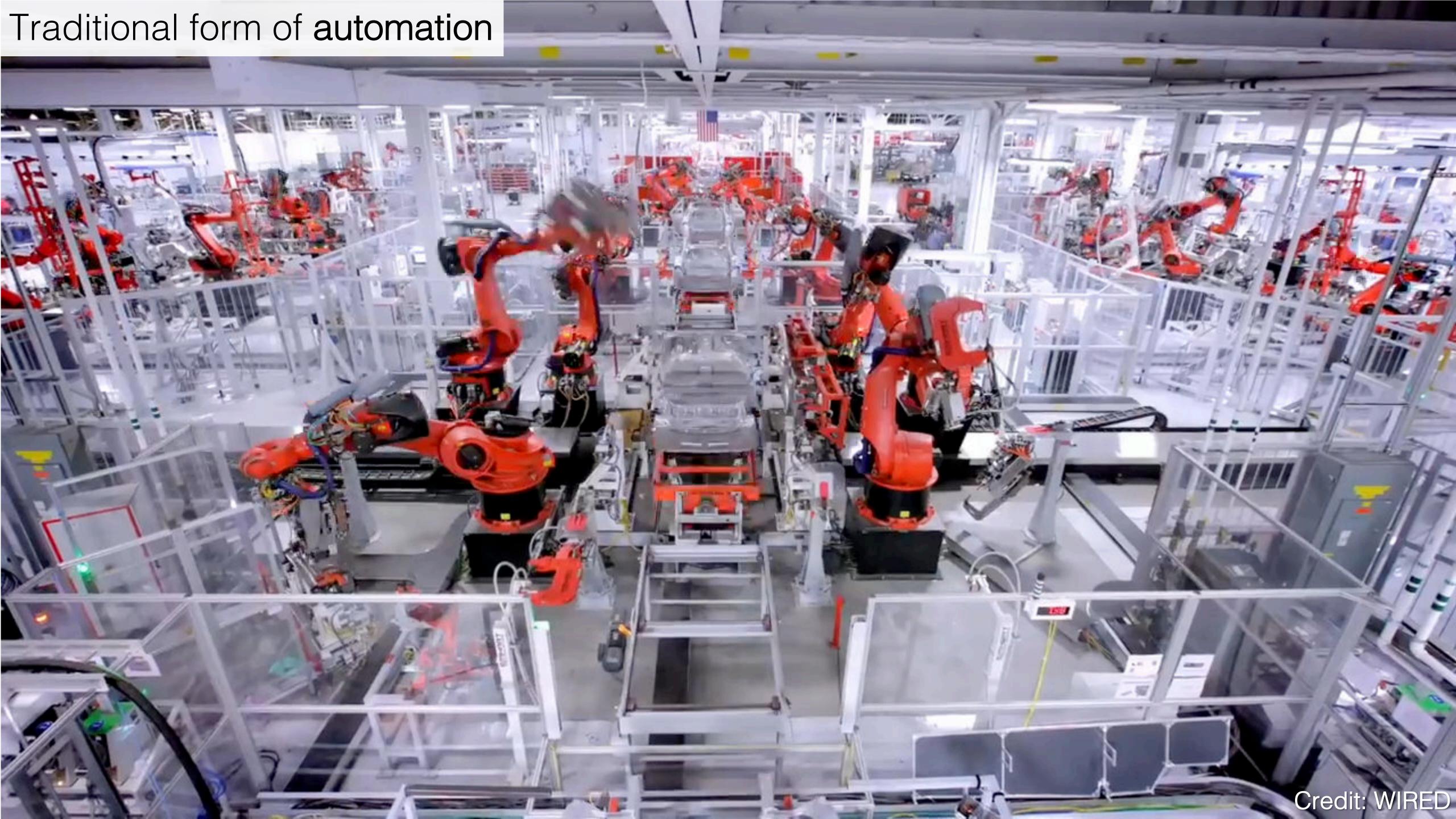
Building General-Purpose Robot Autonomy

A Progressive Roadmap

Yuke Zhu June 16, 2020

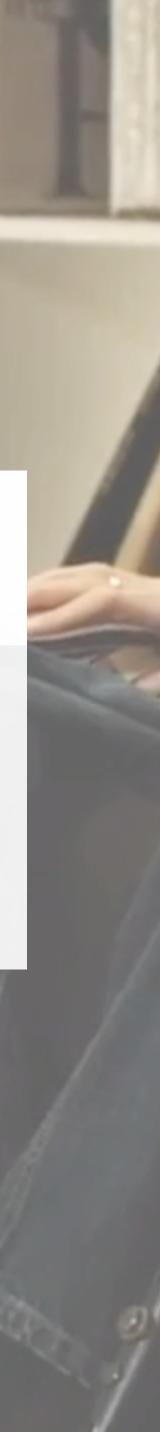


General-purpose robot hardware

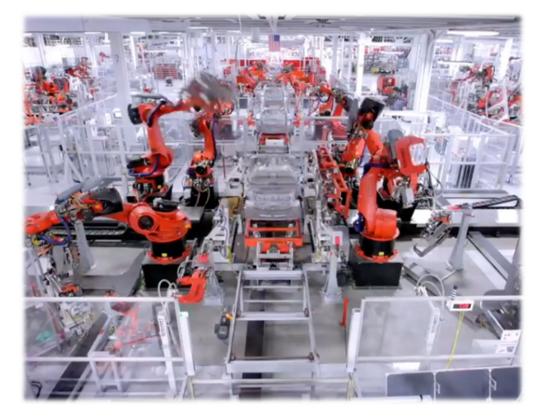
Credit: Kinova Robotics

Artificial Intelligence (AI) → Intelligence Augmentation (IA) building robot intelligence to enrich human intelligence

My Long-Term Research Goal

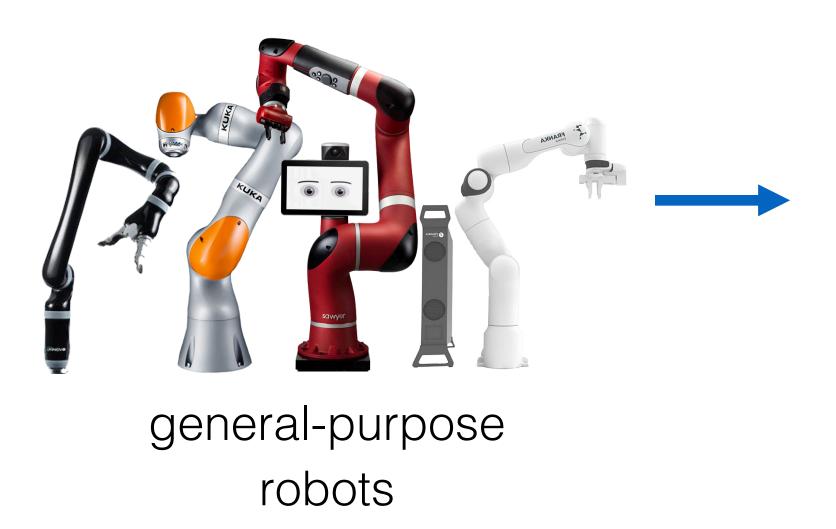


Traditional form of **robot automation**

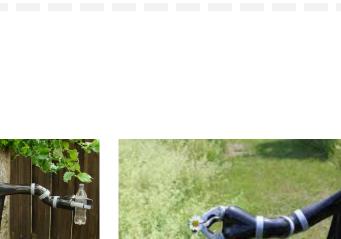


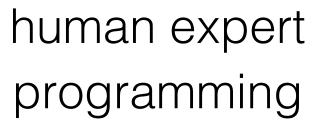
custom-built robots

New form of robot autonomy



general-purpose behaviors





special-purpose behaviors

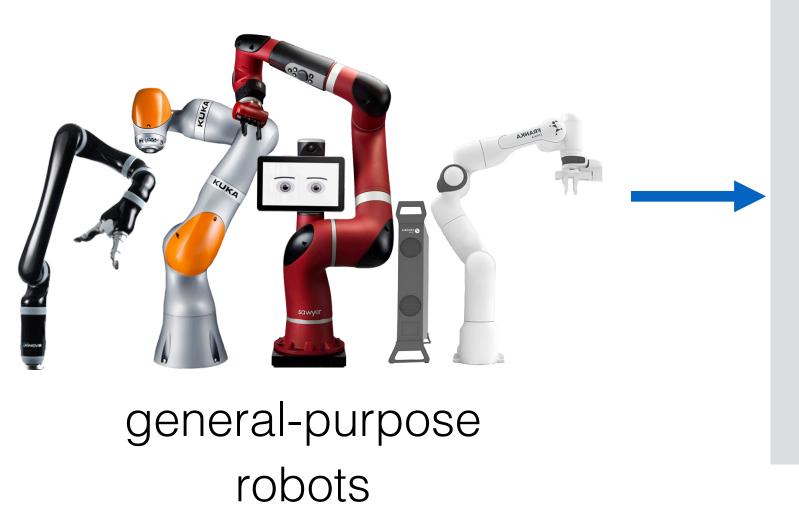
Traditional form of automation

custom-built robots

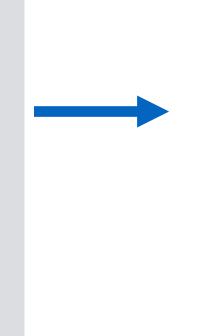
structured environment

human expert programming

New form of automation

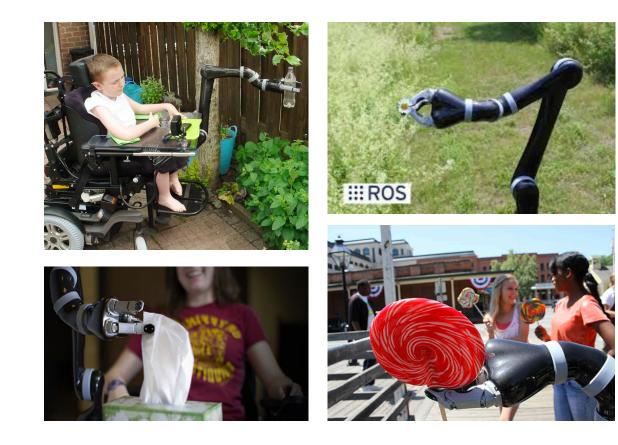


unstructured environment



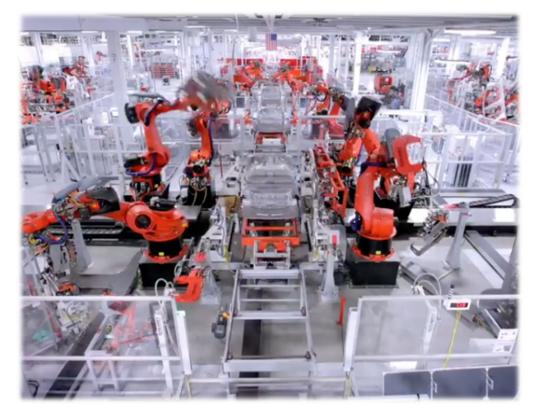


special-purpose behaviors



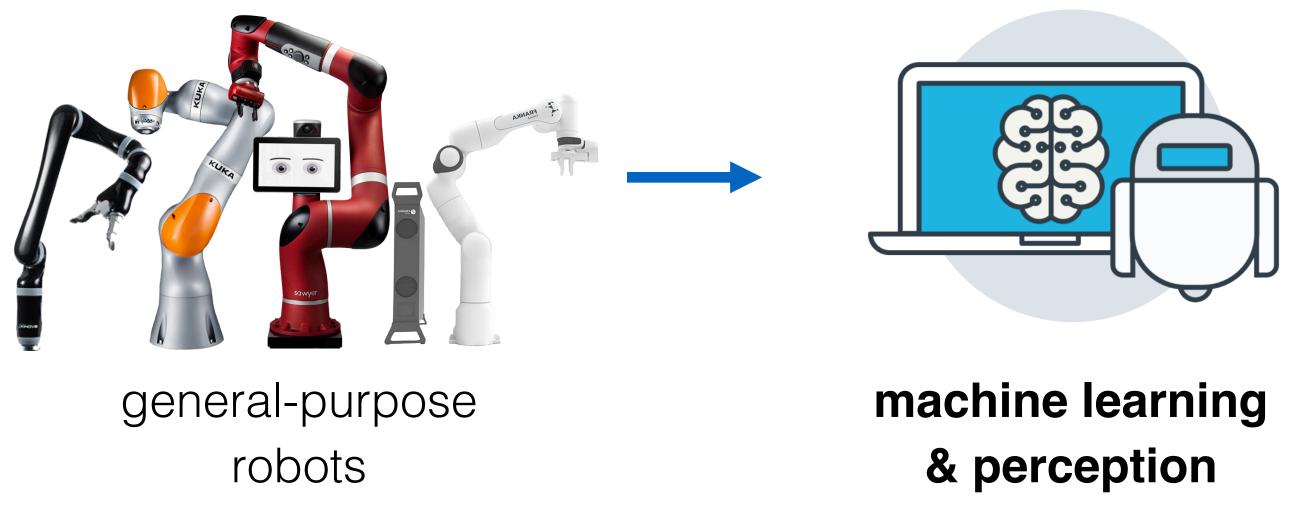
general-purpose behaviors

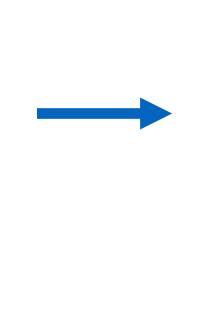
Traditional form of **automation**

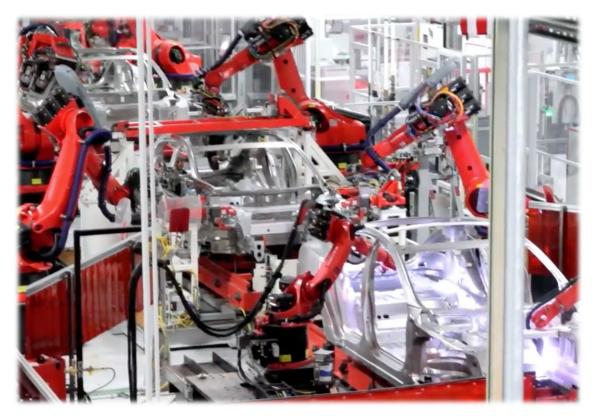


custom-built robots

New form of automation

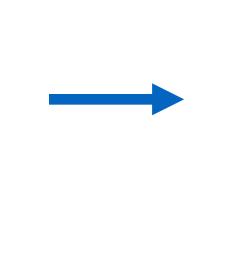






human expert programming

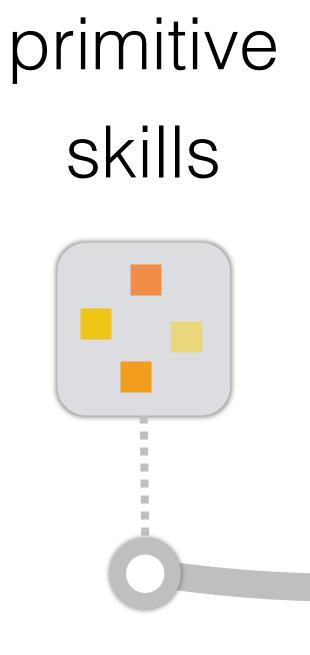
special-purpose behaviors



general-purpose behaviors

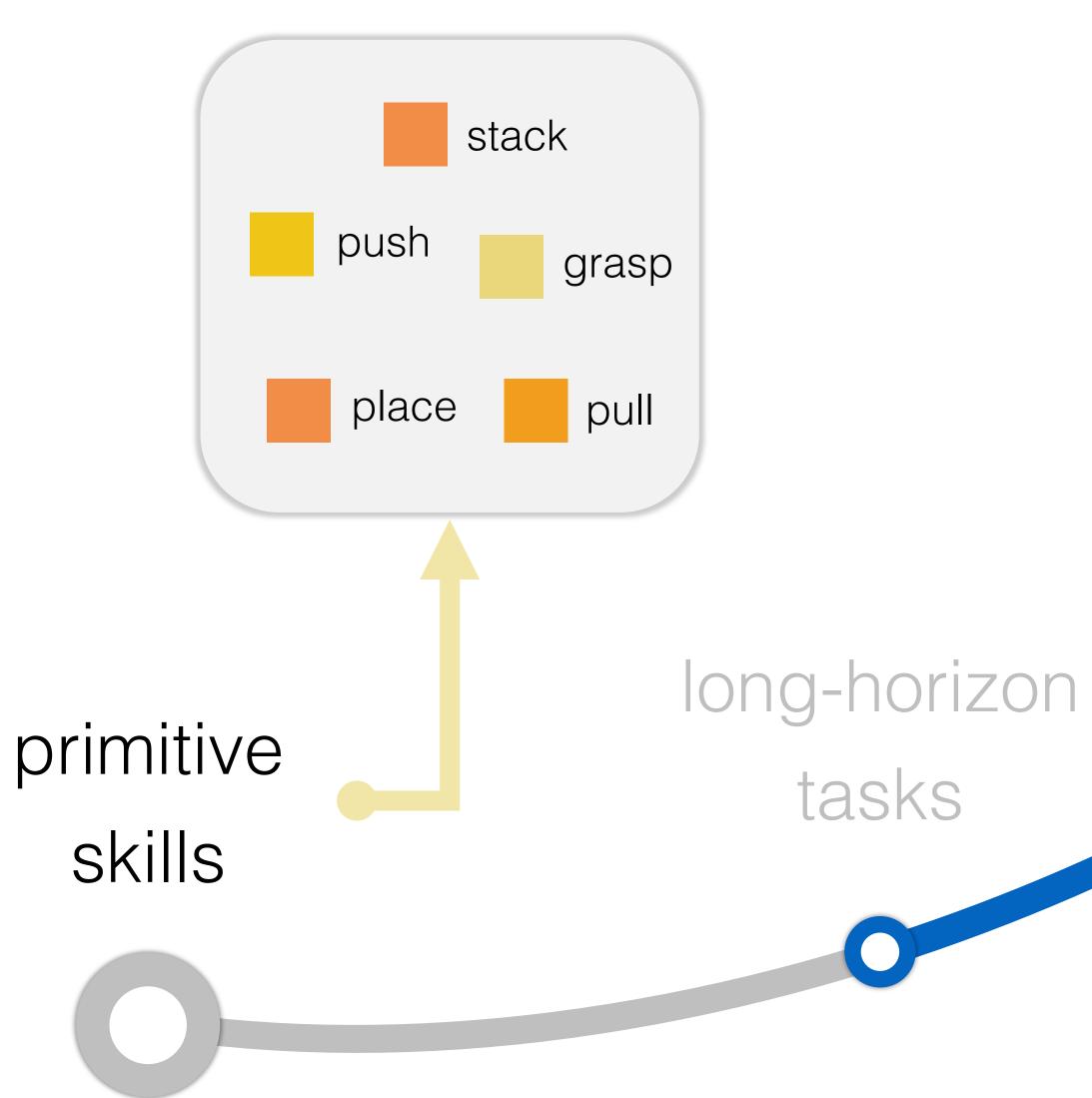
A Progressive Roadmap to General-Purpose Robot Autonomy

long-horizon tasks

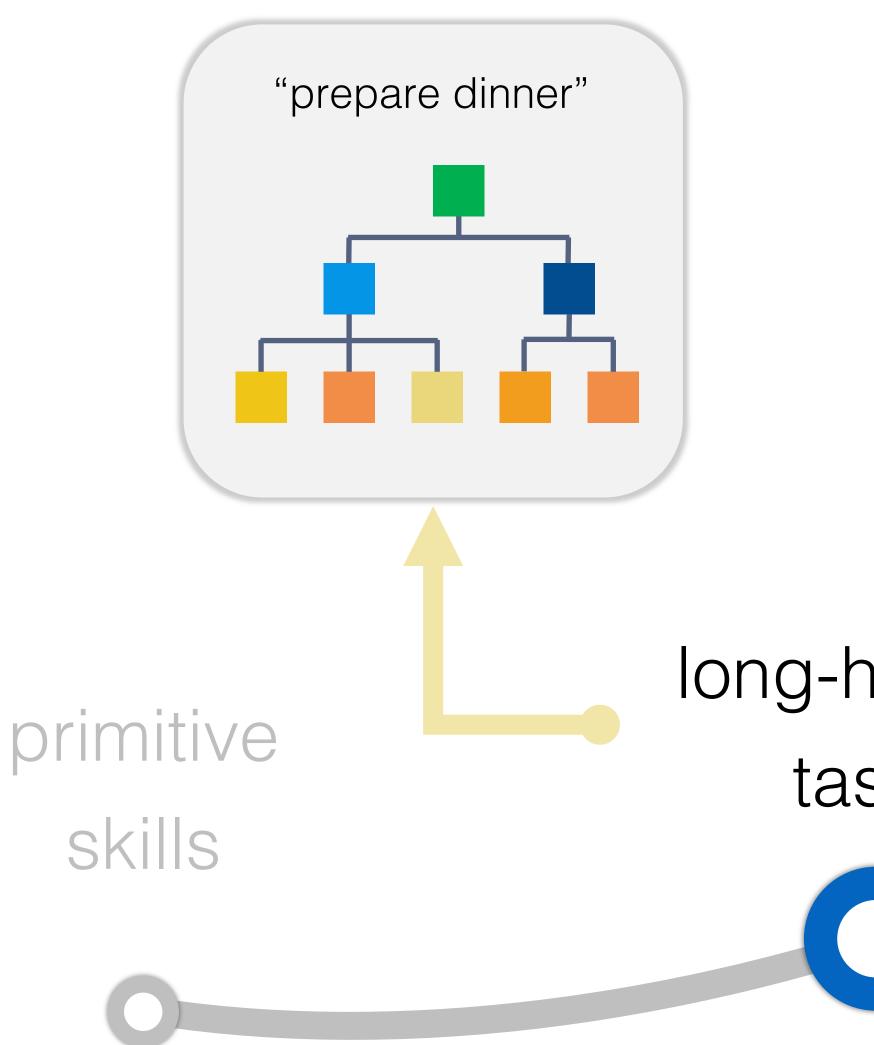


general-purpose robot autonomy

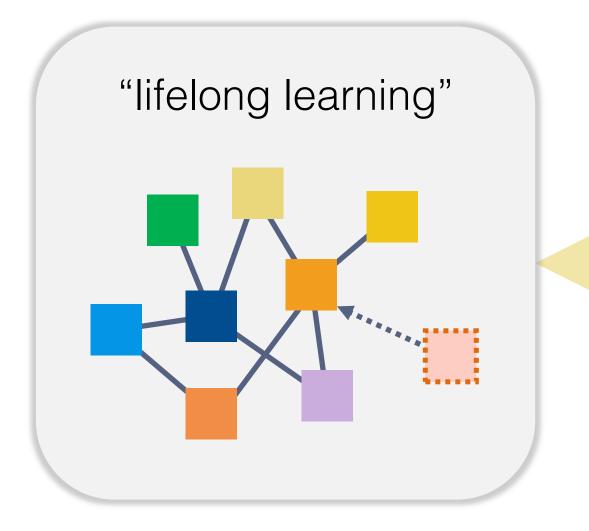
human-like learning



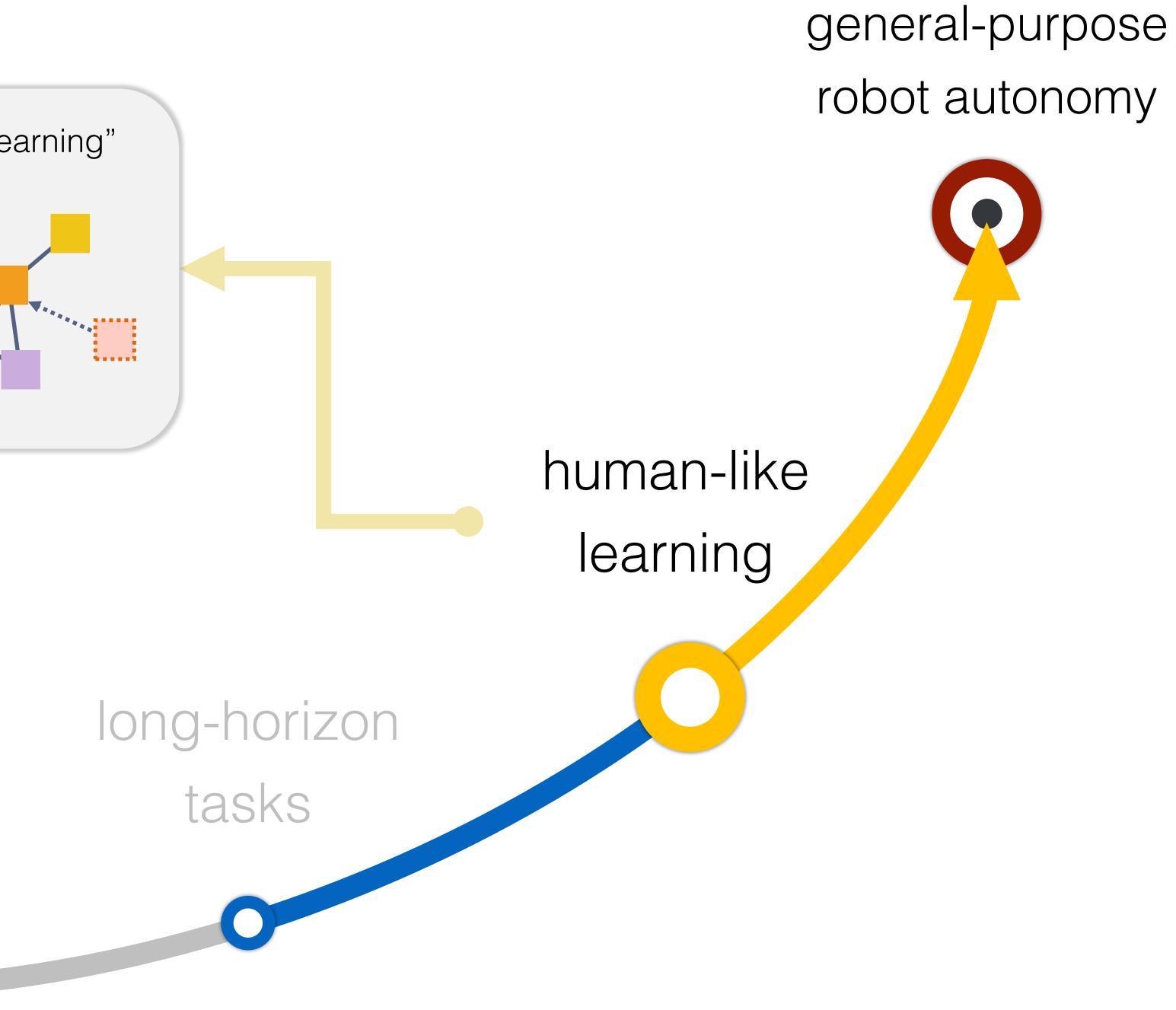
general-purpose robot autonomy human-like learning

