as well as
against some of the domain discrepancy between simulation
and the real world.

Simulation is at the center of our method. Training in simu-
lation circumvents several practical challenges of deep RL for
robotics, such as access to state information for reward spec-
ification, high sample complexity, and safety considerations.
Training in simulation also allows us to use the simulation
state to facilitate and stabilize training (i.e. by providing state
information to the value function), which in our experiments
has been important for learning good visuomotor policies.
However, even though our method utilizes such privileged
information during training it ultimately produces policies that
only rely on vision and proprioceptive information of the arm
and that can thus be deployed on real hardware.

Executing the policies on the real robot reveals that there
remains a sizable domain gap between simulation and real
hardware. Transfer is affected by visual discrepancies as well
as by differences in the arm dynamics and in the physical
properties of the environment. This leads to a certain level
of performance degradation when running a simulation policy
on the real robot. Still, our real-world experiments have
exemplified that zero-shot sim2real transfer can achieve initial
success with RL trained policies performing pixel-to-joint-
velocity control.

VI. CONCLUSION

We have shown that combining reinforcement and imitation
learning considerably improves our ability to train systems
capable of solving challenging dexterous manipulation tasks
from pixels. Our method implements all three stages of a
pipeline for robot skill learning: first, we collected a small
amount of demonstration data to simplify the exploration
problem; second, we relied on physical simulation to perform
large-scale distributed robot training; and third, we performed
sim2real transfer for real-world deployment. In future work,
we seek to improve the sample efficiency of the learning
method and to leverage real-world experience to close the
reality gap for policy transfer.

ACKNOWLEDGMENT

The authors would like to thank Yuval Tassa, Jonathan
Scholz, Thomas Rothörl, Jonathan Hunt, and many other col-
leagues at DeepMind for the helpful discussion and feedback.

https://youtu.be/EDl8SQUNjj0?t=3m23s


REFERENCES

[1] Abdeslam Boularias, Jens Kober, and Jan Peters. Relative
entropy inverse reinforcement learning. In AISTATS,
pages 182–189, 2011.

[2] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart,
Yunfei Bai, Matthew Kelcey, Mrinal Kalakrishnan, Laura
Downs, Julian Ibarz, Peter Pastor, Kurt Konolige, Sergey
Levine, and Vincent Vanhoucke. Using Simulation
and Domain Adaptation to Improve Efficiency of Deep
Robotic Grasping. arXiv preprint arXiv:1709.07857,
2017.

[3] Yevgen Chebotar, Mrinal Kalakrishnan, Ali Yahya,
Adrian Li, Stefan Schaal, and Sergey Levine. Path
integral guided policy search. In ICRA, 2017.

[4] Marc Peter Deisenroth, Gerhard Neumann, Jan Peters,
et al. A survey on policy search for robotics. Foundations
and Trends in Robotics, 2(1-2):1–142, 2013.

[5] Yan Duan, Marcin Andrychowicz, Bradly C. Stadie,
Jonathan Ho, Jonas Schneider, Ilya Sutskever, Pieter
Abbeel, and Wojciech Zaremba. One-shot imitation
learning. arXiv preprint arXiv:1703.07326, 2017.

[6] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided
cost learning: Deep inverse optimal control via policy
optimization. In ICML, pages 49–58, 2016.

[7] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel,
and Sergey Levine. One-Shot Visual Imitation Learning
via Meta-Learning. arXiv preprint arXiv:1709.04905,
2017.

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial nets. In NIPS,
pages 2672–2680, 2014.

[9] Shixiang Gu, Ethan Holly, Timothy P. Lillicrap, and
Sergey Levine. Deep reinforcement learning for robotic
manipulation. arXiv preprint arXiv:1610.00633, 2016.

[10] Shixiang Gu, Tim Lillicrap, Ilya Sutskever, and Sergey
Levine. Continuous deep Q-learning with model-based
acceleration. In ICML, 2016.

[11] Abhishek Gupta, Clemens Eppner, Sergey Levine, and
Pieter Abbeel. Learning dexterous manipulation for a soft
robotic hand from human demonstration. arXiv preprint
arXiv:1603.06348, 2016.

[12] Nicolas Heess, Gregory Wayne, David Silver, Tim Lill-
icrap, Tom Erez, and Yuval Tassa. Learning continuous
control policies by stochastic value gradients. In NIPS,
pages 2926–2934, 2015.