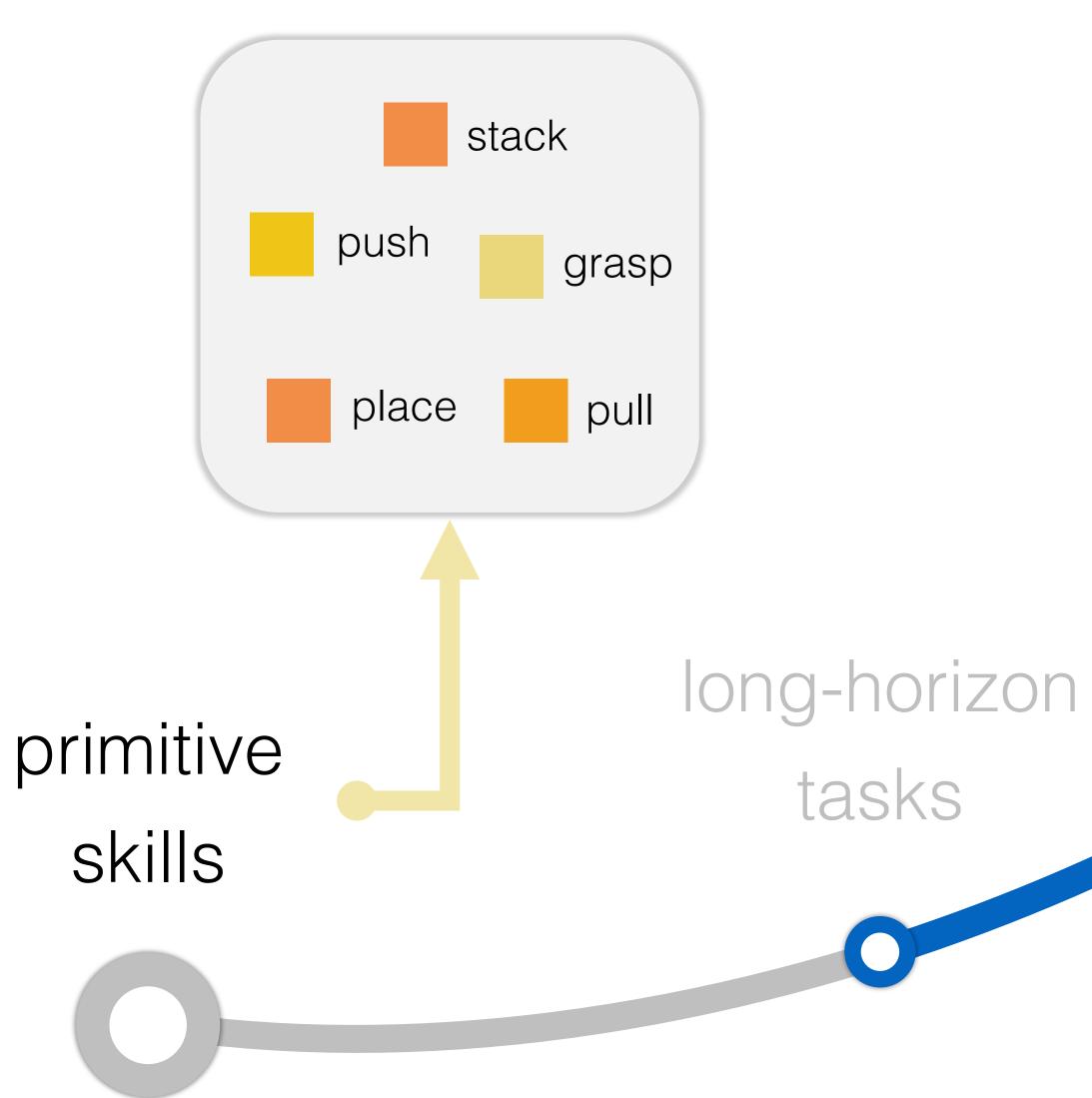


general-purpose robot autonomy human-like learning long-horizon tasks

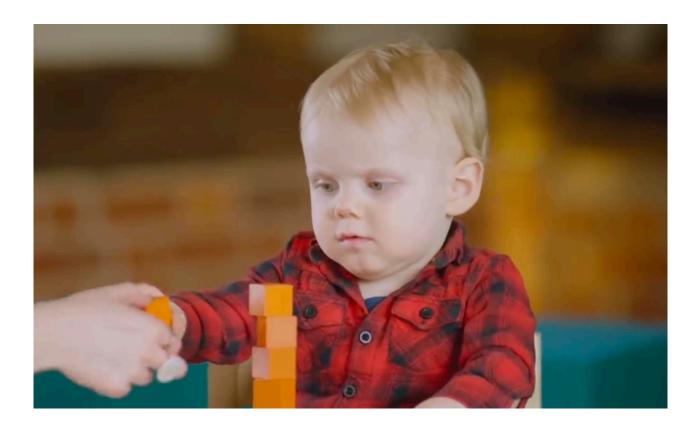


primitive skills





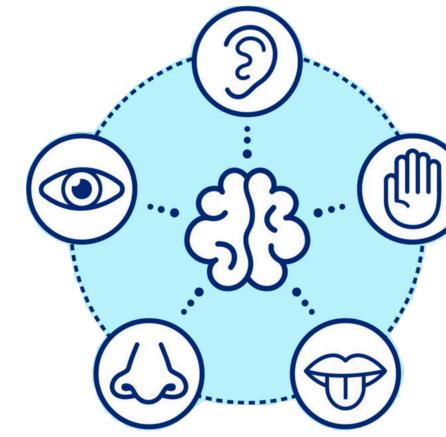
general-purpose robot autonomy human-like learning

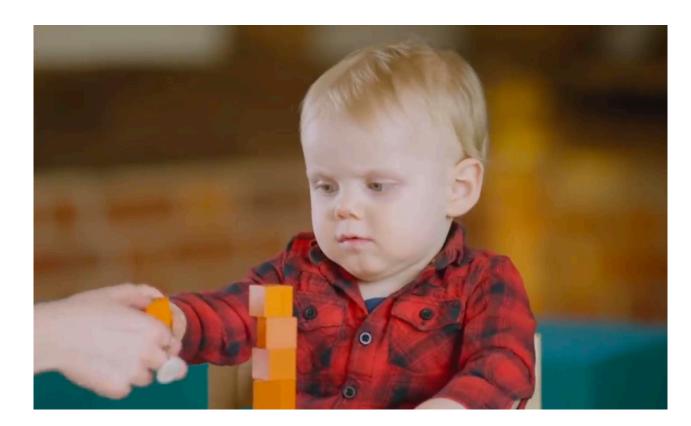


perception

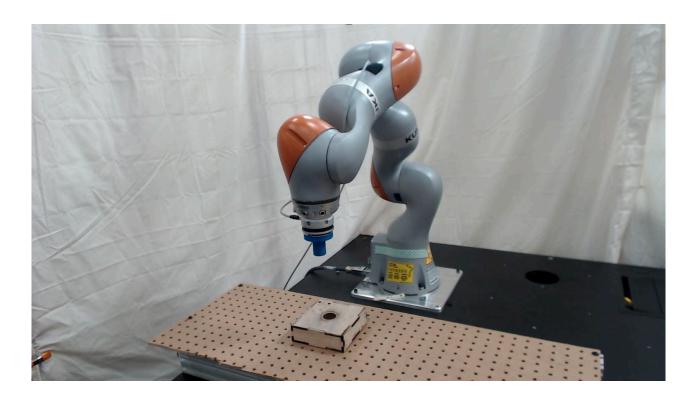
action

Credit: BBC Earth Lab

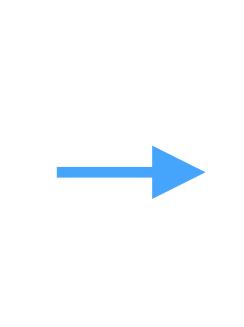


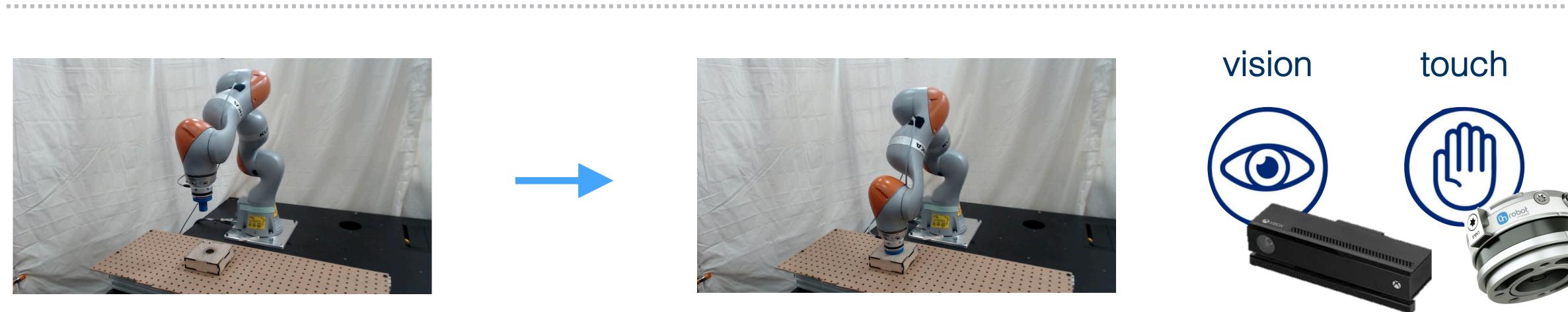


perception



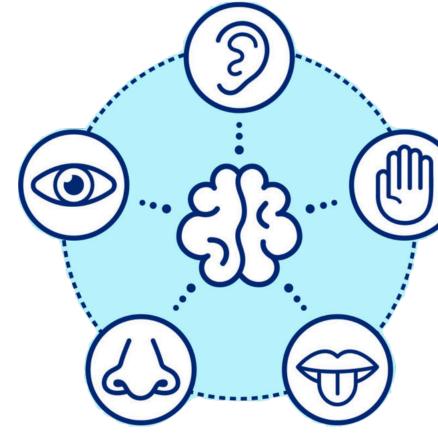
sensory data



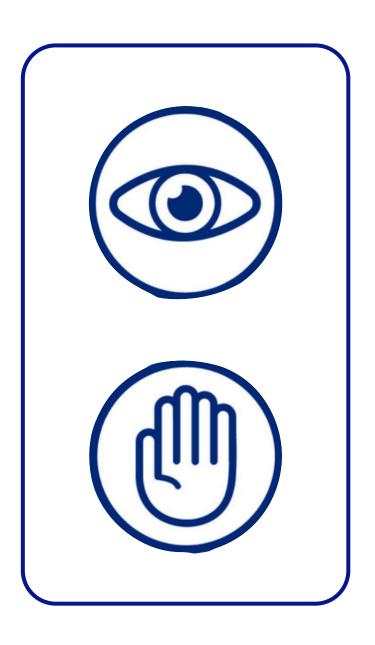


action

Credit: BBC Earth Lab



motor command

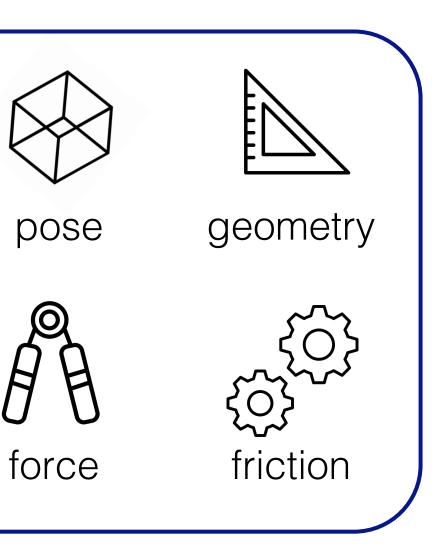


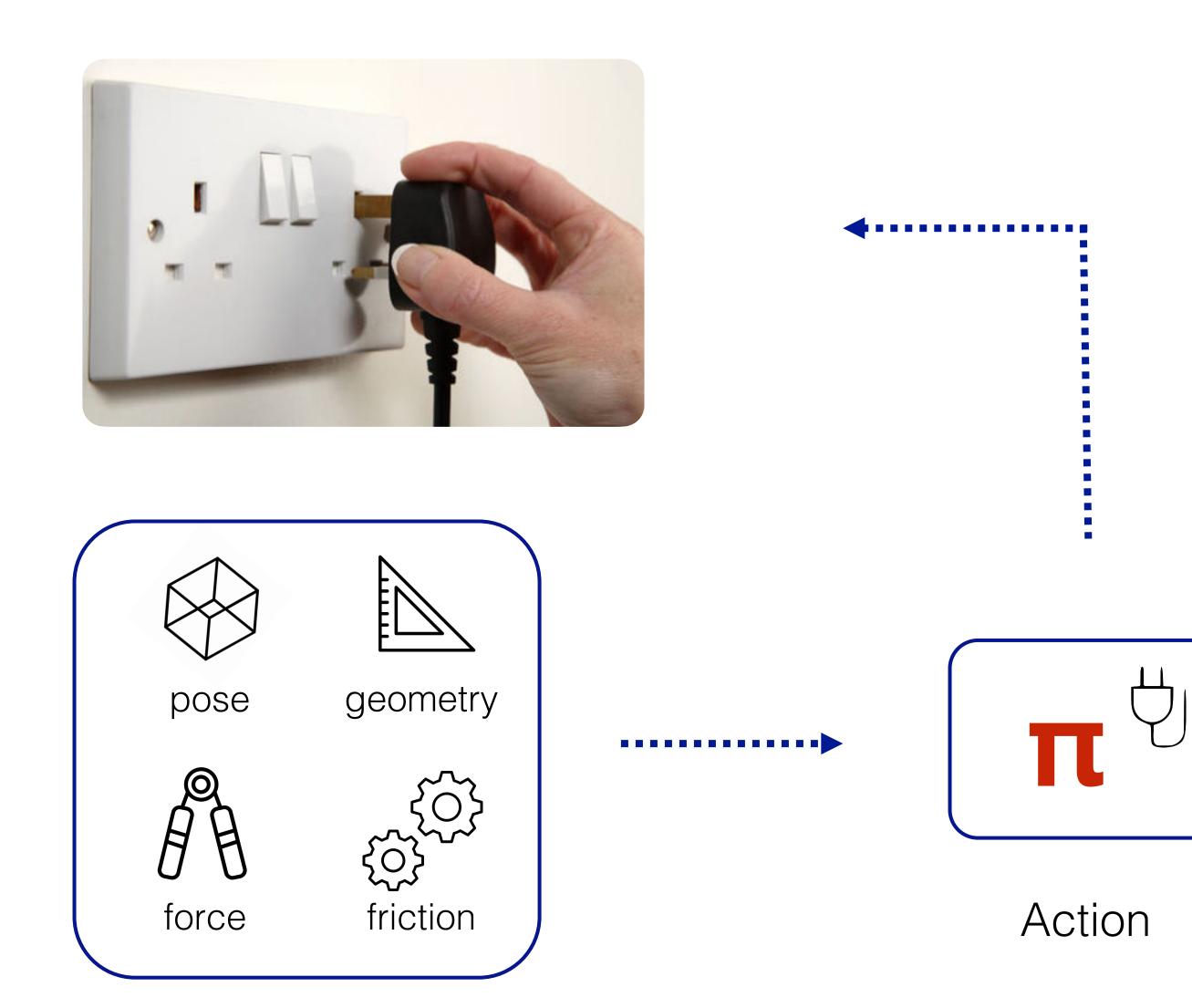
.

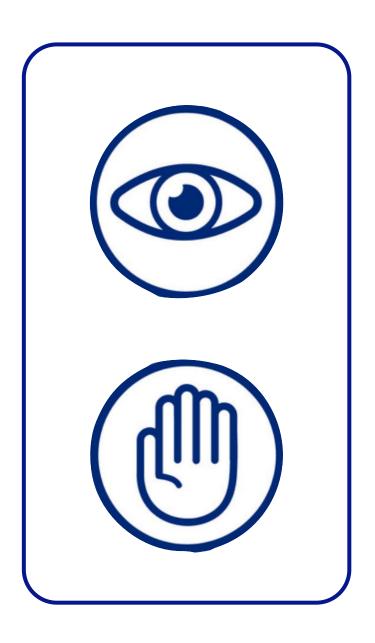
Sensory Data

Example of Task-Relevant Information

Ħ





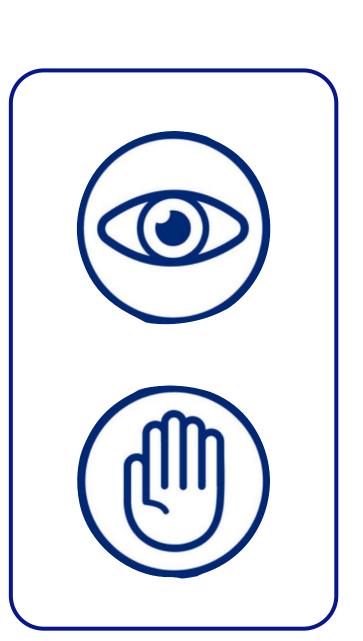


.

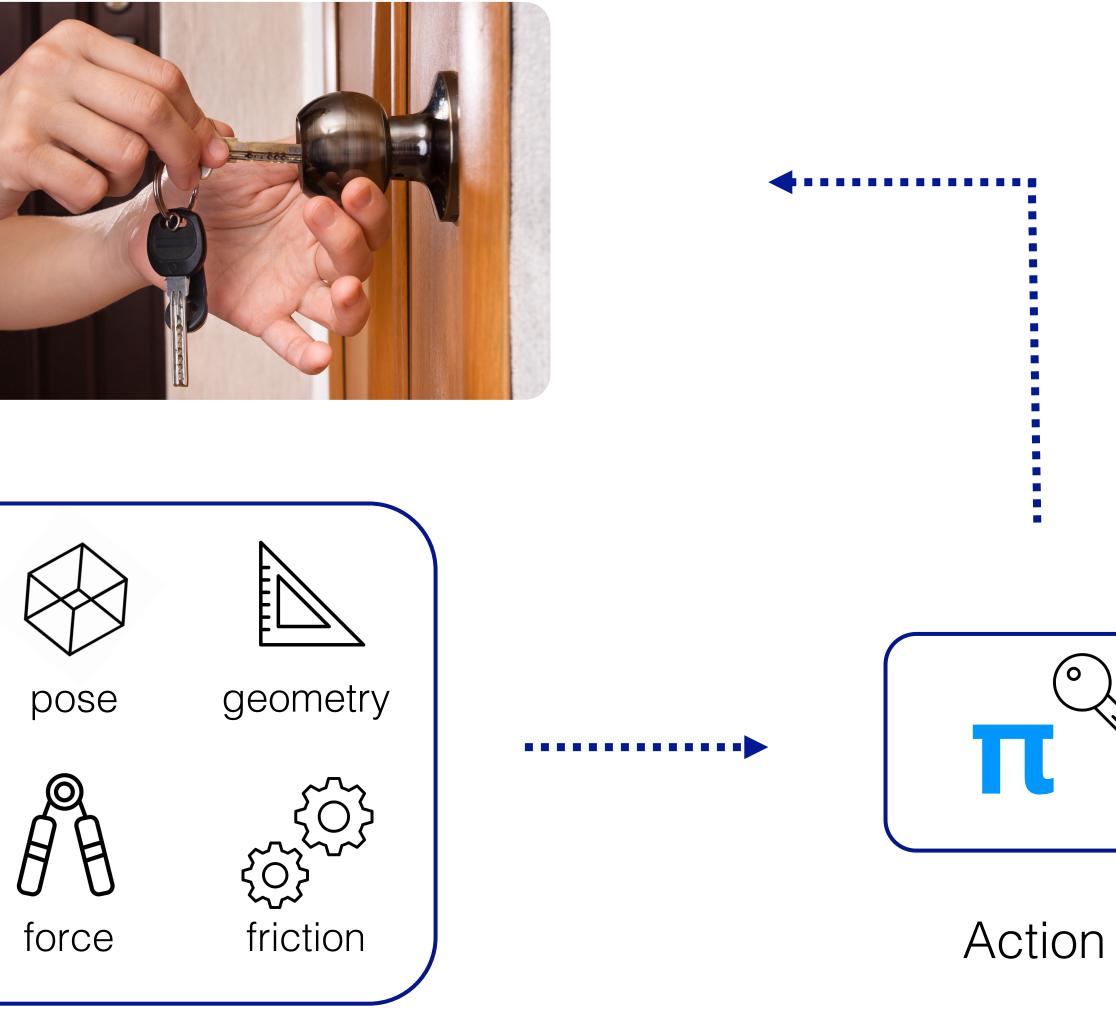
Sensory Data

Example of Task-Relevant Information

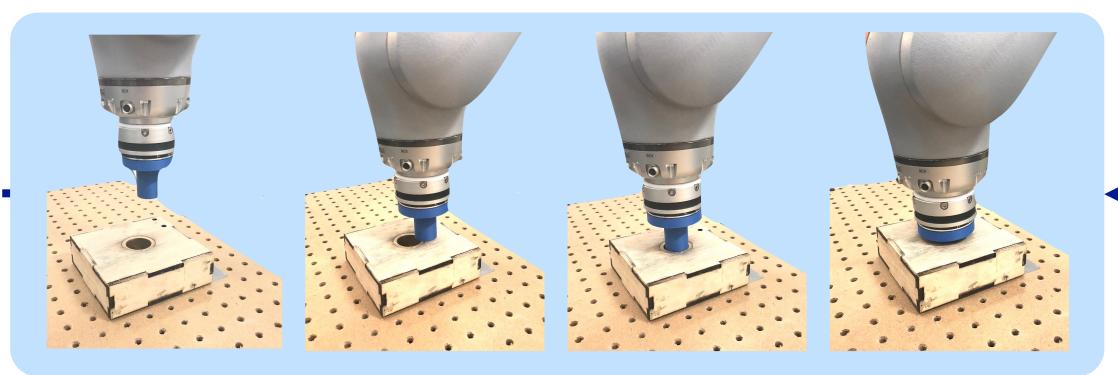
.