[13] Nicolas Heess, Greg Wayne, Yuval Tassa, Timothy Lil-
licrap, Martin Riedmiller, and David Silver. Learning
and transfer of modulated locomotor controllers. arXiv
preprint arXiv:1610.05182, 2016.

[14] Nicolas Heess, Srinivasan Sriram, Jay Lemmon, Josh
Merel, Greg Wayne, Yuval Tassa, Tom Erez, Ziyu Wang,
Ali Eslami, Martin Riedmiller, et al. Emergence of loco-
motion behaviours in rich environments. arXiv preprint
arXiv:1707.02286, 2017.

[15] Jonathan Ho and Stefano Ermon. Generative adversarial
imitation learning. In NIPS, pages 4565–4573, 2016.

[16] Max Jaderberg, Volodymyr Mnih, Wojciech Marian
Czarnecki, Tom Schaul, Joel Z Leibo, David Sil-
ver, and Koray Kavukcuoglu. Reinforcement learn-
ing with unsupervised auxiliary tasks. arXiv preprint
arXiv:1611.05397, 2016.

[17] Stephen James, Andrew J. Davison, and Edward Johns.
Transferring end-to-end visuomotor control from simu-
lation to real world for a multi-stage task. arXiv preprint
arXiv:1707.02267, 2017.

[18] Sham Kakade and John Langford. Approximately opti-
mal approximate reinforcement learning. In ICML, 2002.

[19] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[20] Jens Kober and Jan Peters. Reinforcement learning in
robotics: A survey. In Reinforcement Learning, pages
579–610. Springer, 2012.

[21] Vikash Kumar, Abhishek Gupta, Emanuel Todorov, and
Sergey Levine. Learning dexterous manipulation poli-
cies from experience and imitation. arXiv preprint
arXiv:1611.05095, 2016.

[22] Sergey Levine and Vladlen Koltun. Guided policy search.
In ICML, pages 1–9, 2013.

[23] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter
Abbeel. End-to-end training of deep visuomotor policies.
arXiv preprint arXiv:1504.00702, 2015.

[24] Sergey Levine, Peter Pastor, Alex Krizhevsky, and
Deirdre Quillen. Learning hand-eye coordination for
robotic grasping with deep learning and large-scale data
collection. arXiv preprint arXiv:1603.02199, 2016.

[25] Yunzhu Li, Jiaming Song, and Stefano Ermon. Inferring
the latent structure of human decision-making from raw
visual inputs. arXiv preprint arXiv:1703.08840, 2017.

[26] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. Continuous control with deep reinforce-
ment learning. ICLR, 2016.

[27] Yuxuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey
Levine. Imitation from observation: Learning to imitate
behaviors from raw video via context translation. arXiv
preprint arXiv:1707.03374, 2017.

[28] Josh Merel, Yuval Tassa, Dhruva TB, Sriram Srini-
vasan, Jay Lemmon, Ziyu Wang, Greg Wayne, and
Nicolas Heess. Learning human behaviors from mo-
tion capture by adversarial imitation. arXiv preprint
arXiv:1707.02201, 2017.

[29] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, 2015.

[30] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wo-
jciech Zaremba, and Pieter Abbeel. Overcoming ex-
ploration in reinforcement learning with demonstrations.



arXiv preprint arXiv:1709.10089, 2017.
[31] Andrew Y Ng, Daishi Harada, and Stuart J Russell.

Policy invariance under reward transformations: Theory
and application to reward shaping. In ICML, pages 278–
287, 1999.

[32] Xue Bin Peng, Marcin Andrychowicz, Wojciech
Zaremba, and Pieter Abbeel. Sim-to-Real Transfer of
Robotic Control with Dynamics Randomization. arXiv
preprint arXiv:1710.06537, October 2017.

[33] Lerrel Pinto and Abhinav Gupta. Supersizing self-
supervision: Learning to grasp from 50k tries and 700
robot hours. arXiv preprint arXiv:1509.06825, 2015.

[34] Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wo-
jciech Zaremba, and Pieter Abbeel. Asymmetric Actor
Critic for Image-Based Robot Learning. ArXiv e-prints,
2017.

[35] Ivaylo Popov, Nicolas Heess, Timothy P. Lillicrap,
Roland Hafner, Gabriel Barth-Maron, Matej Vecerik,
Thomas Lampe, Yuval Tassa, Tom Erez, and Mar-
tin A. Riedmiller. Data-efficient deep reinforcement
learning for dexterous manipulation. arXiv preprint
arXiv:1704.03073, 2017.