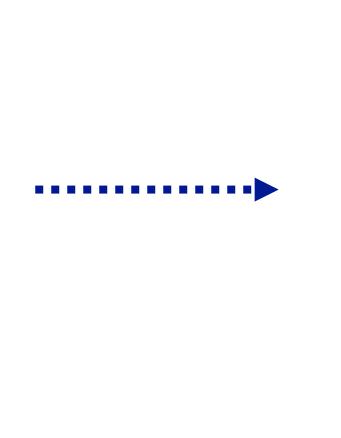


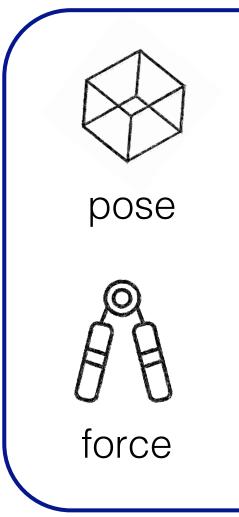
Sensory Data



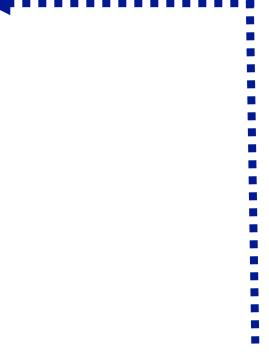
Task-Relevant Information For New Tasks?

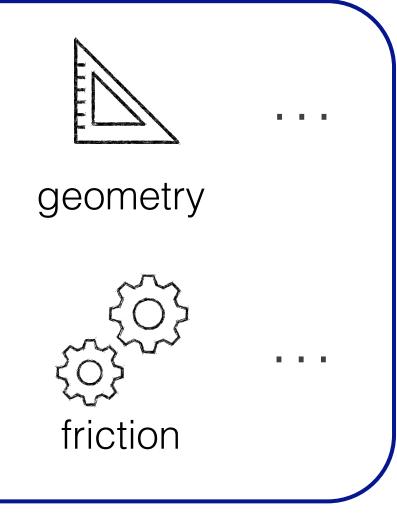


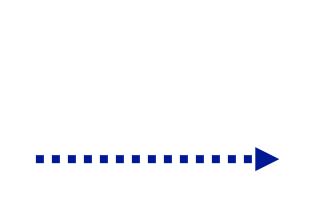


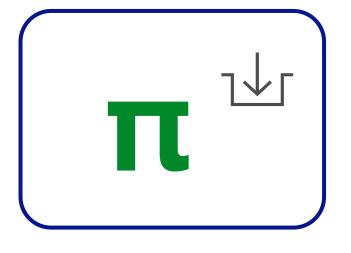


Sensory Data



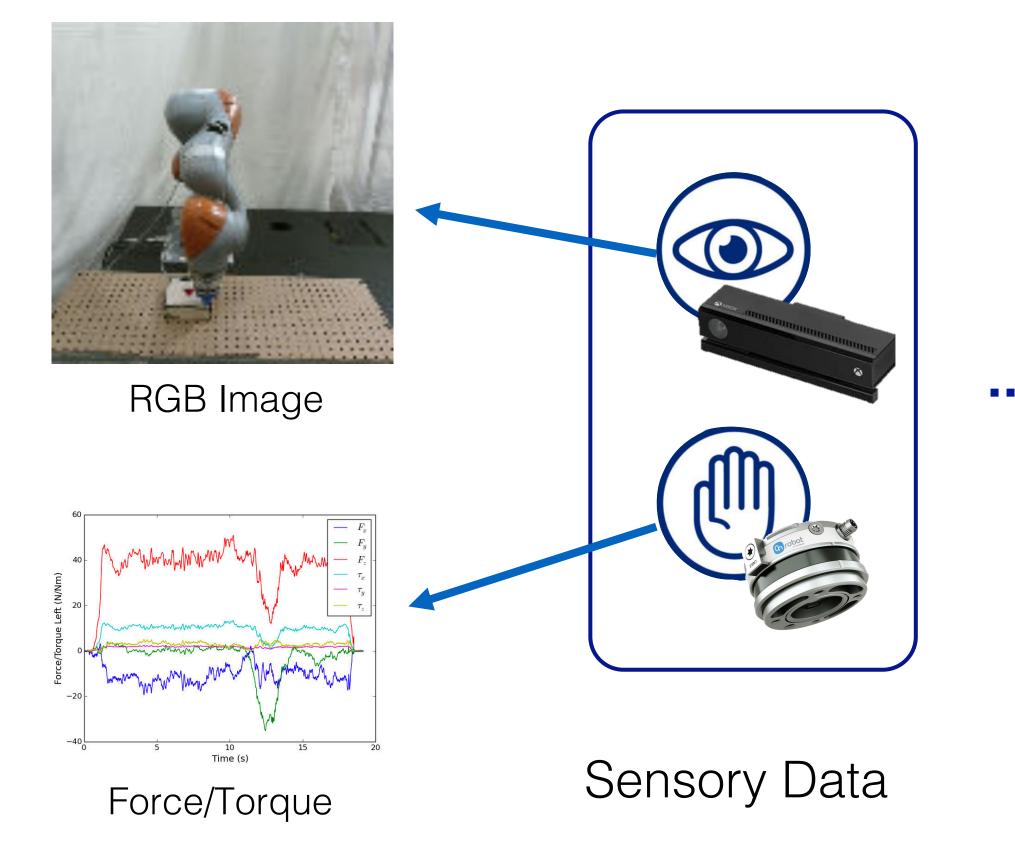






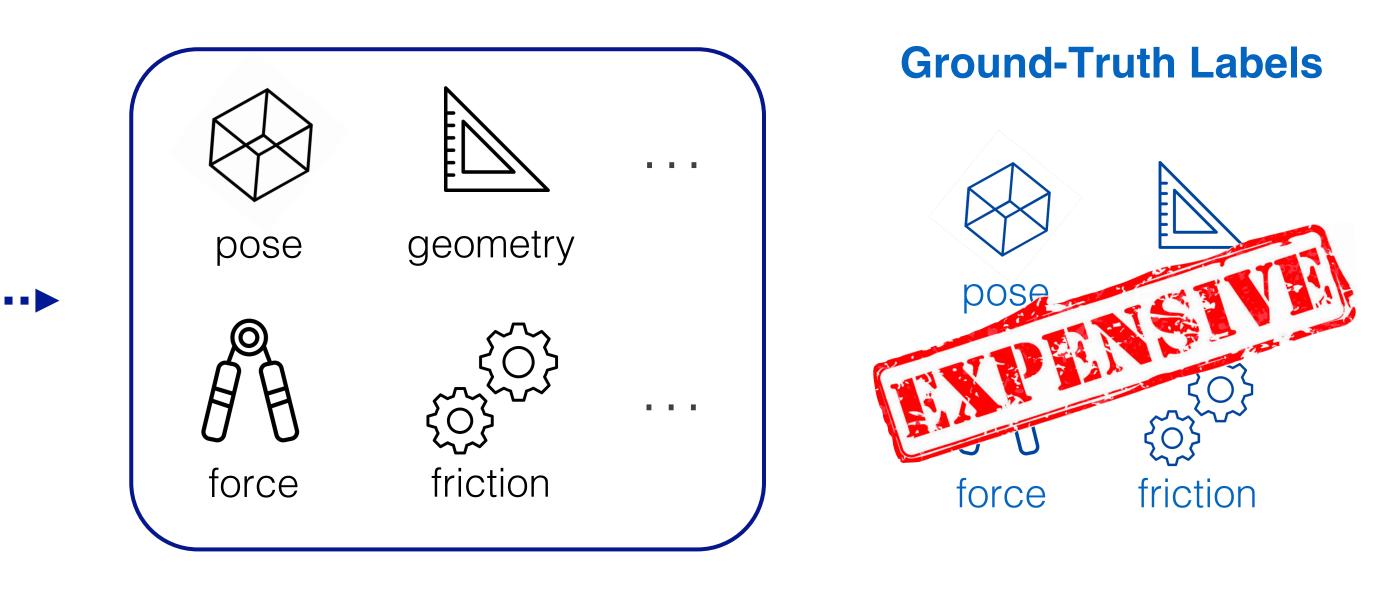
Action

- Challenge #1:
- Challenge #2:



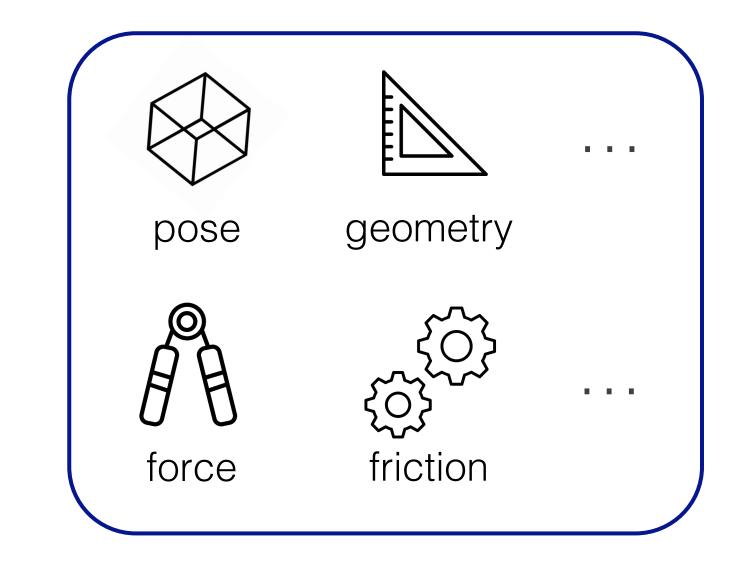
Raw sensory data are high-dimensional, noisy, and multimodal.

Manual annotation of supervision is **expensive**.

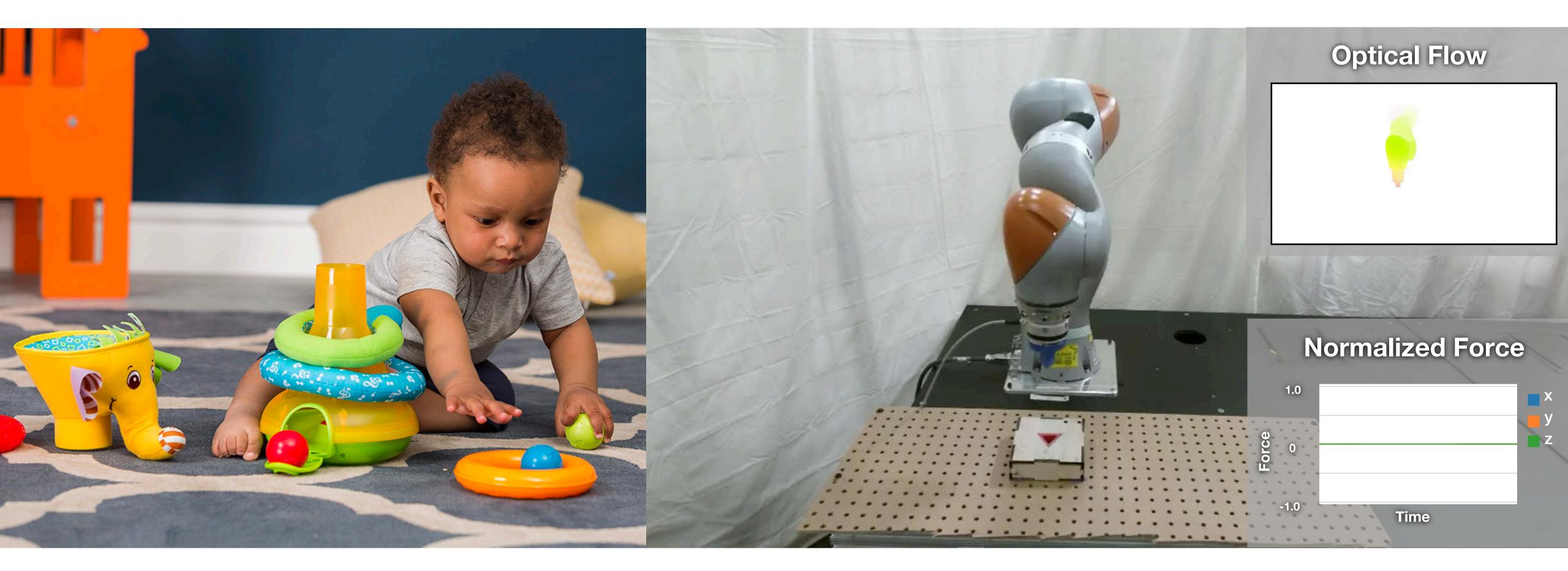


Sensory Data

Key idea: self-supervised representation learning from raw sensory data



Key idea: self-supervised representation learning from raw sensory data



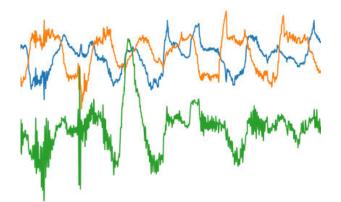
baby learning by playing

robot exploring and collecting data on its own

Self-Supervised Learning

Inputs

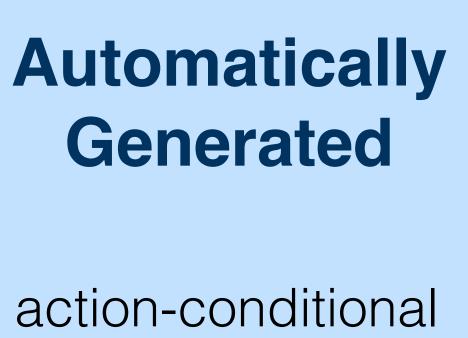
RGB image



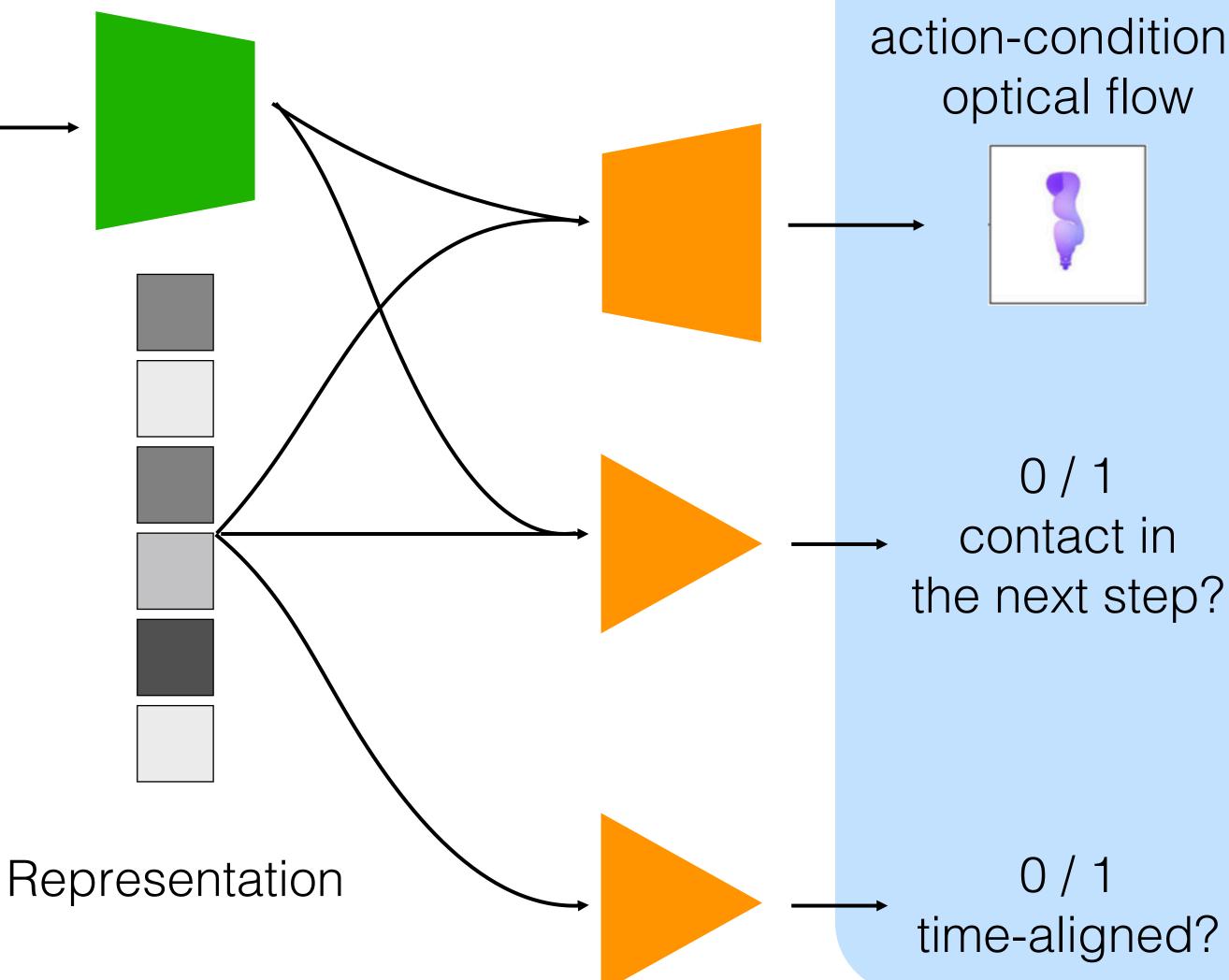
Force data

Robot state

robot action



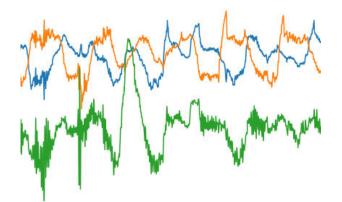
Decoders



Self-Supervised Learning: Learning sample efficient policies

Inputs

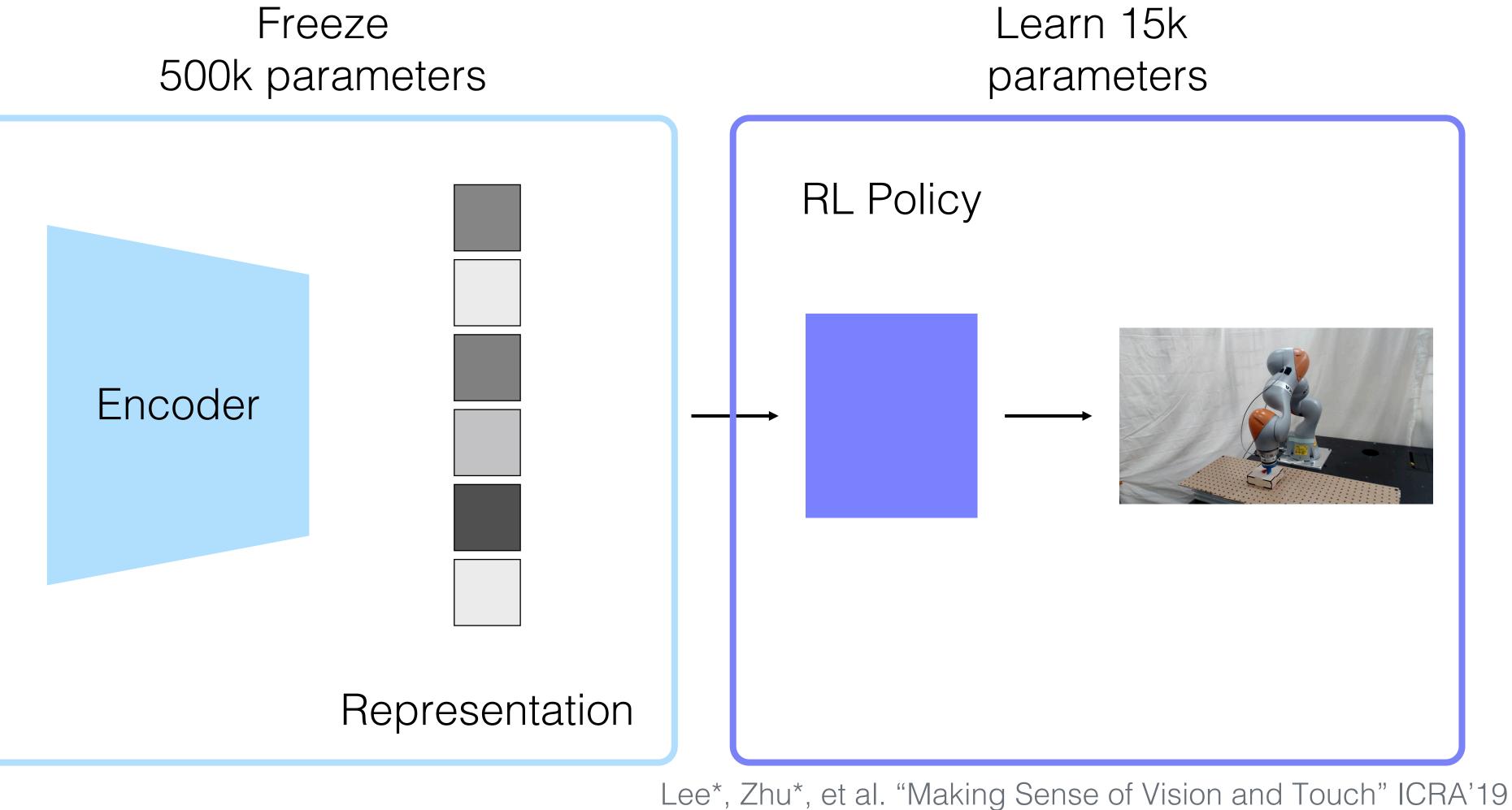
RGB image



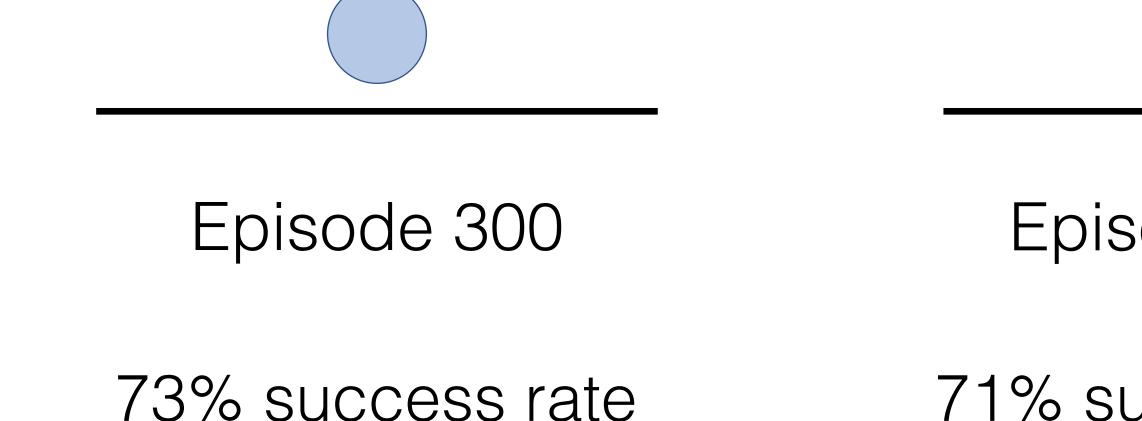
Force data

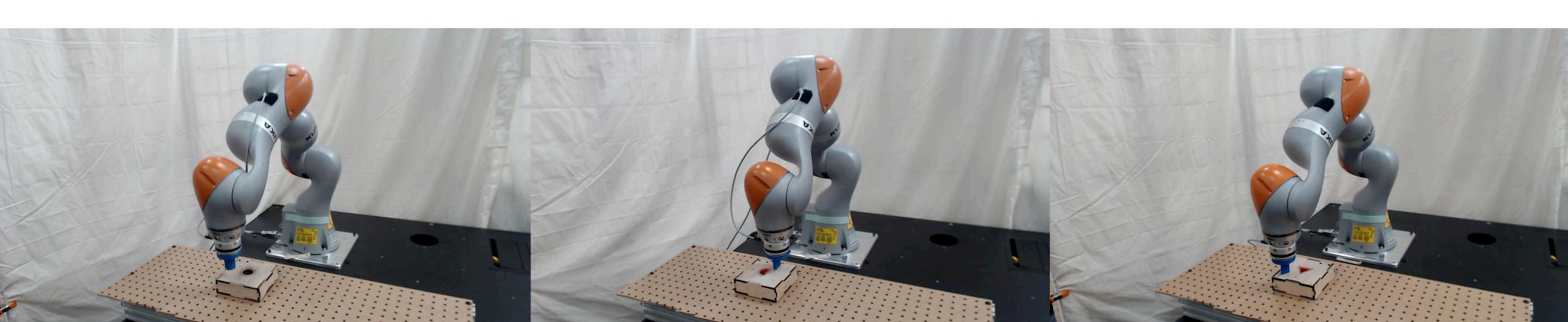
Robot state

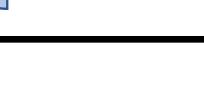
Freeze



Self-Supervised Learning: We efficiently learn policies in 5 hours.







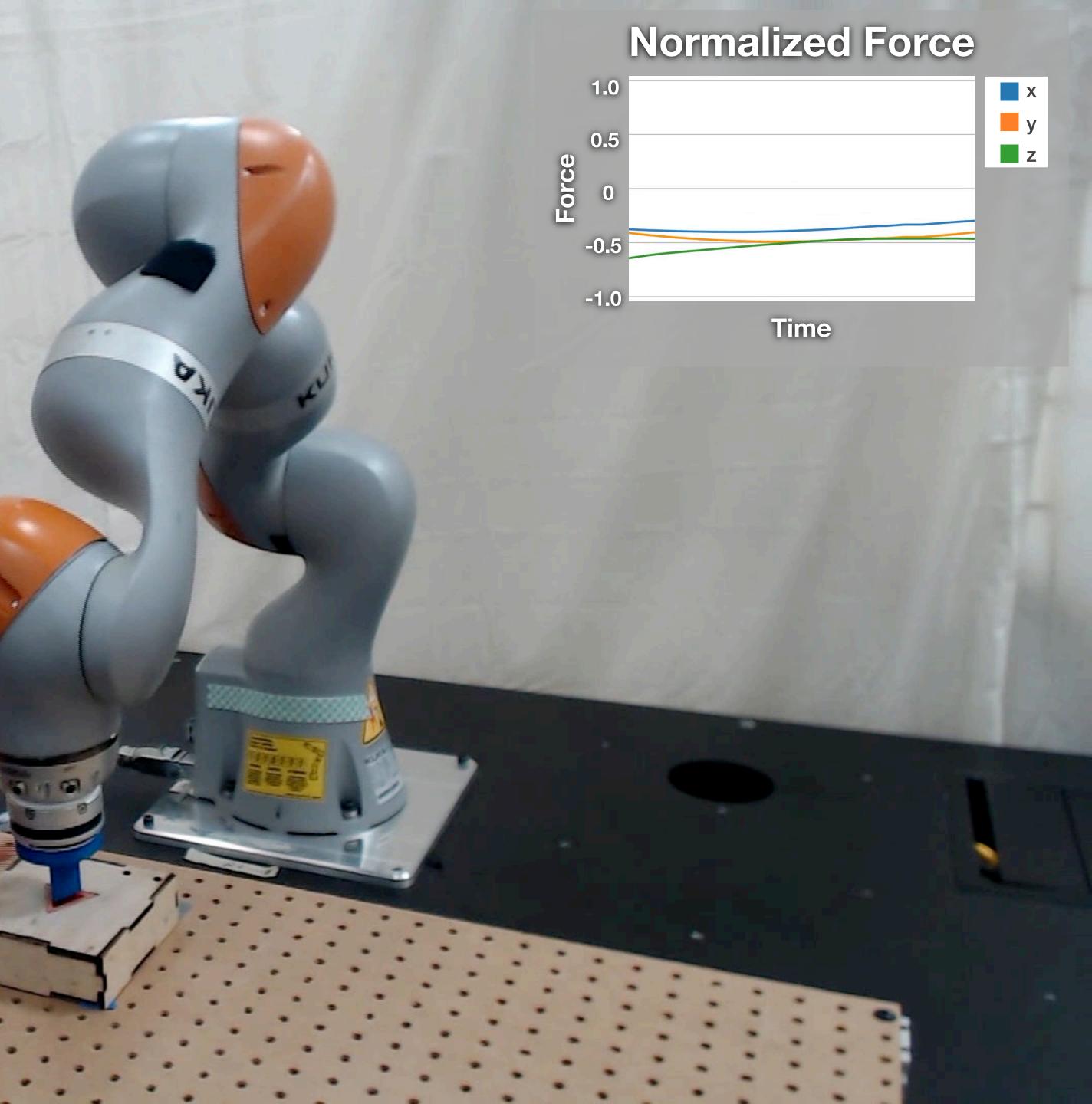
Episode 300

Episode 300

71% success rate

92% success rate

Force Perturbation

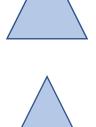


Self-Supervised Learning: Does Our Representation Generalize?