[36] Rouhollah Rahmatizadeh, Pooya Abolghasemi, Ladis-
lau Bölöni, and Sergey Levine. Vision-based multi-
task manipulation for inexpensive robots using end-
to-end learning from demonstration. arXiv preprint
arXiv:1707.02920, 2017.

[37] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta,
John Schulman, Emanuel Todorov, and Sergey Levine.
Learning complex dexterous manipulation with deep re-
inforcement learning and demonstrations. arXiv preprint
arXiv:1709.10087, 2017.

[38] Stéphane Ross, Geoffrey J Gordon, and Drew Bagnell. A
reduction of imitation learning and structured prediction
to no-regret online learning. In AISTATS, pages 627–635,
2011.

[39] Andrei Rusu, Neil Rabinowitz, Guillaume Desjardins,
Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu,
Razvan Pascanu, and Raia Hadsell. Progressive neural
networks. arXiv preprint arXiv:1606.04671, 2016.

[40] Andrei Rusu, Matej Vecerik, Thomas Rothörl, Nicolas
Heess, Razvan Pascanu, and Raia Hadsell. Sim-to-real
robot learning from pixels with progressive nets. arXiv
preprint arXiv:1610.04286, 2016.

[41] Connor Schenck and Dieter Fox. Reasoning about
liquids via closed-loop simulation. arXiv preprint
arXiv:1703.01656, 2017.

[42] John Schulman, Sergey Levine, Pieter Abbeel, Michael
Jordan, and Philipp Moritz. Trust region policy optimiza-
tion. In ICML, pages 1889–1897, 2015.

[43] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[44] Pierre Sermanet, Corey Lynch, Jasmine Hsu, and Sergey
Levine. Time-contrastive networks: Self-supervised
learning from multi-view observation. arXiv preprint

arXiv:1704.06888, 2017.
[45] David Silver, Guy Lever, Nicolas Heess, Thomas Degris,

Daan Wierstra, and Martin Riedmiller. Deterministic
policy gradient algorithms. In ICML, 2014.

[46] David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. Nature, 529
(7587):484–489, 2016.

[47] Joshua Tobin, Rachel Fong, Alex Ray, Jonas Schneider,
Wojciech Zaremba, and Pieter Abbeel. Domain random-
ization for transferring deep neural networks from simu-
lation to the real world. arXiv preprint arXiv:1703.06907,
2017.

[48] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco:
A physics engine for model-based control. In IROS,
pages 5026–5033, 2012.

[49] Matej Vecerik, Todd Hester, Jonathan Scholz, Fumin
Wang, Olivier Pietquin, Bilal Piot, Nicolas Heess,
Thomas Rothörl, Thomas Lampe, and Martin A. Ried-
miller. Leveraging demonstrations for deep reinforce-
ment learning on robotics problems with sparse rewards.
arXiv preprint arXiv:1707.08817, 2017.

[50] Ulrich Viereck, Andreas ten Pas, Kate Saenko, and
Robert Platt. Learning a visuomotor controller for
real world robotic grasping using easily simulated depth
images. arXiv preprint arXiv:1706.04652, 2017.

[51] Ziyu Wang, Josh Merel, Scott E. Reed, Greg Wayne,
Nando de Freitas, and Nicolas Heess. Robust imitation
of diverse behaviors. NIPS, 2017.

[52] Ali Yahya, Adrian Li, Mrinal Kalakrishnan, Yevgen
Chebotar, and Sergey Levine. Collective robot rein-
forcement learning with distributed asynchronous guided
policy search. arXiv preprint arXiv:1610.00673, 2016.



APPENDIX A
EXPERIMENT DETAILS

The policy network takes the pixel observation and the
proprioceptive feature as input. The pixel observation is an
RGB image of size 64 × 64 × 3. We used the Kinect for
Xbox One camera1 in the real environment. The proprioceptive
feature describes the joint positions and velocities of the
Kinova Jaco arm.2 Each joint position is represented as the
sin and cos of the angle of the joint in joint coordinates. Each
joint velocity is represented as the scalar angular velocity.
This results in a 24-dimensional proprioceptive feature that
contains the positions (12-d) and velocities (6-d) of the six
arm joints and the positions (6-d) of the three fingers. We
exclude the finger velocities due to the noisy sensory readings
on the real robot. When collecting demonstrations, we use a 6-
DoF SpaceNavigator motion controller3 to command the end
effector to complete the tasks.