92% Success Rate

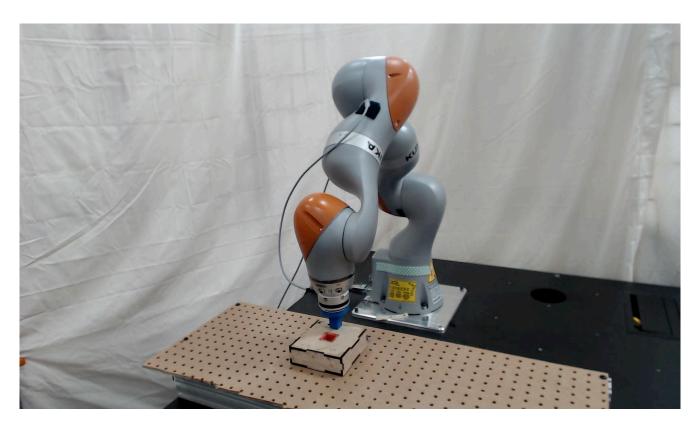
Representation

Policy



Self-Supervised Learning: Policy Transfer

92% Success Rate

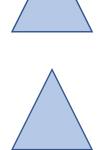


Tested on

Representation

Policy

Tested on

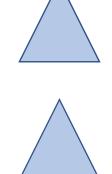


Representation

Policy

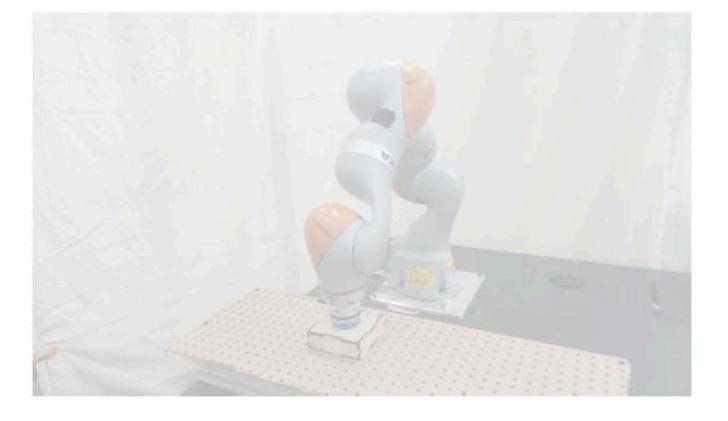
62% Success Rate

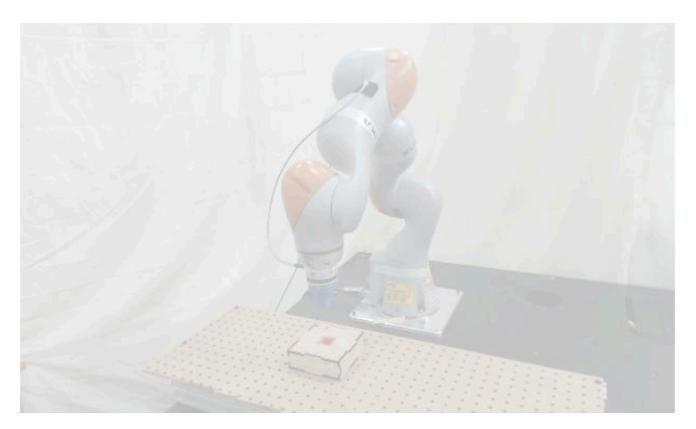
Policy does not transfer



Self-Supervised Learning: Representation Transfer

92% Success Rate



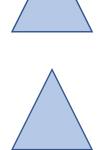


Tested on

Representation

Tested on

Policy



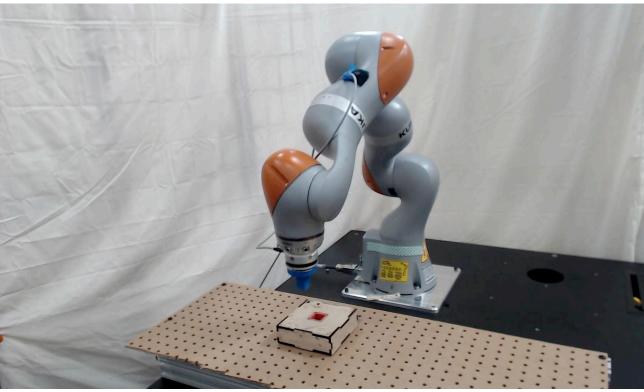
Representation

Policy

62% Success Rate

Policy does not transfer

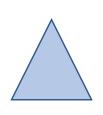
92% Success Rate



Representation transfers

Tested on

Representation



Policy

Primitive Skills: Overview of Our Method

Self-Supervised Data Collection

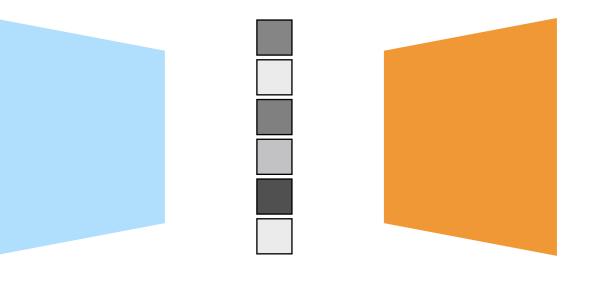
0_{RGB}, 0_{force}, 0_{robot}

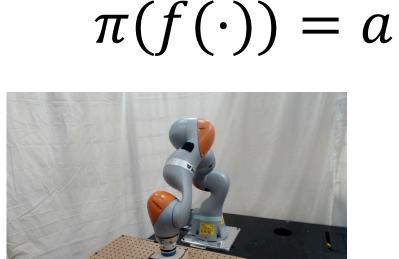
100k data points 90 minutes

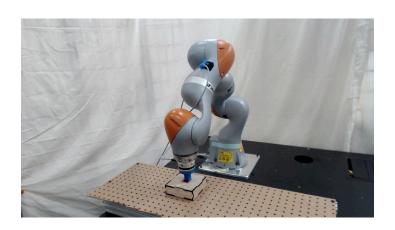
Representation Learning

Policy Learning

 $f(o_{RGB}, o_{force}, o_{robot})$





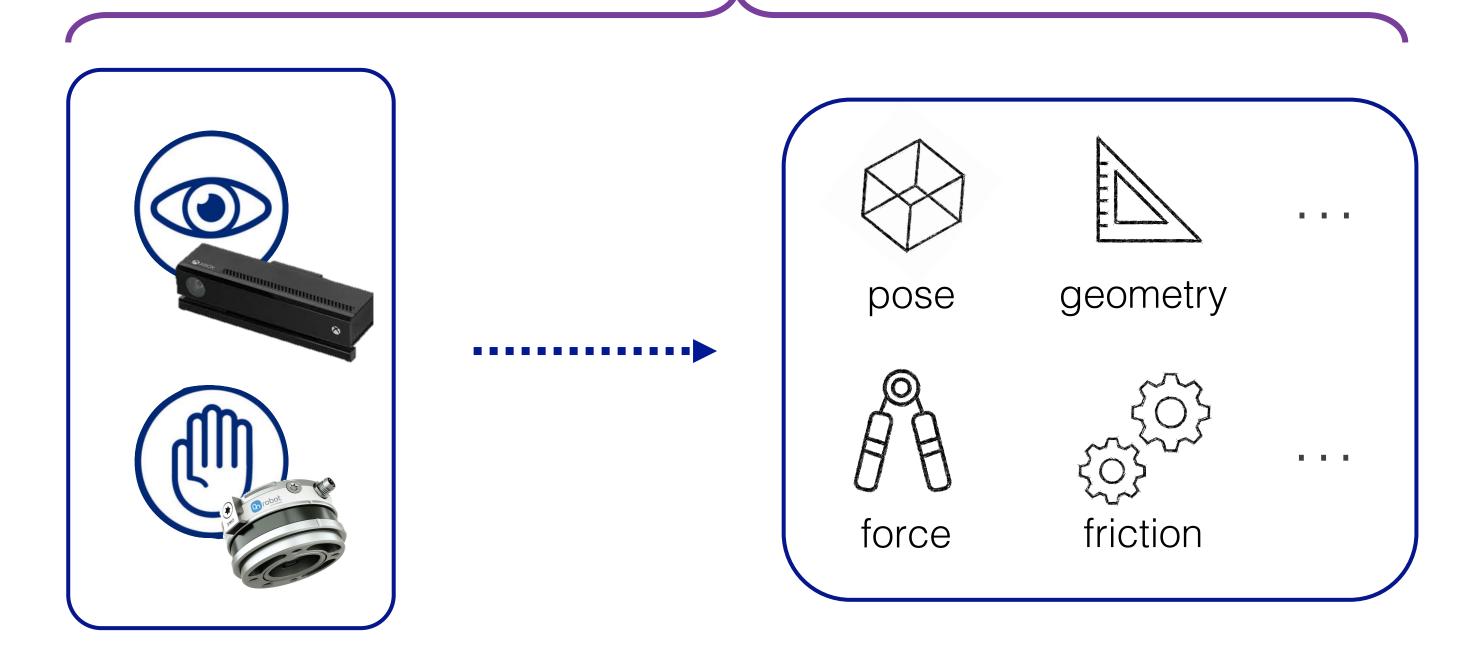


20 epochs on GPU 24 hours

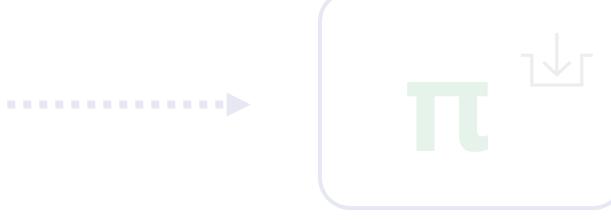
Deep RL 5 hours

Primitive Skills: Self-Supervised Learning

first stage



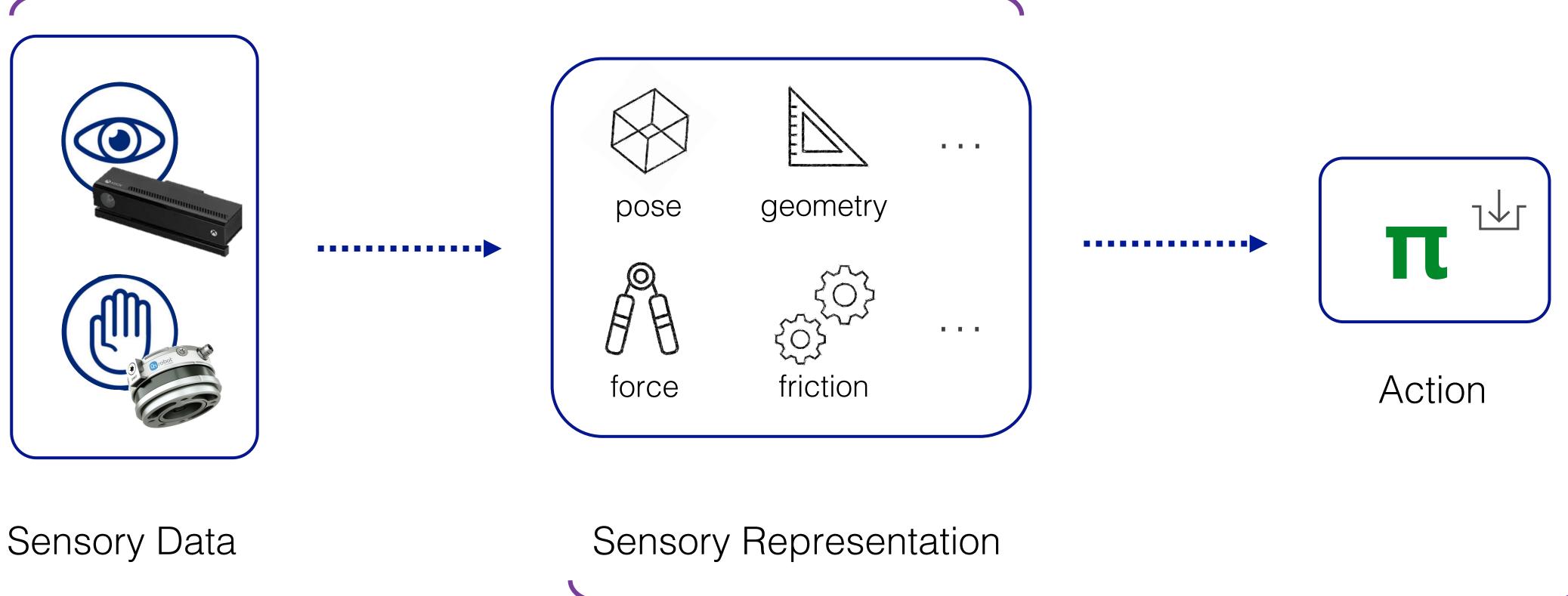
Sensory Data

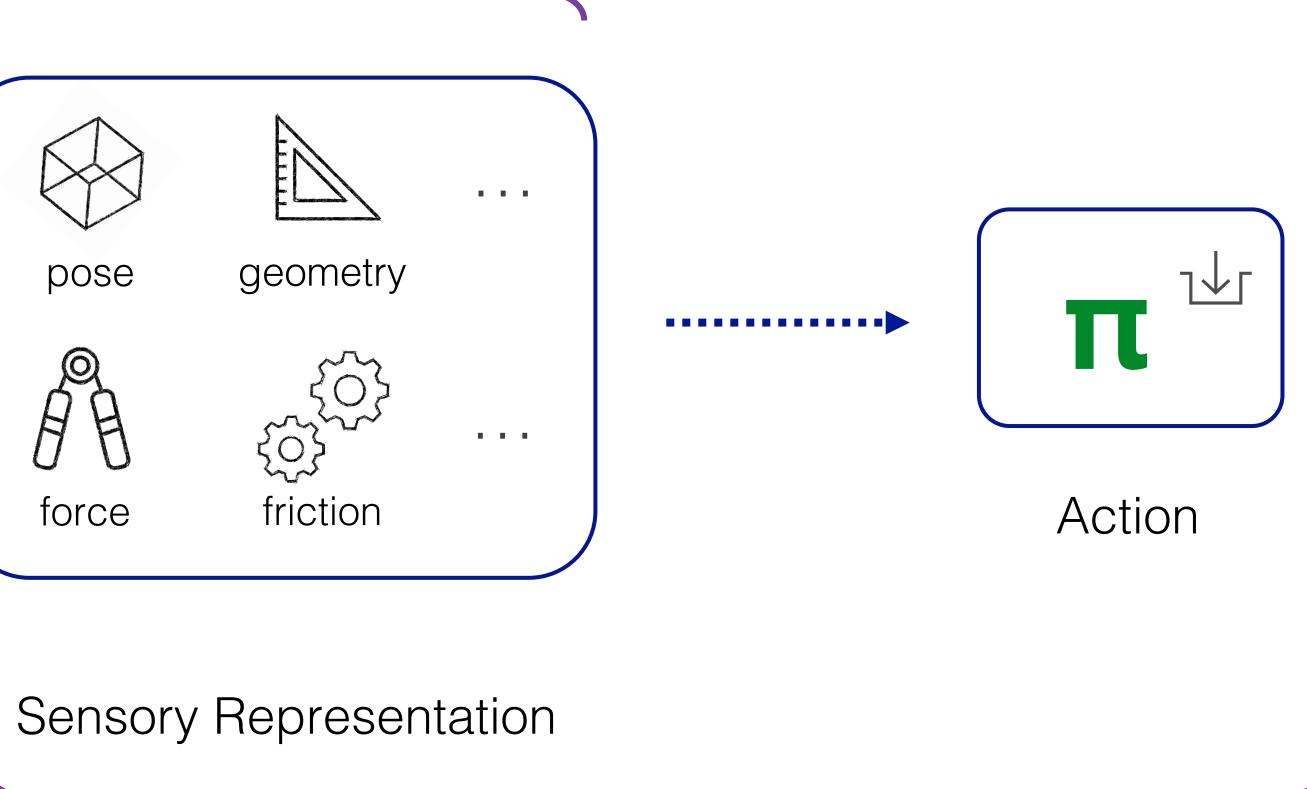


А	\mathbb{C}^{1}		
/ \			

Primitive Skills: Self-Supervised Learning

first stage



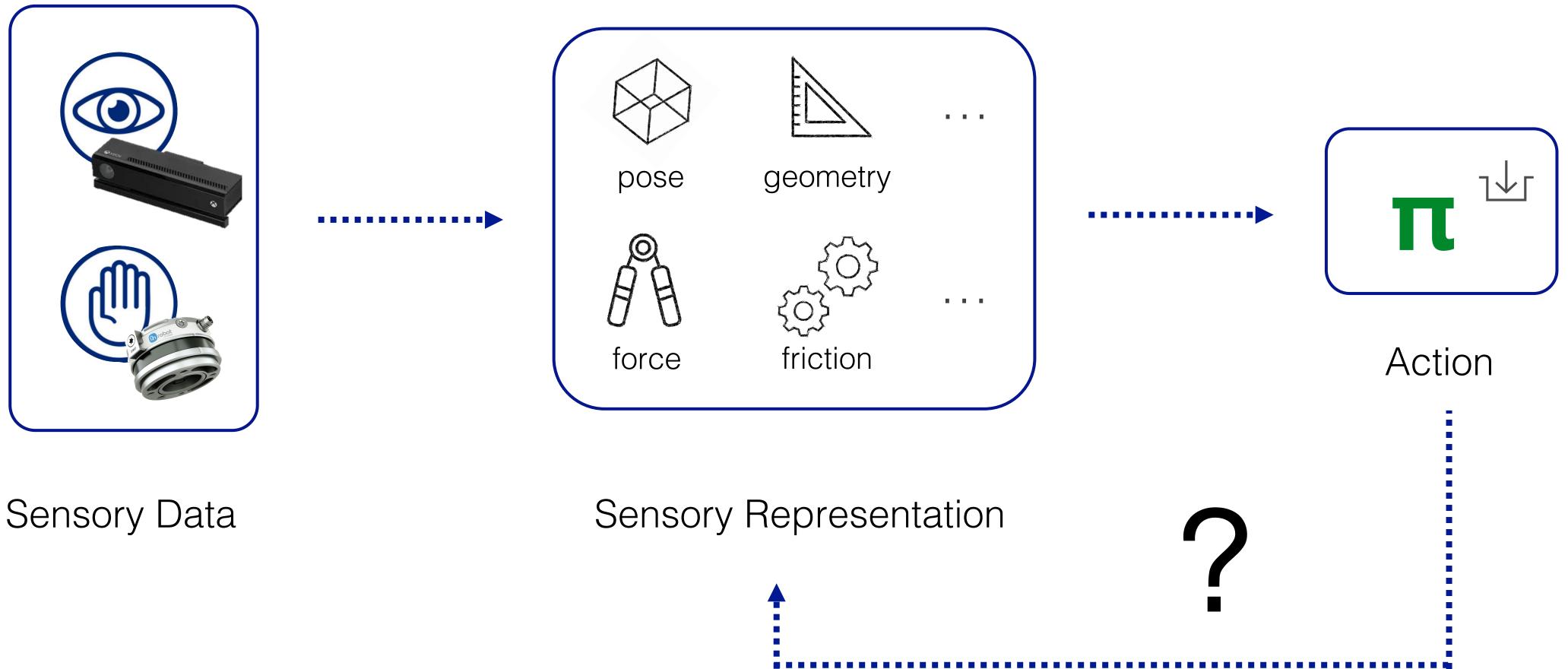


second stage

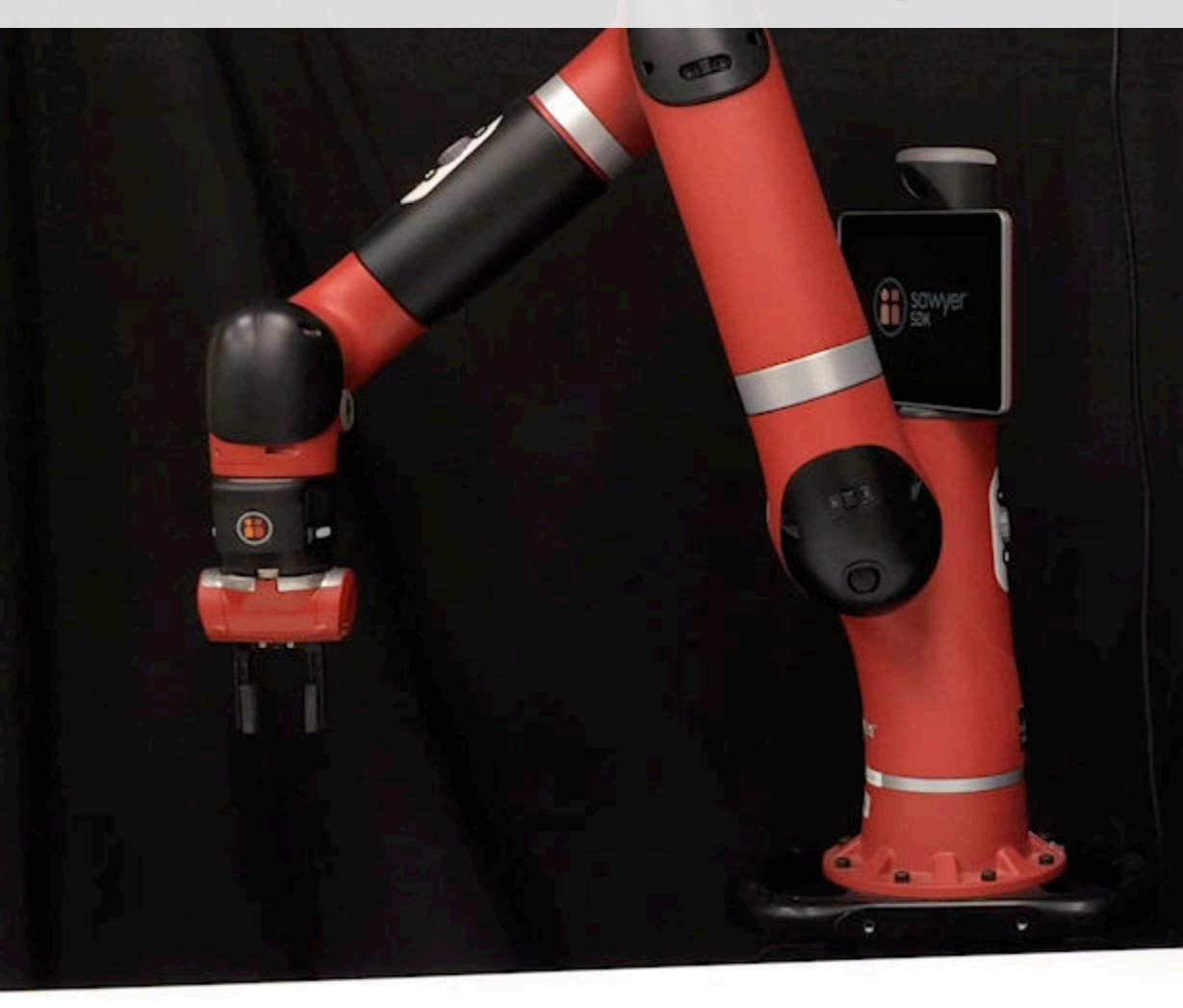
Y

Primitive Skills: Self-Supervised Learning

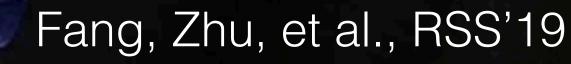
Can the downstream task inform the learning of representations?



Vision-Based Tool Manipulation

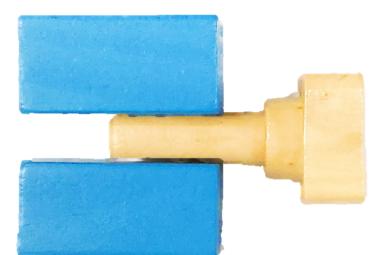


hammering



Primitive Skills: Vision-Based Tool Manipulation

sensory data



Fang, Zhu, et al., RSS'19; Qin et al. ICRA'20

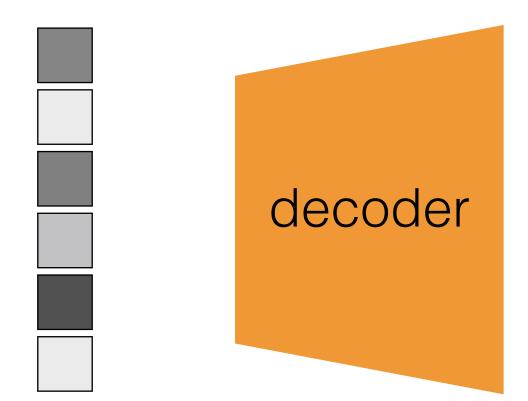
Primitive Skills: Vision-Based Tool Manipulation

sensory data

encoder

latent representation

high-dimensionality



Fang, Zhu, et al. "Task-Oriented Grasping" RSS'19

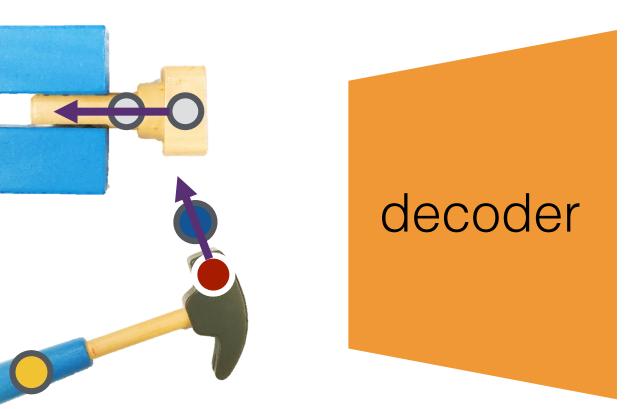
lack of interpretability

Primitive Skills: Vision-Based Tool Manipulation

sensory data

encoder

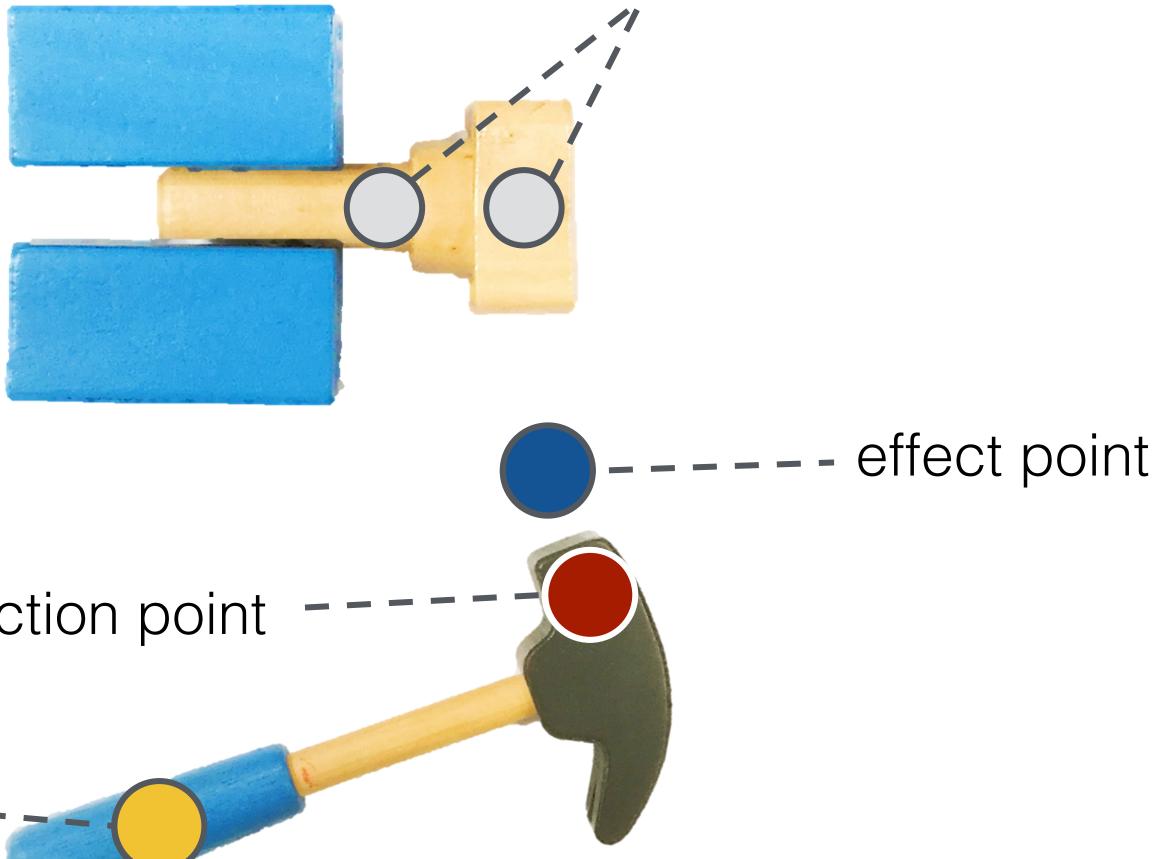
compact and informative

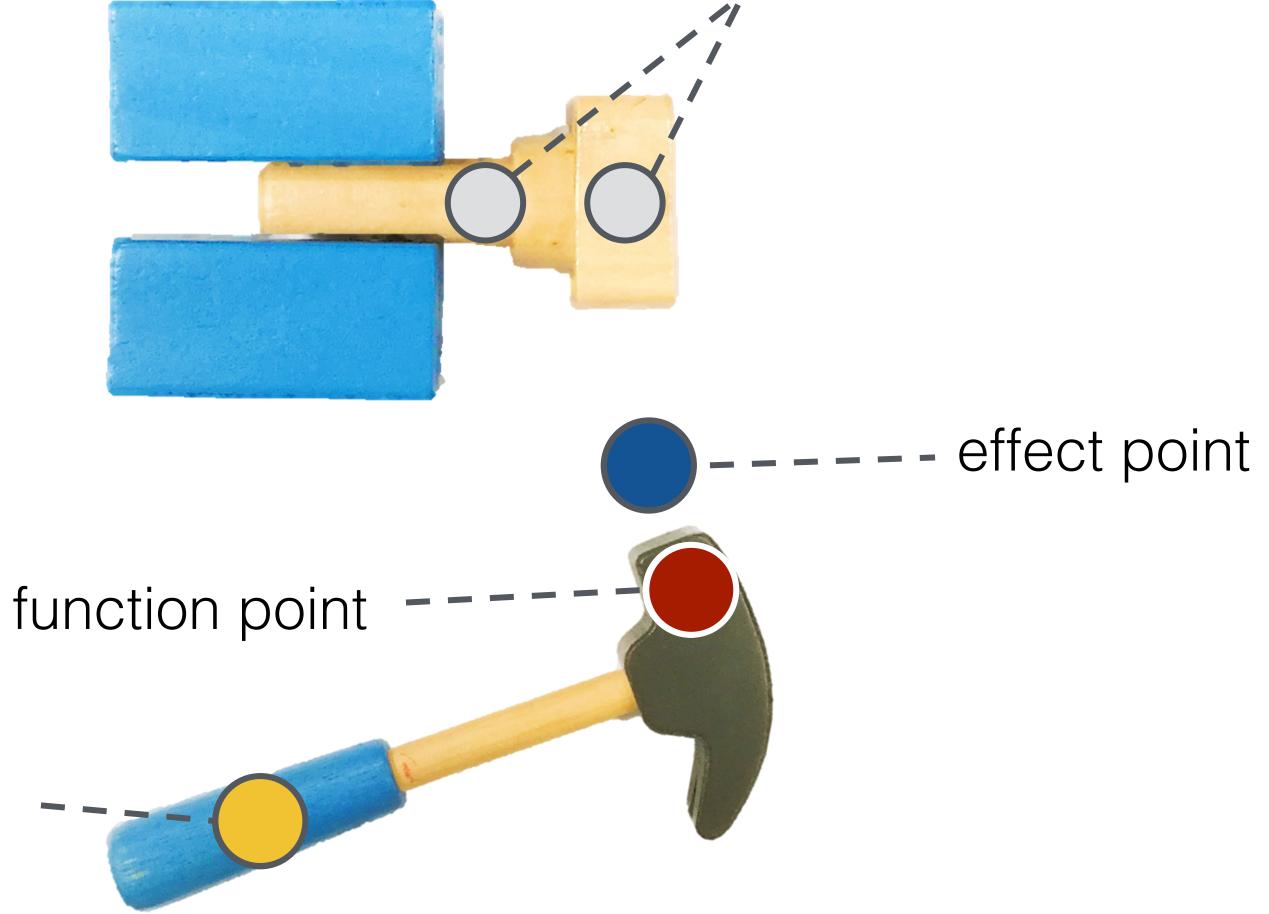


keypoint representation

Qin et al., "KETO" ICRA'20

• human interpretable





grasp point ____

environment keypoints

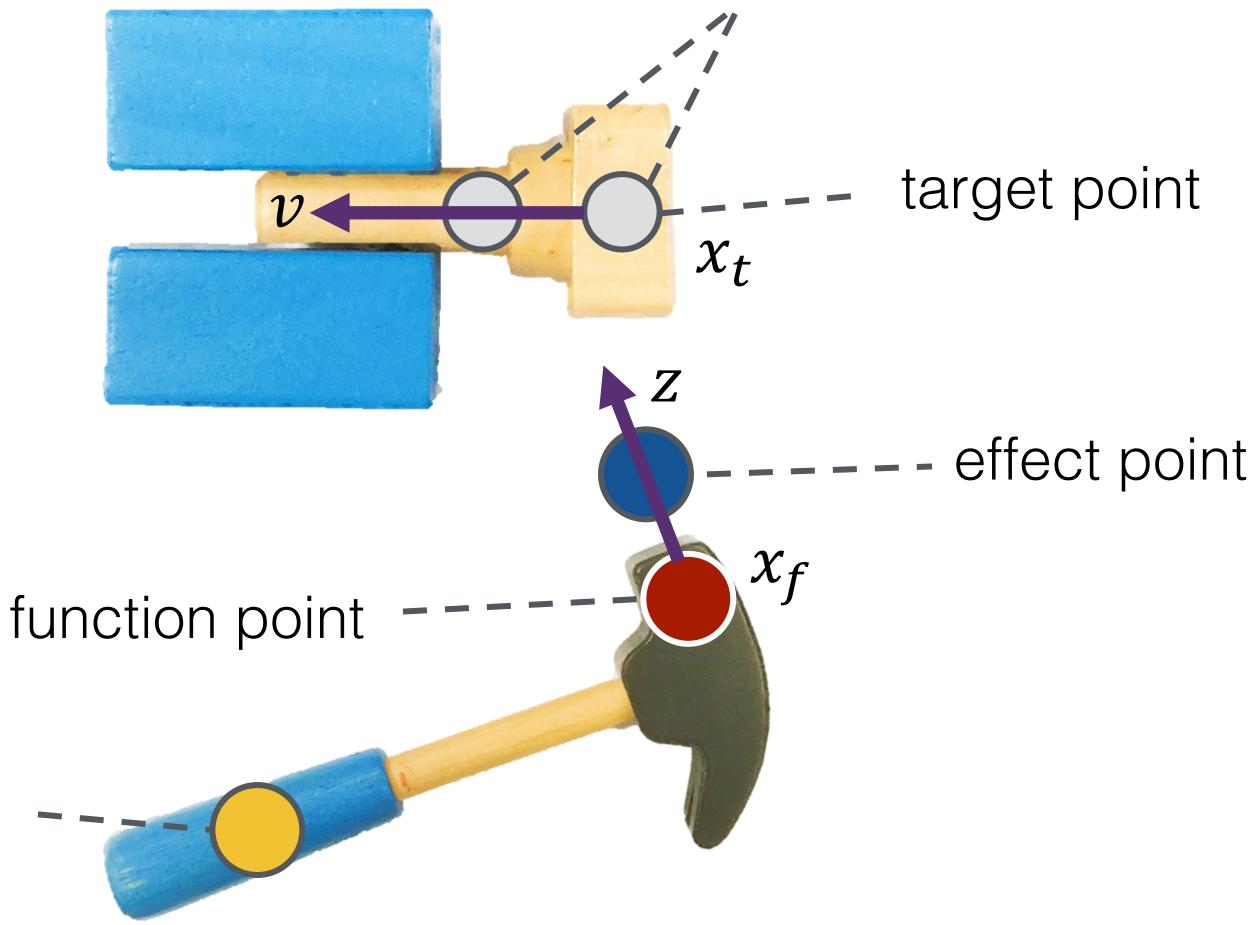
For hammering

- 1. x_t is close to x_f
- 2. Direction of v aligns with z.

$$\max_{p} v^{T}z - \left\|x_{f} - x_{t}\right\|^{2}$$

Solving the optimal pose of object as a QP

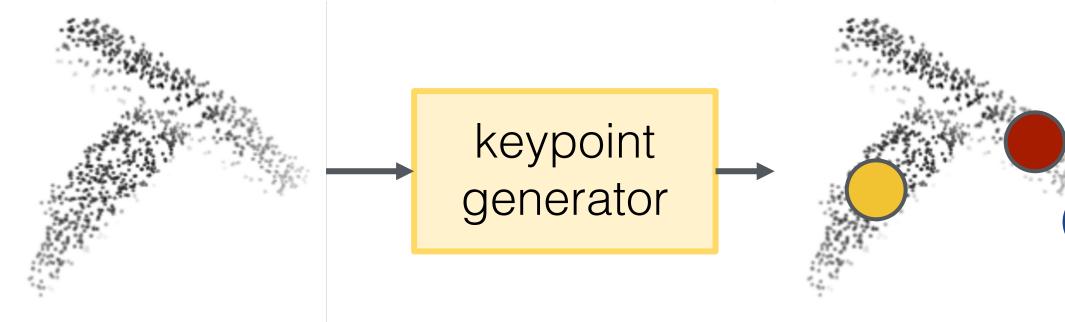
grasp point ____



environment keypoints

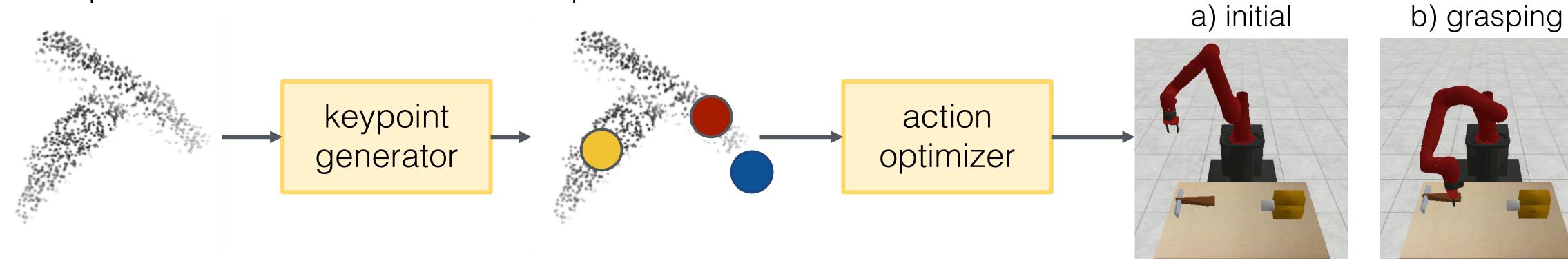
sensory inputs

keypoint representation



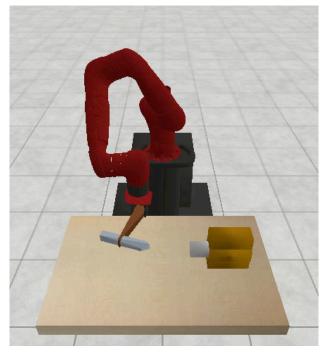
sensory inputs

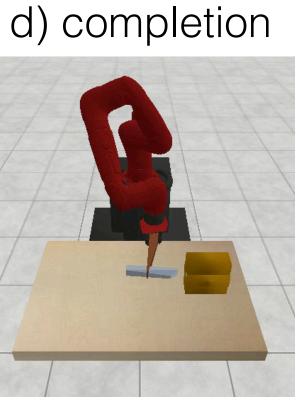
keypoint representation

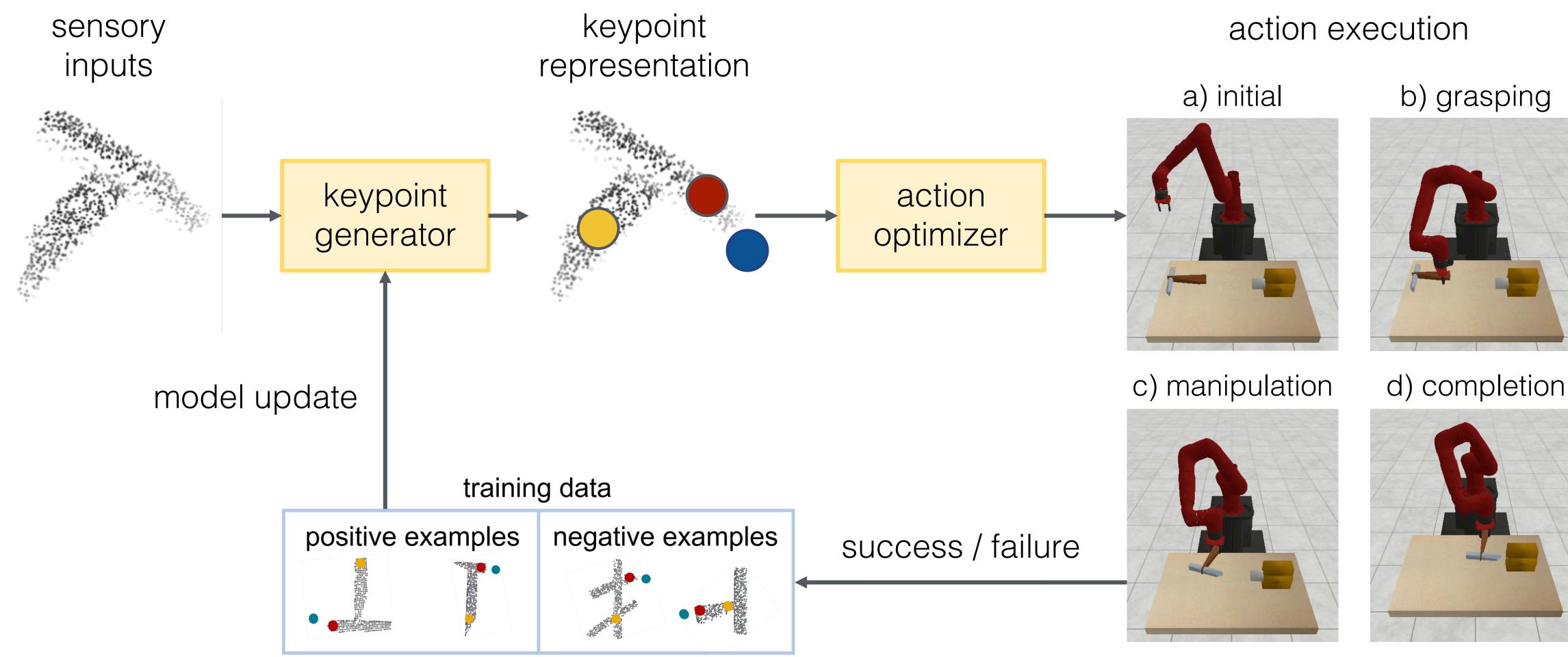


action execution

c) manipulation







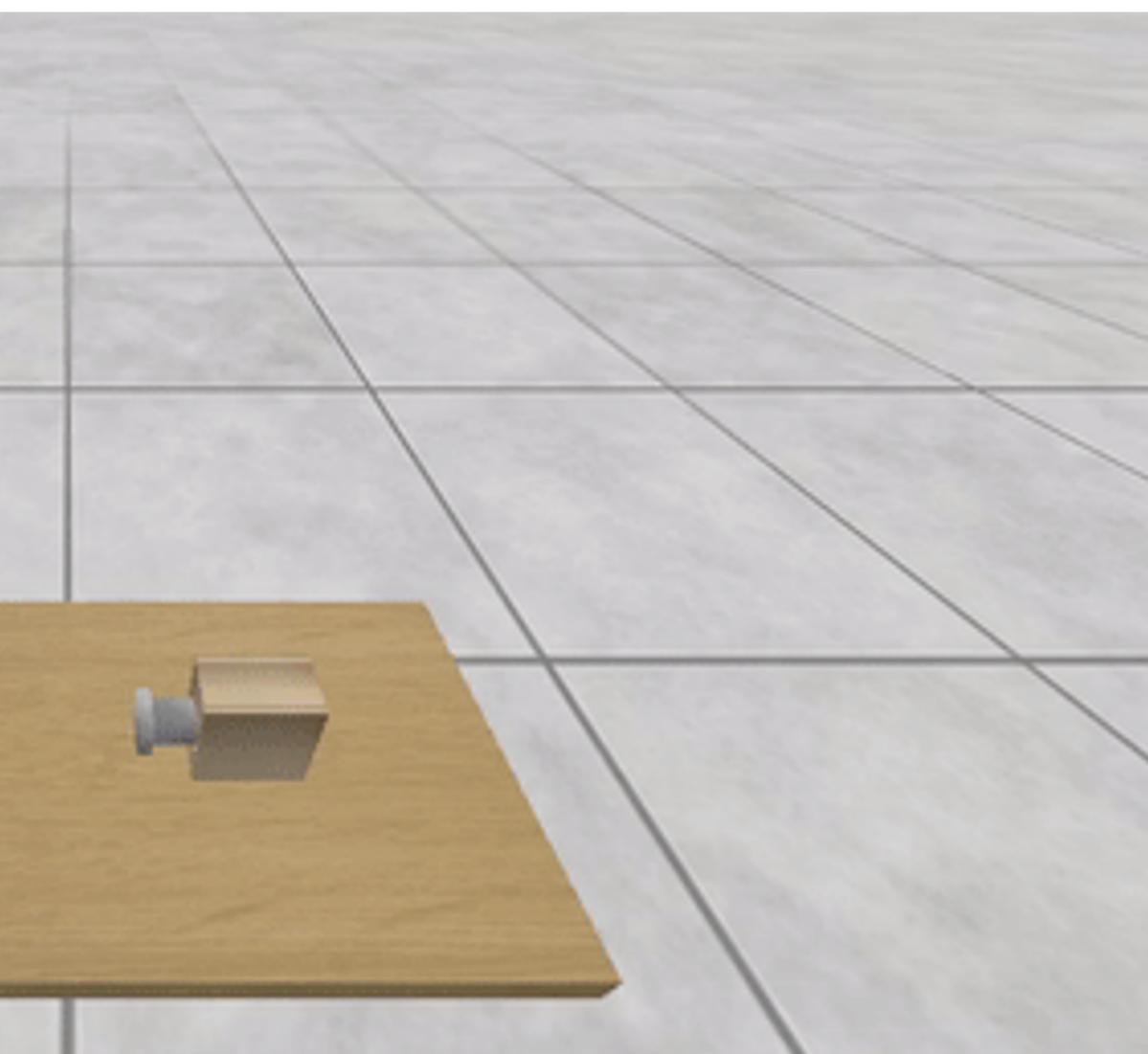
End task performance directly supervises representation learning.

Results: Hammering Task

grasp point x_g

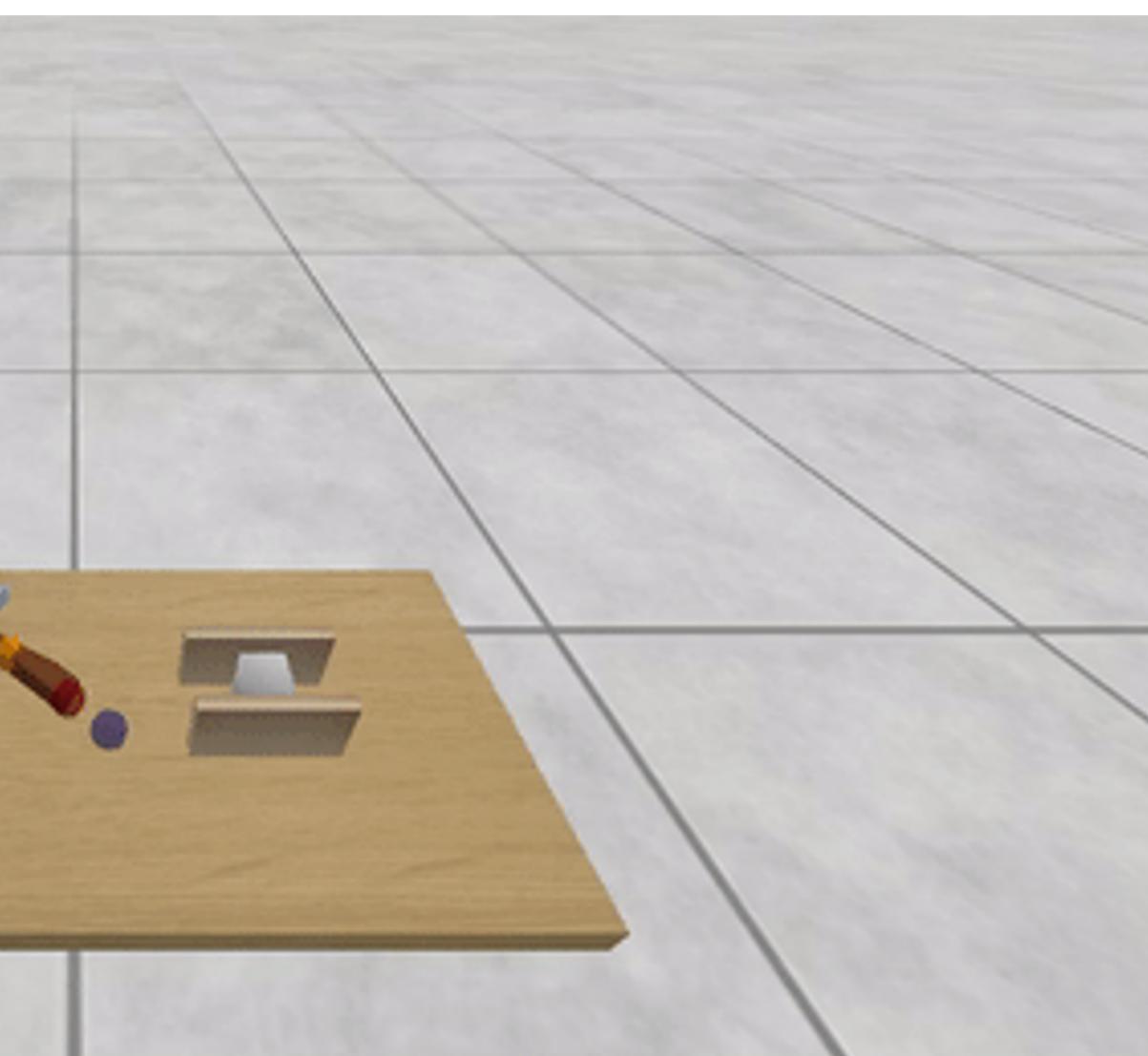
• function point x_f

• effect point x_e

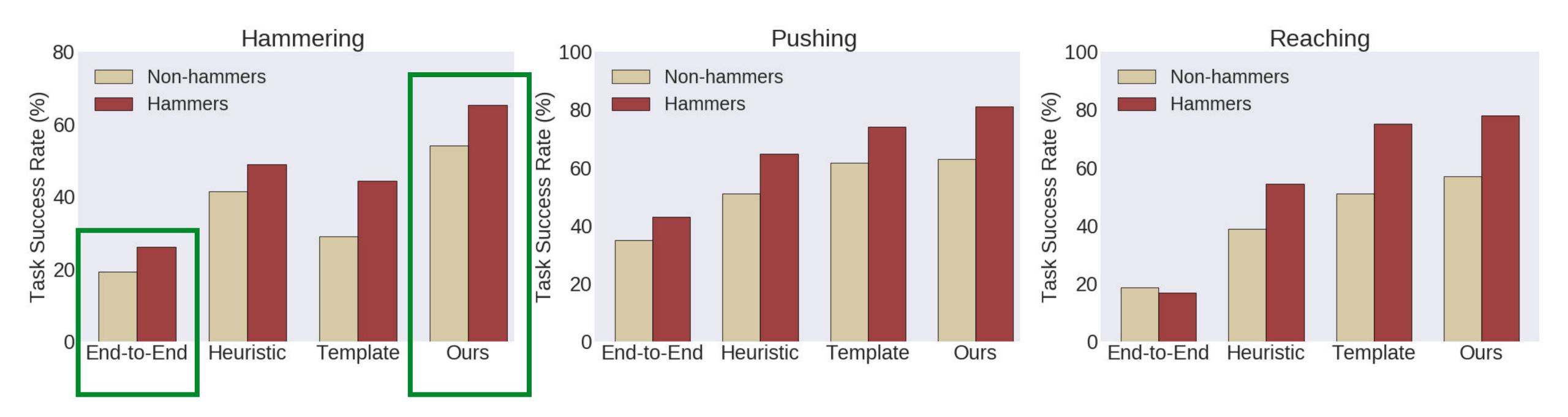


Results: Reaching Task

- grasp point x_g
- function point x_f
- effect point x_e



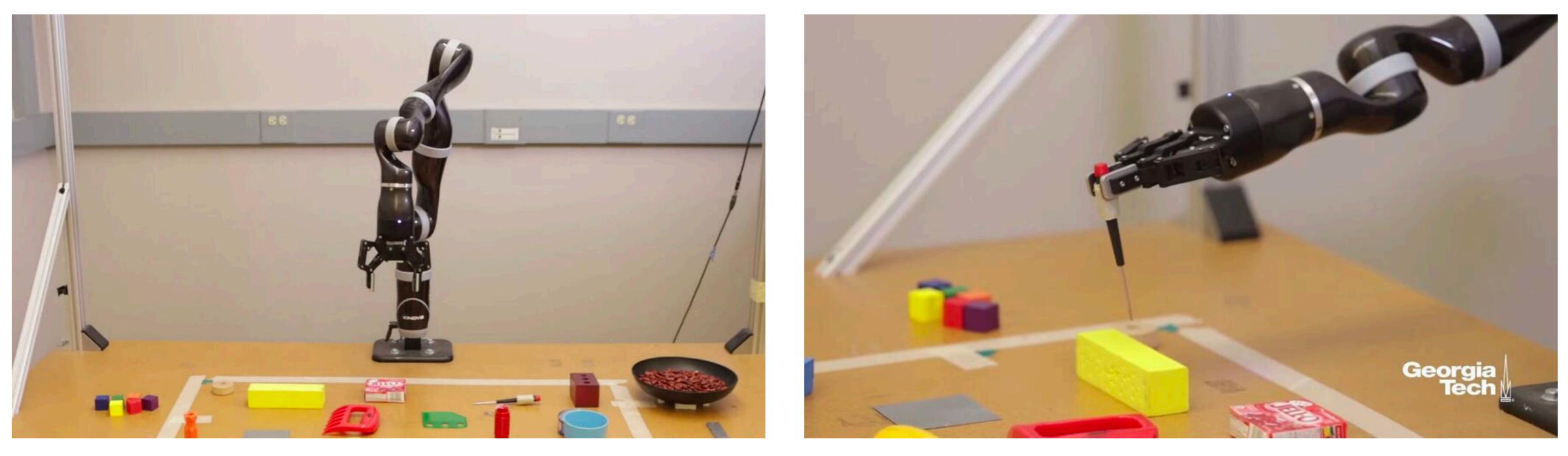
Results: Quantitative Evaluation



Keypoints as intermediate representations of tools are effective.

Tool Creation: Robot MacGyvering

Improvising tools for inventive problem solving

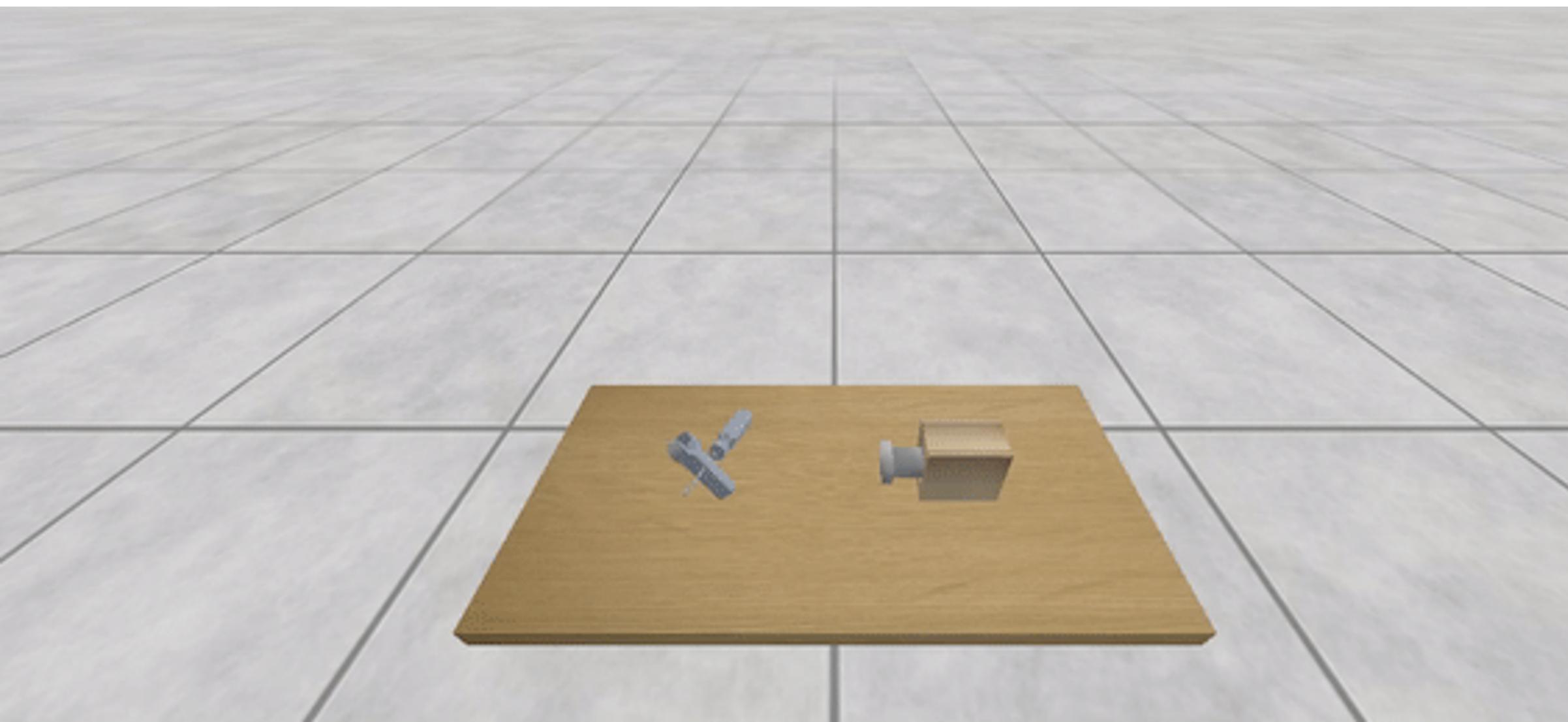


[Nair, Shrivatsav, Erickson, Chernova; RSS'19]

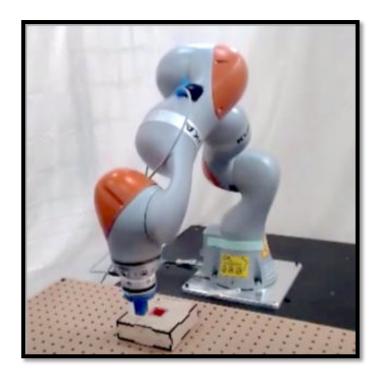
Tool Creation: Robot MacGyvering

Keypoints provides a scaffold for generating tools from object parts.

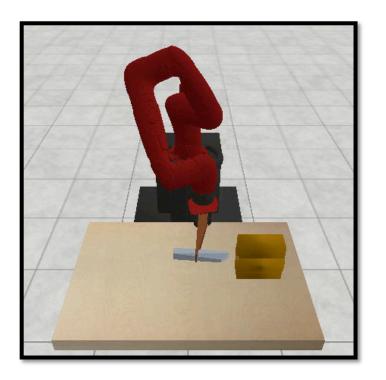
Tool Creation: Robot Creates New Tool for Hammering



Summary - Part I



Self-supervised learning is a powerful tool to scale up primitive skill learning without human supervision.



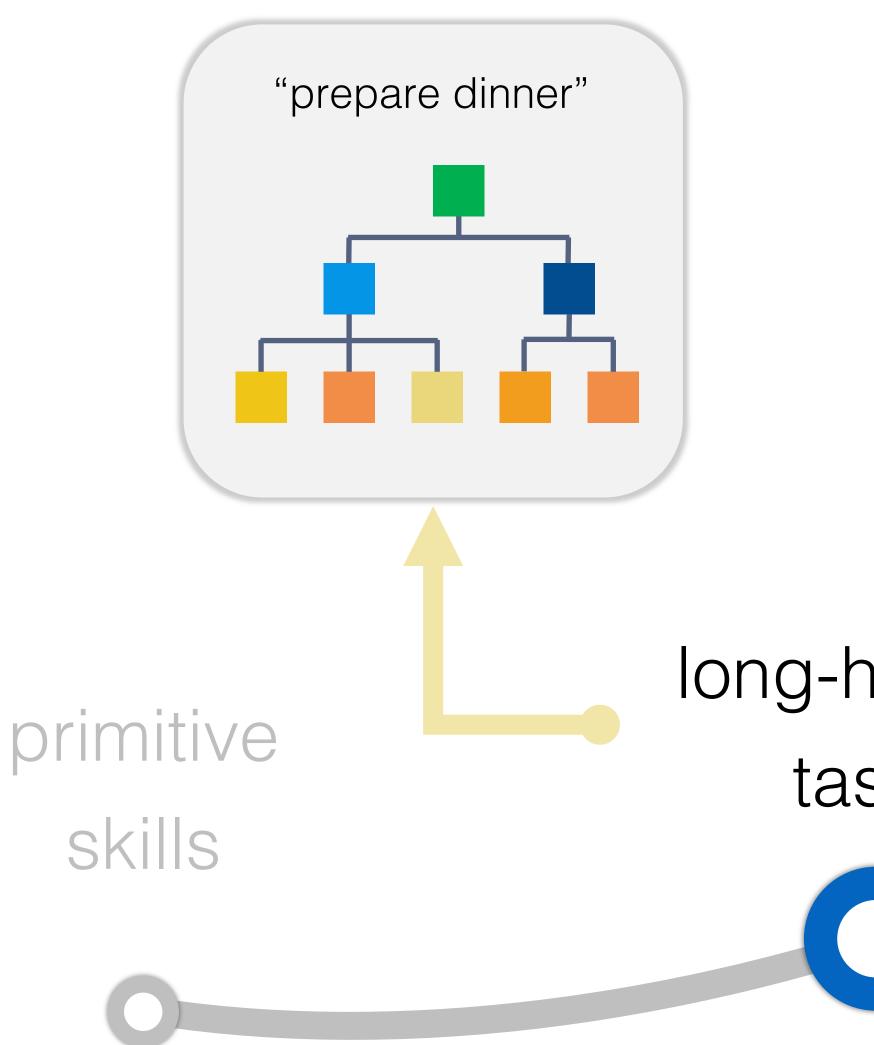
Feedback from downstream tasks and structural priors

give rise to more compact and informative representations.

Part I: Primitive Skills

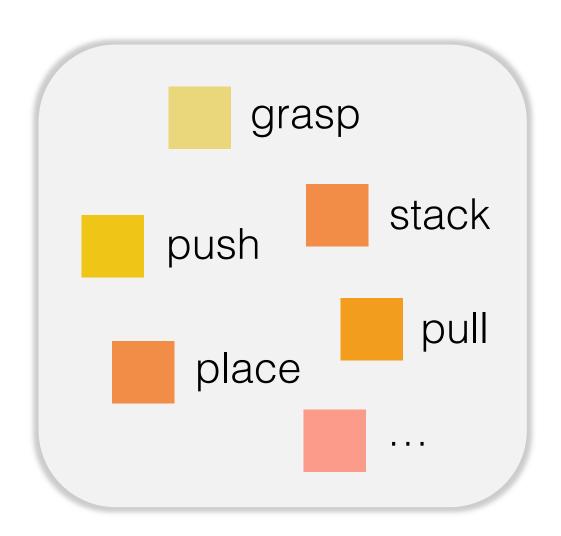
Part II: Long-Horizon Tasks

Part III: Human-like Learning



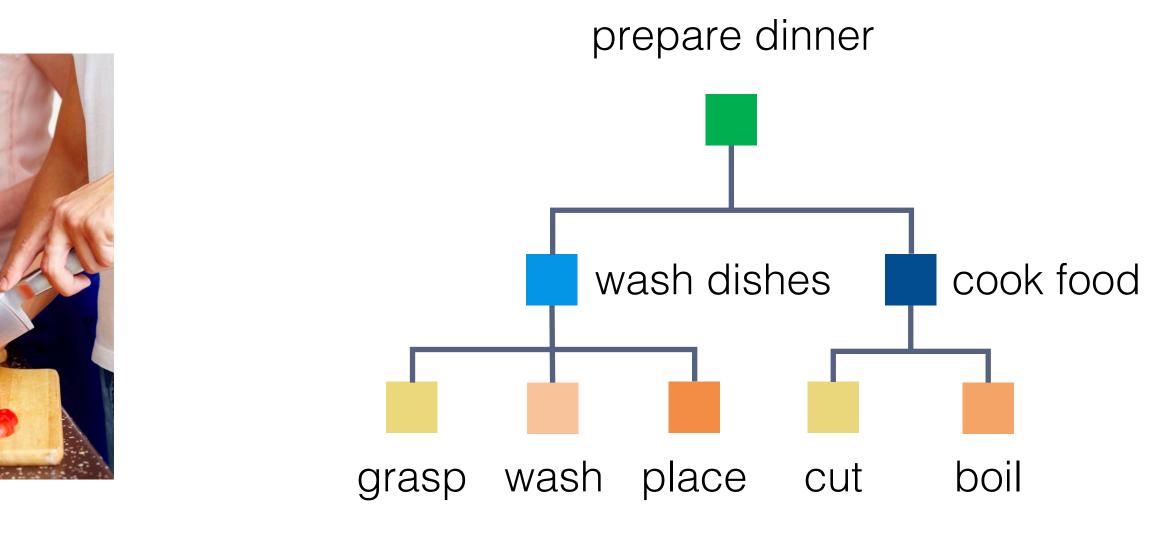
general-purpose robot autonomy human-like learning long-horizon tasks

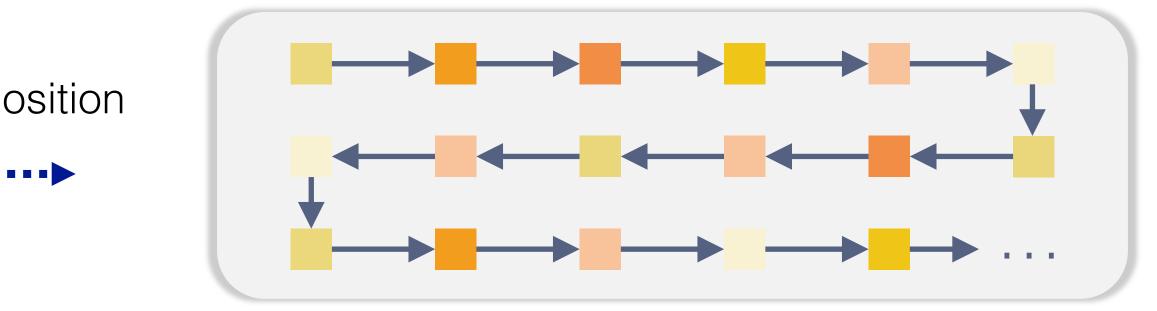
"prepare dinner"



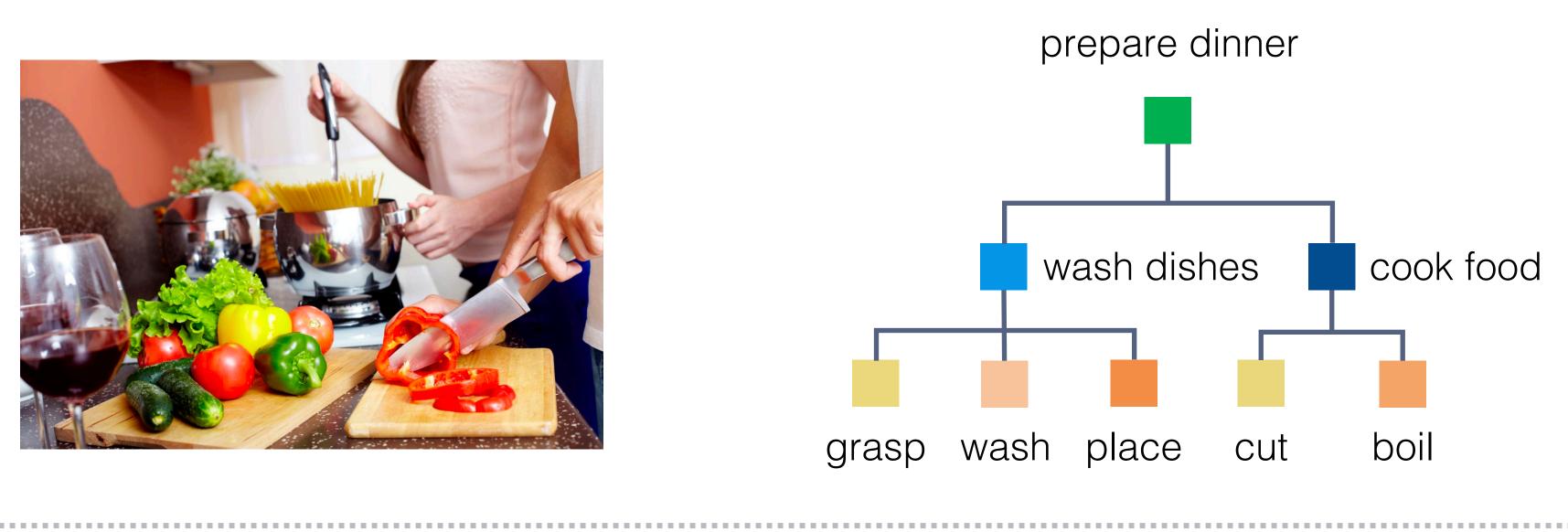
sequential composition

robot primitive skills





Intractable!