We used Adam [19] to train the neural network parameters.
We set the learning rate of policy and value to 10−4 and
10−3 respectively, and 10−4 for both the discriminator and the
auxiliary tasks. The pixel observation is encoded by a two-
layer convolutional network. We use 2 convolutional layers
followed by a fully-connected layer with 128 hidden units.
The first convolutional layer has 16 8× 8 filters with stride 4
and the second 32 4×4 filters with stride 2. We add a recurrent
layer of 100 LSTM units before the policy and value outputs.
The policy output is the mean and the standard deviation
of a conditional Gaussian distribution over the 9-dimensional
joint velocities. The initial policy standard deviation is set to
exp(−3) for the clearing table with blocks task and exp(−1)
for the other five tasks. The auxiliary head of the policy
contains a separate three-layer MLP sitting on top of the
convolutional network. The first two layers of the MLP has
200 and 100 hidden units respectively, while the third layer
predicts the auxiliary outputs. Finally, the discriminator is a
simple three-layer MLP of 100 and 64 hidden units for the first
two layers with the third layer producing log probabilities. The
networks use tanh nonlinearities.

We trained the visuomotor policies using the distributed
PPO algorithm [14] with synchronous gradient updates from
256 CPU workers. Each worker runs the policy to complete
an entire episode before the parameter updates are computed.
We set a constant episode length for each task based on its
difficulty, with the longest being 1000 time steps (50 seconds)
for the clearing table with blocks and order fulfillment tasks.
We set K = 50 as the number of time steps for computing
K-step returns and truncated backpropagation through time to
train the LSTM units. After a worker collects a batch of data
points, it performs 50 parameter updates for the policy and
value networks, 5 for the discriminator and 5 for the auxiliary
prediction network.

1https://www.xbox.com/en-US/xbox-one/accessories/kinect
2http://www.kinovarobotics.com
3https://www.3dconnexion.com/spacemouse compact

TABLE I: Block lifting success rate from different positions
(LL, LR, UL, UR, and C represent the positions of lower left,
lower right, upper left, upper right, and center respectively).

LL LR UL UR C All
No Action Dropping 2/5 2/5 1/5 3/5 4/5 12/25
Action Dropping 4/5 4/5 4/5 0/5 4/5 16/25

TABLE II: Success rate of the block stacking agent (with
action dropping) from different starting positions (Left and
Right indicate the positions of the support block upon initial-
ization).

Left Right All
Stacking Success Rate 5/10 2/10 7/20
Lifting Success Rate 9/10 7/10 16/20

APPENDIX B
SIM2REAL DETAILS

To better facilitate sim2real transfer, we lower the frequency
at which we sample the observations. Pixel observations are
only observed at the rate of 5Hz despite the fact that our
controller runs at 20Hz. Similarly, the proprioceptive features
are observed at a rate of 10Hz. In addition to observation
delays, we also apply domain variations. Gaussian noise (of
standard deviation 0.01) are added proprioceptive features.
Uniform integers noise in the range of [−5, 5] are added to
each pixel independently. Pixels of values outside the range
of [0, 255] are clipped. We also vary randomly the shade of
grey on the Jaco arm, the color of the table top, as well as the
location and orientation of the light source (see Fig. 6).

In the case of block lifting, we vary in addition the dynamics
of the arm. Specifically, we dynamically change the friction,
damping, armature, and gain parameters of the robot arm in
simulation to further enhance the agent’s robustness.

A. Action Dropping

Our analysis indicates that, on the real robot, there is often
a delay in the execution of actions. The amount of delay
also varies significantly. This has an adverse effect on the
performance of our agent on the physical robot since our
agents’ performance depends on the timely execution of their
actions. To better facilitate the transfer to the real robot, we
fine-tune our trained agent in simulation while subjecting
them to a random chance of dropping actions. Specifically,
each action emitted by the agent has a 50% chance of being
executed immediately in which case the action is flagged as
the last executed action. If the current action is not executed,
the last executed action will then be executed. Using the above
procedure, we fine-tune our agents on both block lifting and
block stacking for a further 2 million iterations.