"prepare dinner"

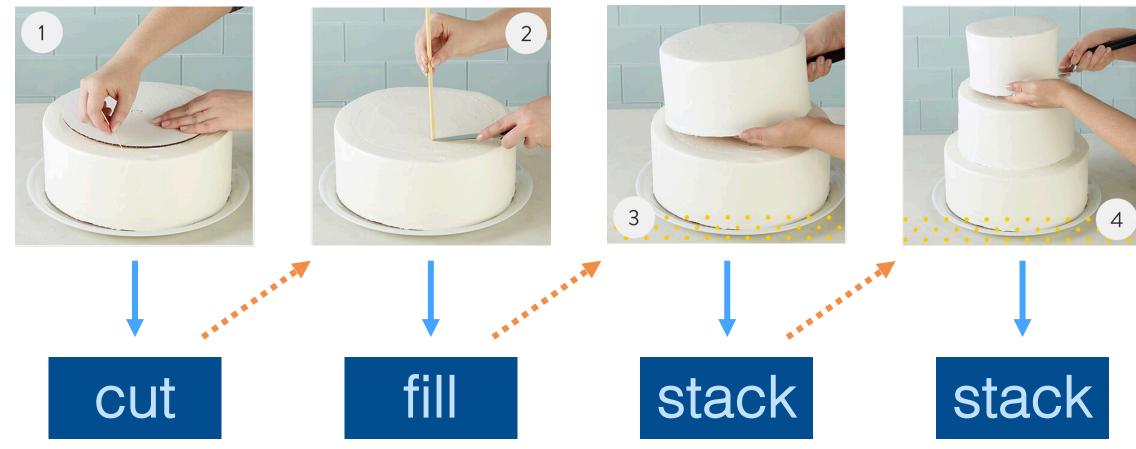
Challenge: Task complexity grows exponentially.

Key idea: Leveraging hierarchy and abstraction of long-horizon tasks

"How to make a cake?"

high-level plan

low-level action



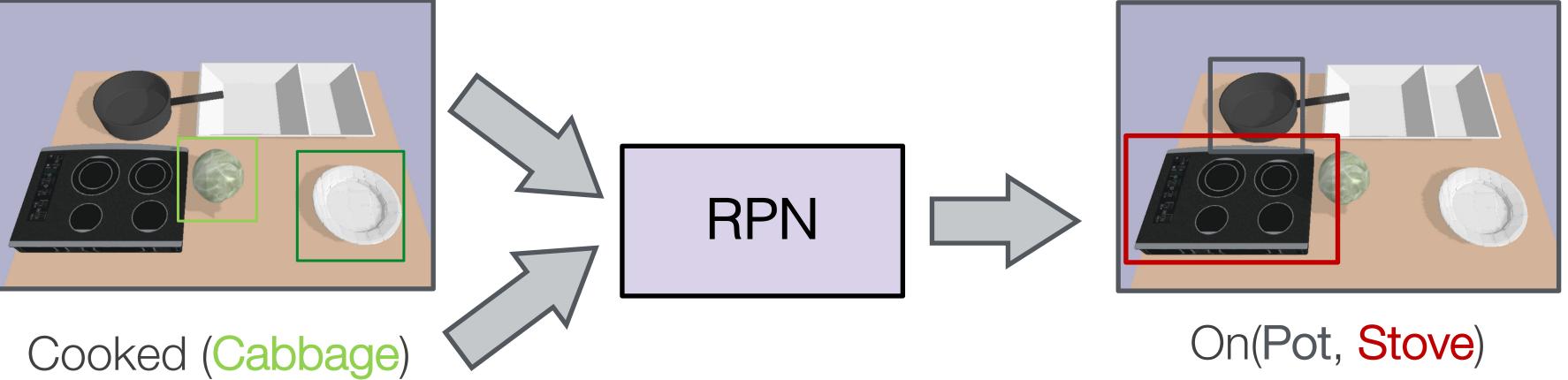
"How to make a cake?"

high-level plan

low-level action

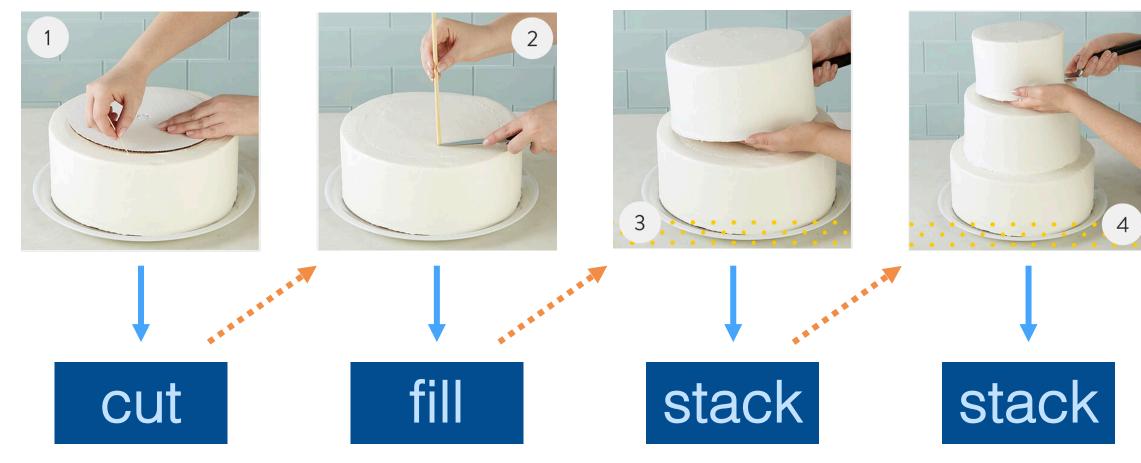
Current Observation

.............................

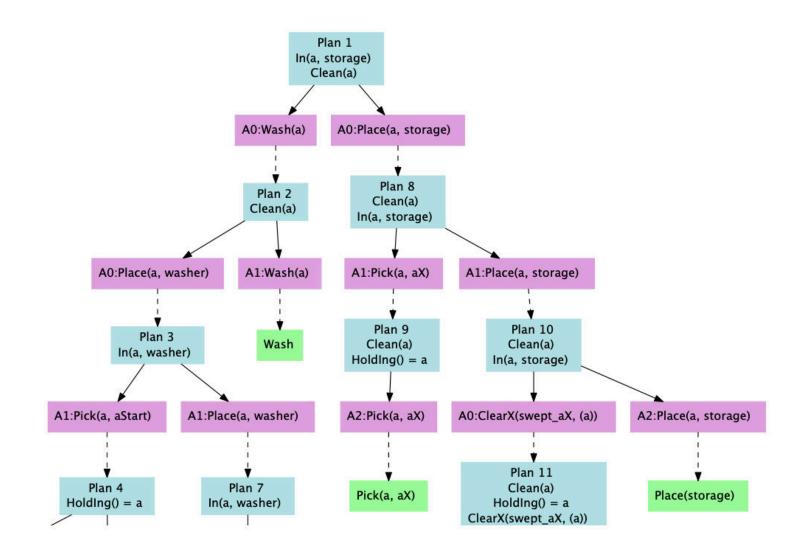


Task Goal

On (Cabbage, Plate)



On(Pot, Stove) Next Subgoal

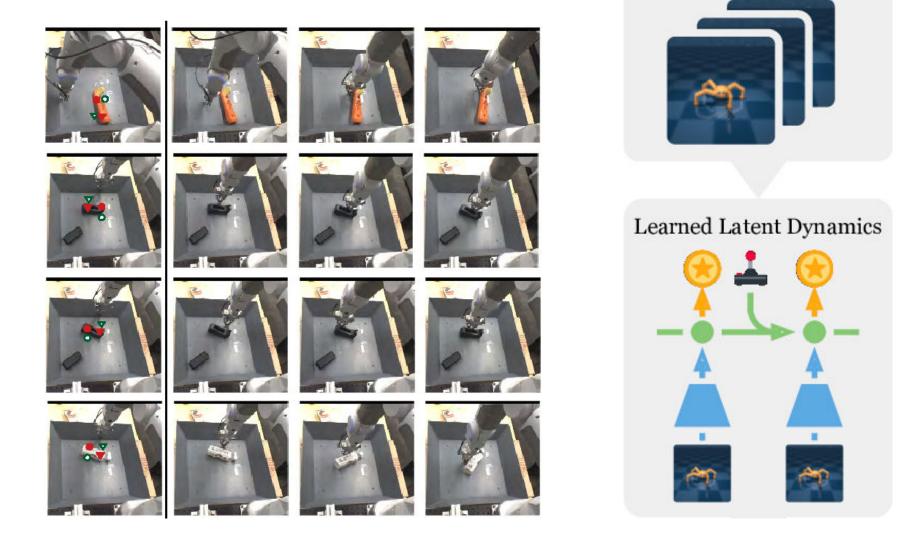


[Waldinger 1975; Korf 1987; Kaelbling ICRA'11]

classical symbolic planning

human-interpretable and long-horizon symbols and planning domain required

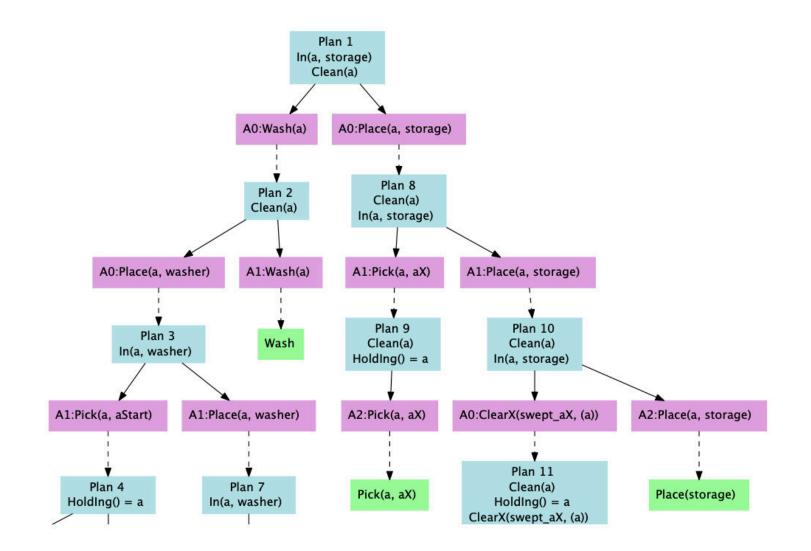
Dataset of Experience



[Finn et al. ICRA'17; Oh et al. NIPS'15; Hafner et al. ICLR'20]

plan from observations

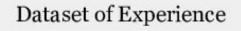
grounded on raw sensory data myopic sampling, short-horizon tasks

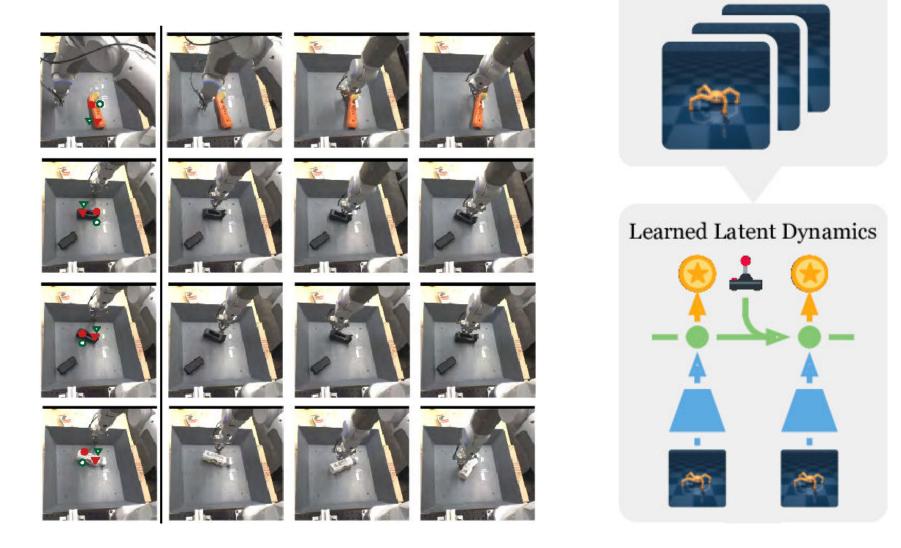


[Waldinger 1975; Korf 1987; Kaelbling ICRA'11]

classical symbolic planning

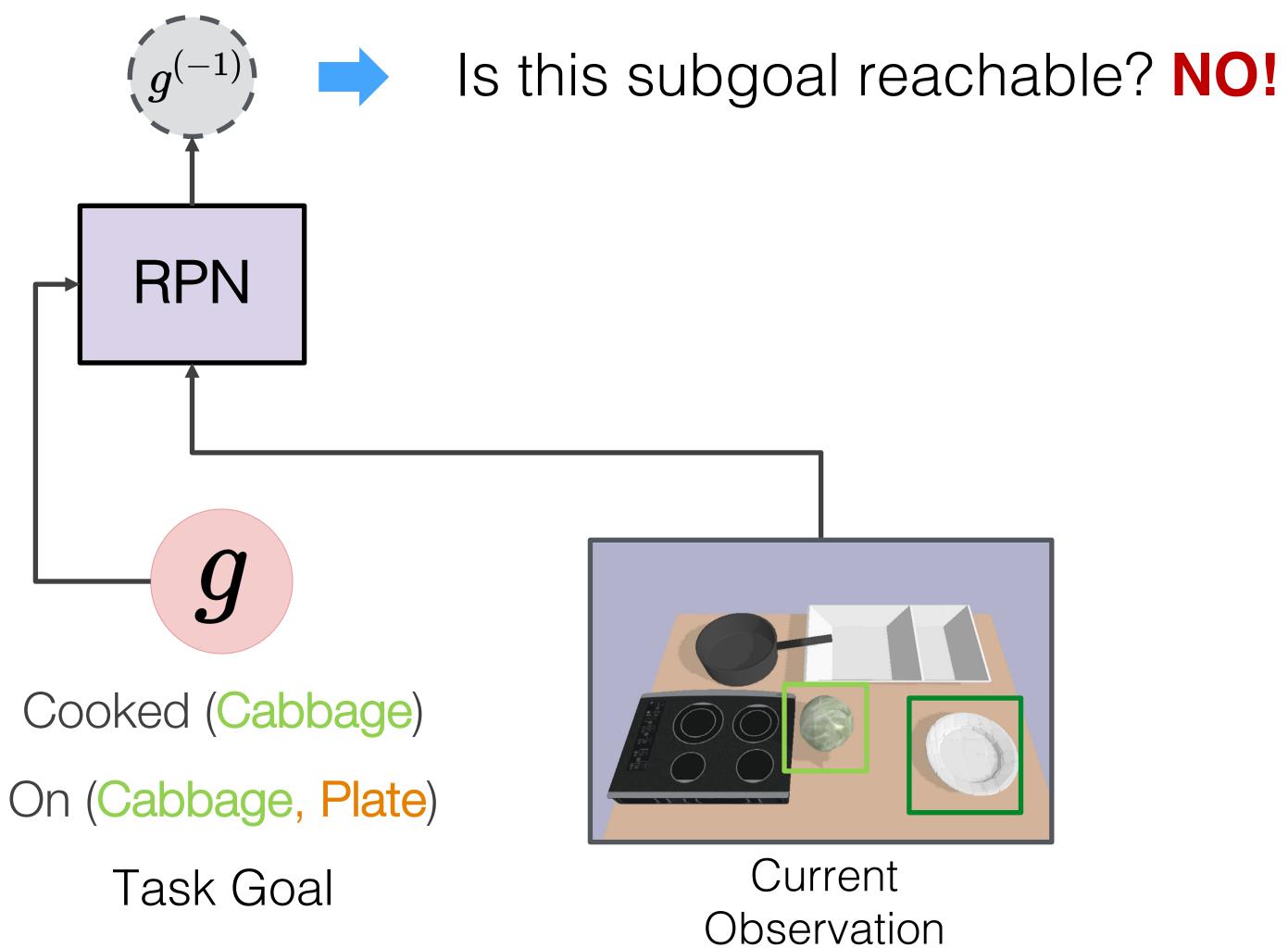
plan backward in a symbolic space conditioning on the visual observation



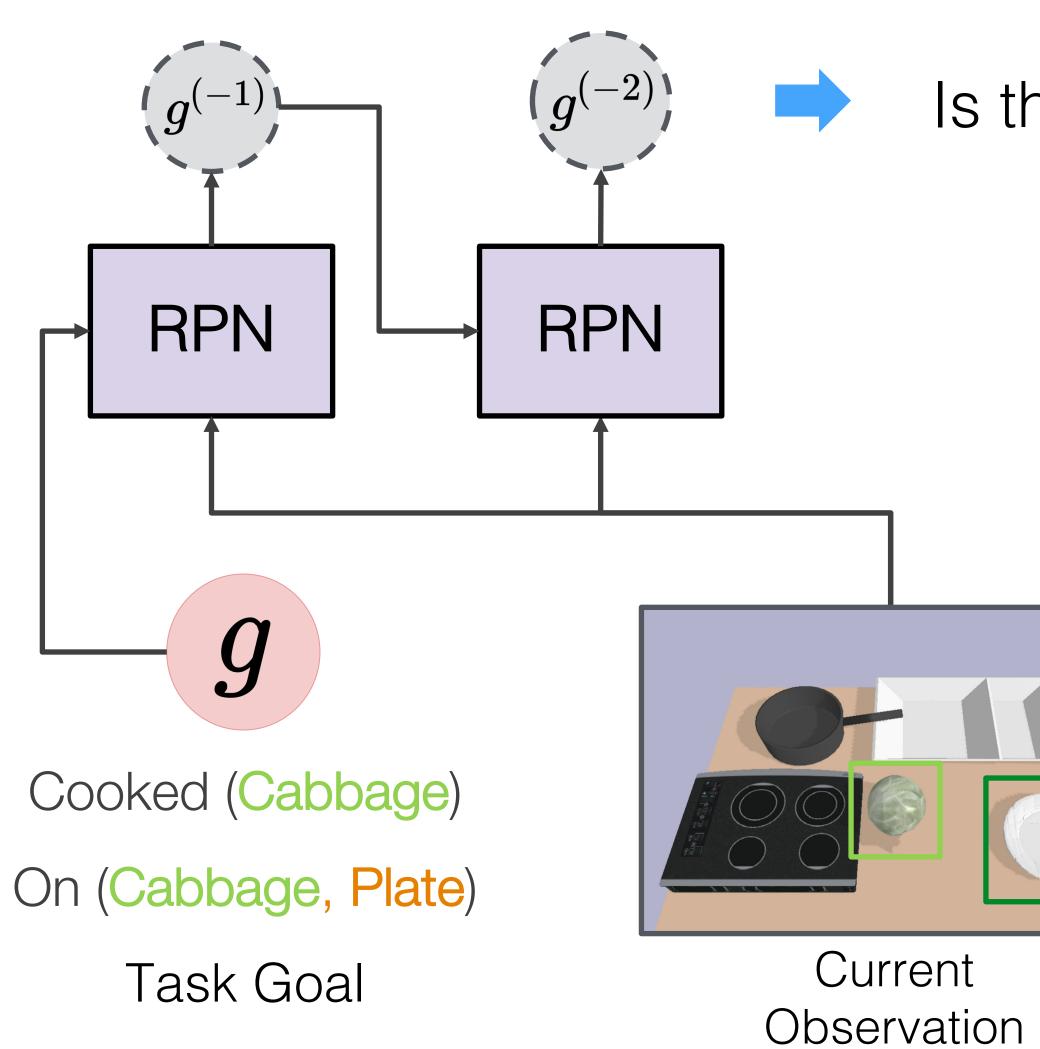


[Finn et al. ICRA'17; Oh et al. NIPS'15; Hafner et al. ICLR'20]