To demonstrate the effectiveness of action dropping, we
compare our agent on the real robot over the task of block
lifting. Without action dropping, the baseline agent lifts 48%
percent of the time. After fine-tuning using action dropping,
our agent succeeded 64% percent of the time. For the complete
set of results, please see Table I and Table II.

https://www.xbox.com/en-US/xbox-one/accessories/kinect
http://www.kinovarobotics.com
https://www.3dconnexion.com/spacemouse_compact


Fig. 6: Tiles show the representative range of diversity seen in the domain-randomized variations of the colors, lighting,
background, etc.

APPENDIX C
TASK DETAILS

We use a fixed episode length for each task, which is deter-
mined by the amount of time a skilled human demonstrator can
complete the task. An episode terminates when a maximum
number of agent steps are performed. The robot arm operates
at a control frequency of 20Hz, which means each time step
takes 0.05 second.

We segment into a sequence of stages that represent an
agent’s progress in a task. For instance, the block stacking
task can be characterized by three stages, including reaching
the block, lifting the block and stacking the block. We define
functions on the underlying physical state to determine the
stage of a state. This way, we can cluster demonstration states
according to their corresponding stages. These clusters are
used to reset training episodes in our demonstration as a
curriculum technique proposed in Sec. III-B2. The definition
of stages also gives rise to a convenient way of specifying the
reward functions without hand-engineering a shaping reward.
We define a piecewise constant reward function for each task,
where we assign the same constant reward to all the states
that belong to the same stage. We detail the stages, reward
functions, auxiliary tasks, and object-centric features for the
six tasks in our experiments.

Block lifting. Each episode lasts 100 time steps. We define
three stages and their rewards (in parentheses) to be initial
(0), reaching the block (0.125) and lifting the block (1.0).
The auxiliary task is to predict the 3D coordinates of the
color block. The object-centric feature consists of the relative
position between the gripper and the block.

Block stacking. Each episode lasts 500 time steps. We
define four stages and their rewards to be initial (0), reaching
the orange block (0.125), lifting the orange block (0.25),
and stacking the orange block onto the pink block (1.0).
The auxiliary task is to predict the 3D coordinates of the
two blocks. The object-centric feature consists of the relative
positions between the gripper and the two blocks respectively.

Clearing table with blocks. Each episode lasts 1000 time
steps. We define five stages and their rewards to be initial (0),
reaching the orange block (0.125), lifting the orange block
(0.25), stacking the orange block onto the pink block (1.0),
and lifting both blocks off the ground (2.0). The auxiliary
task is to predict the 3D coordinates of the two blocks. The
object-centric feature consists of the 3D positions of the two
blocks as well as the relative positions between the gripper
and the two blocks respectively.

Clearing table with a box. Each episode lasts 500 time
steps. We define five stages and their rewards to be initial (0),
reaching the toy (0.125), grasping the toy (0.25), putting the
toy into the box (1.0), and lifting the box (2.0). The auxiliary
task is to predict the 3D coordinates of the toy and the box.
The object-centric feature consists of the 3D positions of the
toy and the box as well as the relative positions between the
gripper and these two objects respectively.

Pouring liquid. Each episode lasts 500 time steps. We
define three stages and their rewards to be initial (0), grasping
the mug (0.05), pouring (0.1N ), where N is the number of
small spheres in the other container. The auxiliary task is
to predict the 3D coordinates of the mug. The object-centric
feature consists of the 3D positions of the mug, the relative
position between the gripper and the mug, and the relative
position between the mug and the container.

Order fulfillment. Each episode lasts 1000 time steps. The
number of objects varies from 1 to 4 across episodes. We
define five stages that correspond to the number of toys in the
boxes. The immediate reward corresponds to the number of
toys placed in the correct boxes (number of toy planes in the
green box and toy cars in the red box). To handle the variable
number of objects, we only represent the objects nearest
to the gripper for the auxiliary task and the object-centric
feature. The auxiliary task is to predict the 3D coordinates
of the nearest plane and the nearest car to the gripper. The
object-centric feature consists of the relative positions from
the gripper to these two nearest objects.


	Introduction
	Related work
	Model
	Background: GAIL and PPO
	Reinforcement and Imitation Learning Model
	Hybrid IL/RL Reward
	Leveraging Physical States in Simulation
	Sim2Real Policy Transfer


	Experiments
	Environment Setup
	Robot Arm Manipulation Tasks
	Quantitative Evaluation
	Sim2Real Policy Transfer Results

	Discussion
	Conclusion
	Appendix A: Experiment Details
	Appendix B: Sim2Real Details
	Action Dropping

	Appendix C: Task Details