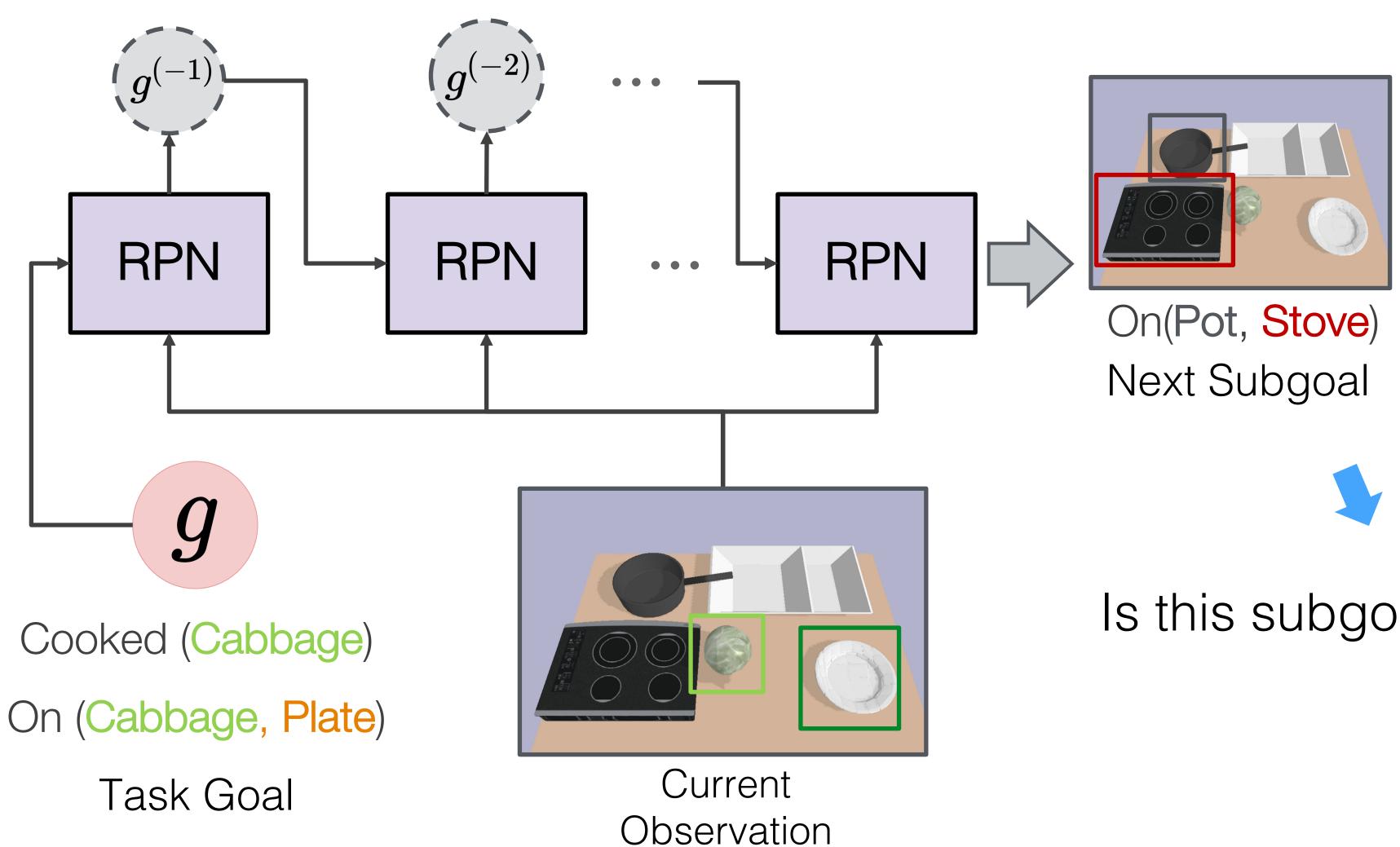
plan from observations



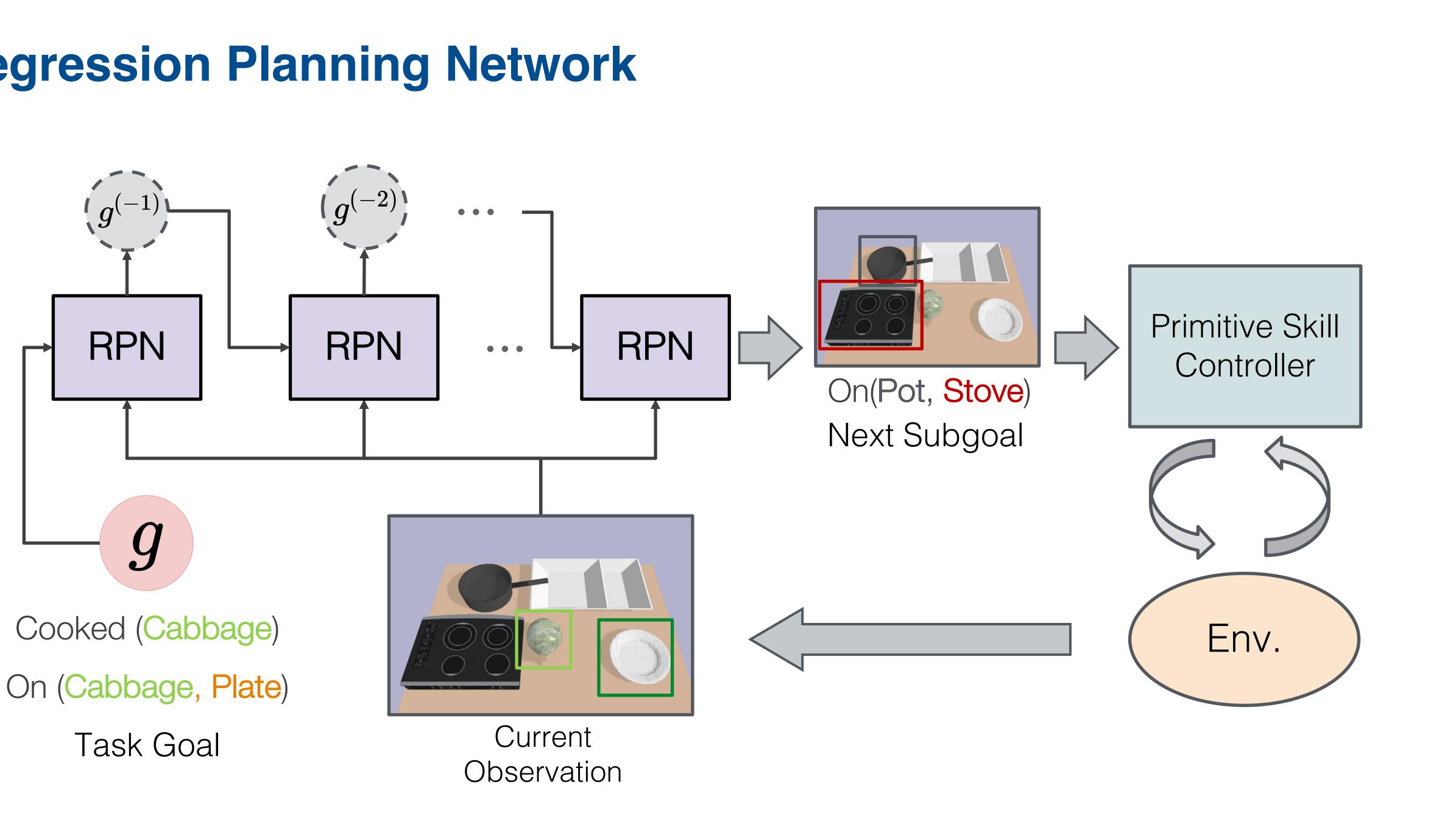




Is this subgoal reachable? NO!



Is this subgoal reachable? YES!





Qualitative

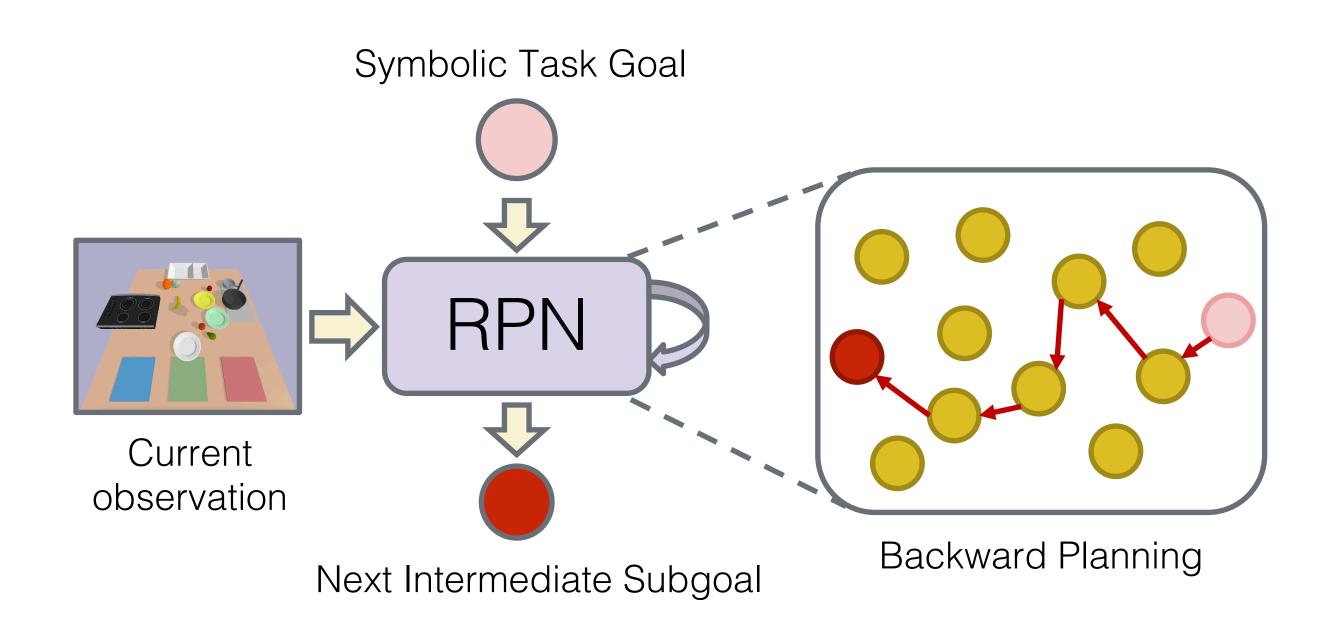
(cook 3 dishes with 4 ingredients)

Performance on Unseen Tasks 100 Easy Medium Hard rate 80 success 60 40

Quantitative

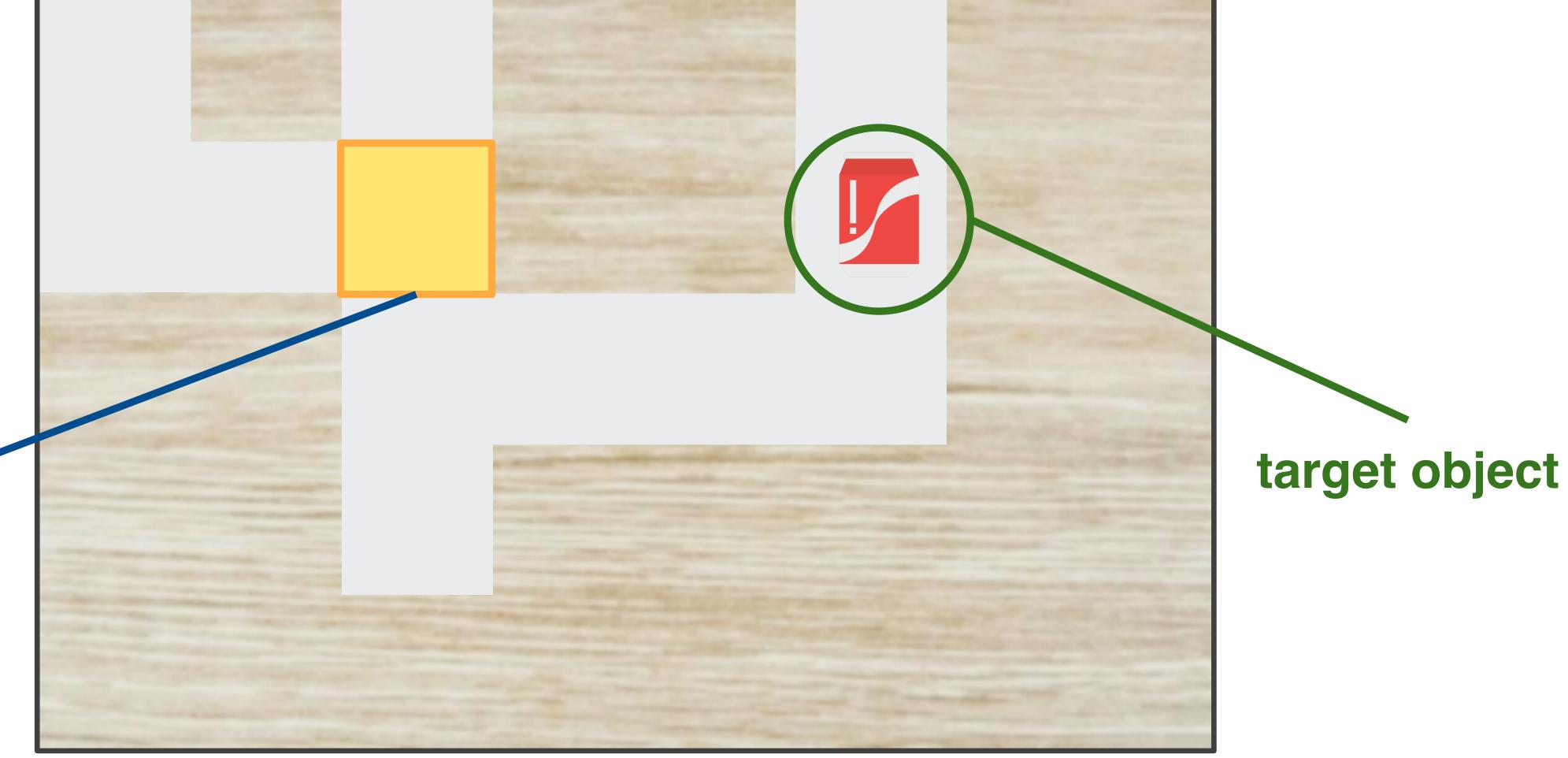
(the higher the better)

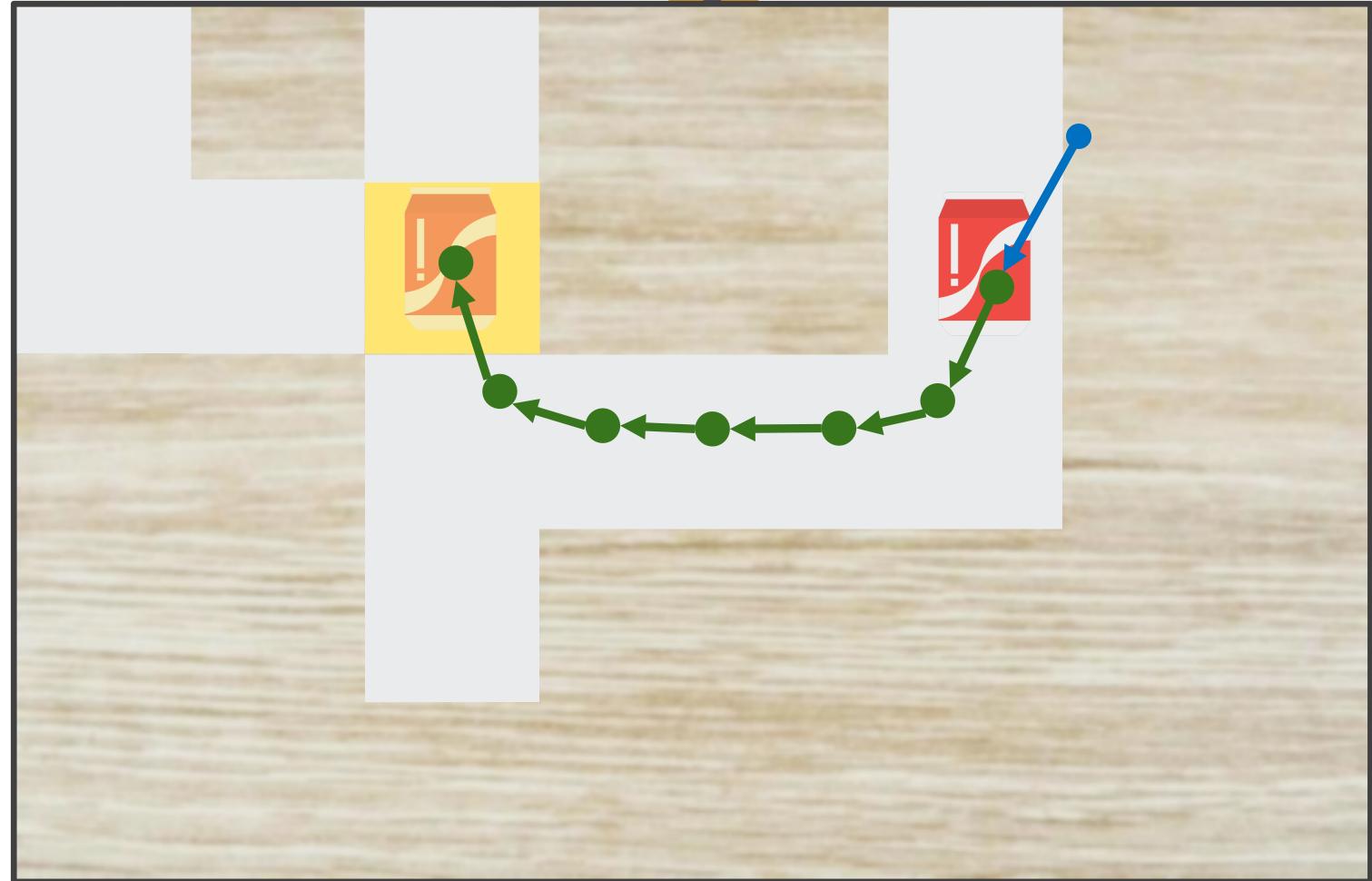
- Recursively planning backward (regression) ulletplanning) on **symbolic abstraction**
- Method works on **visual input** without specifying \bullet a planning domain
- Learning from video demonstrations and **zero-** \bullet shot generalization to new tasks
- Low-level primitive skills are modeled as pre- \bullet defined API calls.

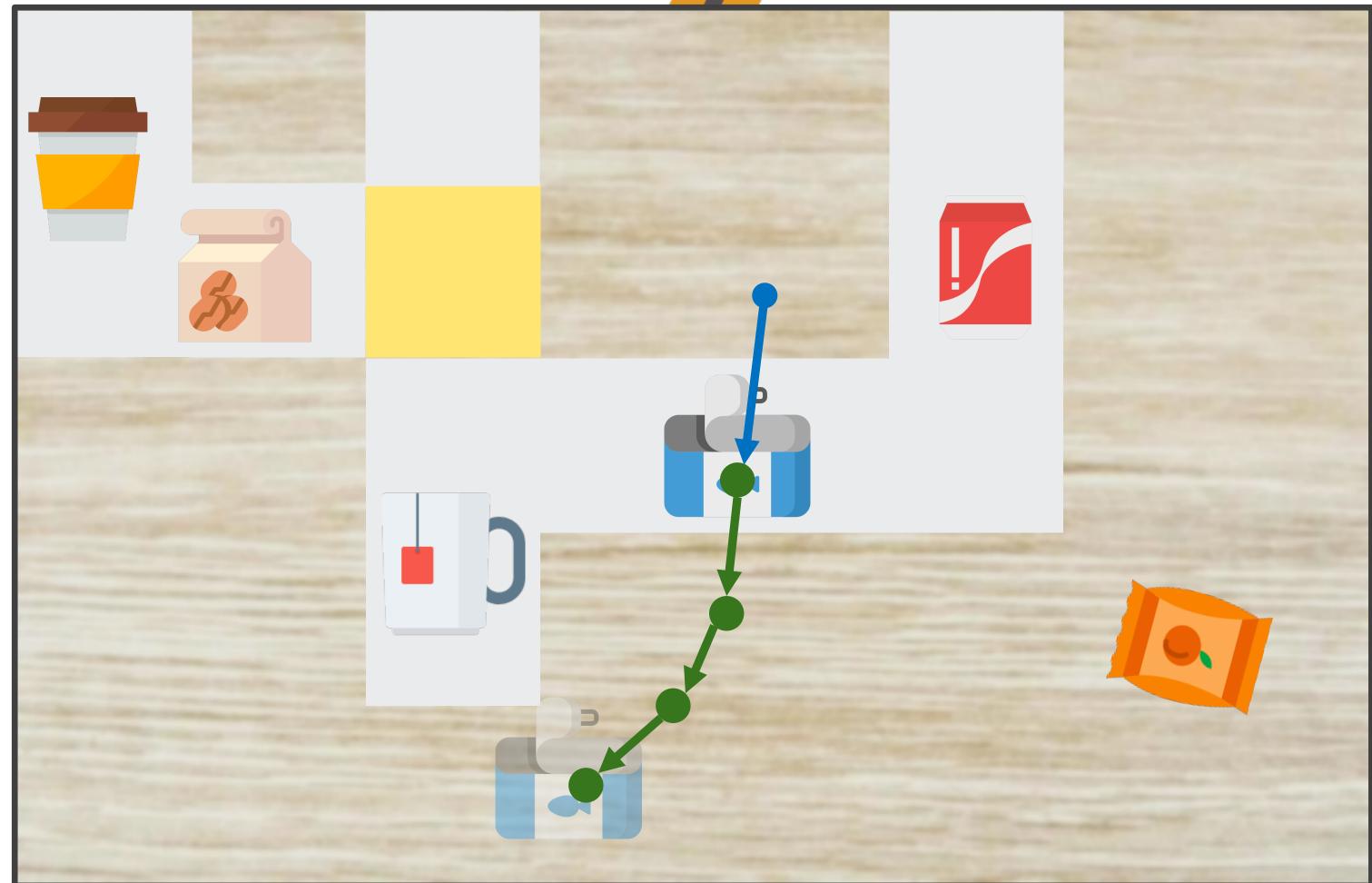


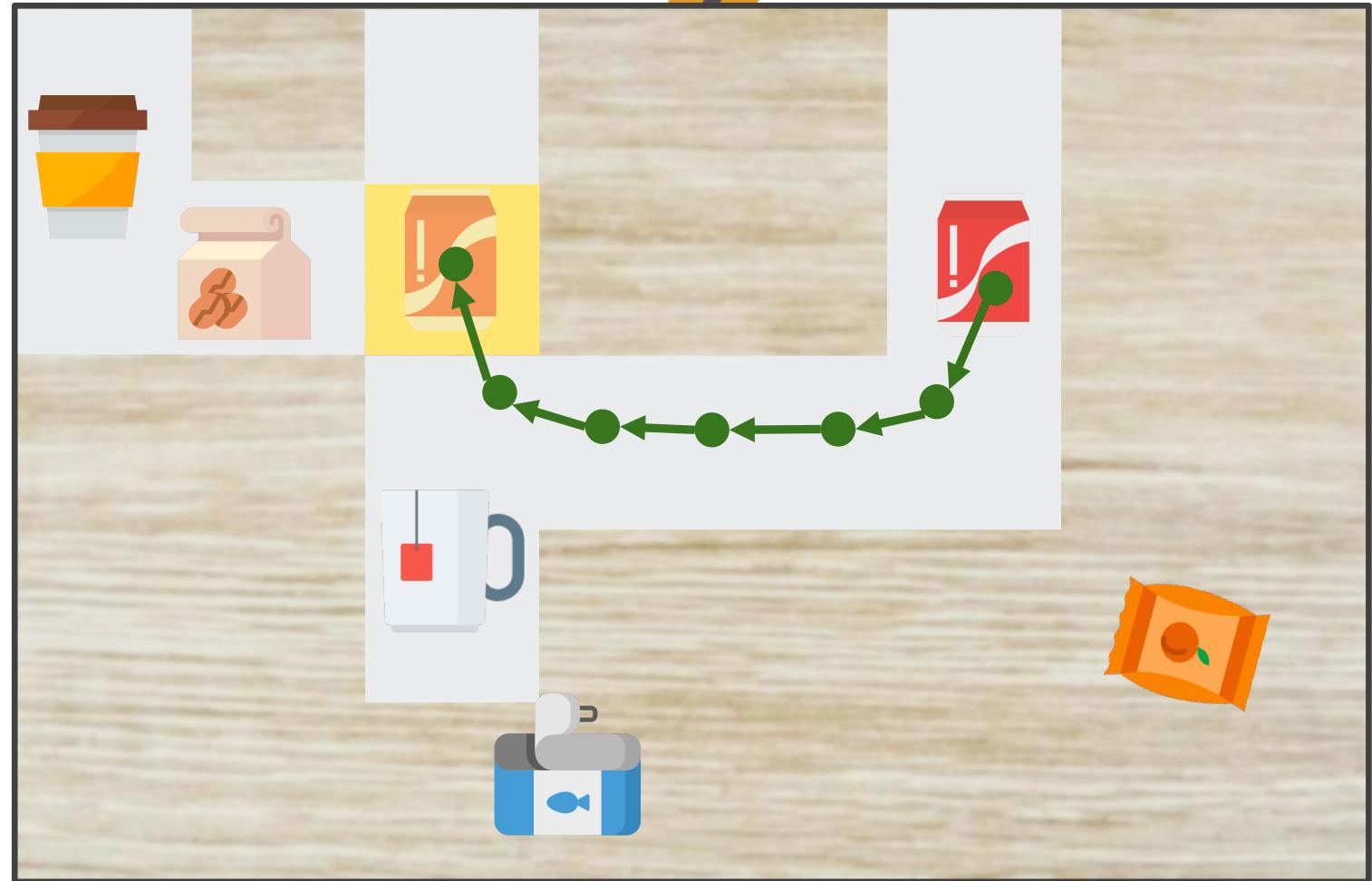
- Recursively planning backward (regression) planning) on symbolic abstraction
- Method works on **visual input** without specifying a planning domain
- Learning from video demonstrations and **zero**-shot generalization to new tasks
- Low-level **primitive skills** are modeled as **pre-** \bullet defined API calls.

Can we learn and plan **primitive** skills and task plans jointly?

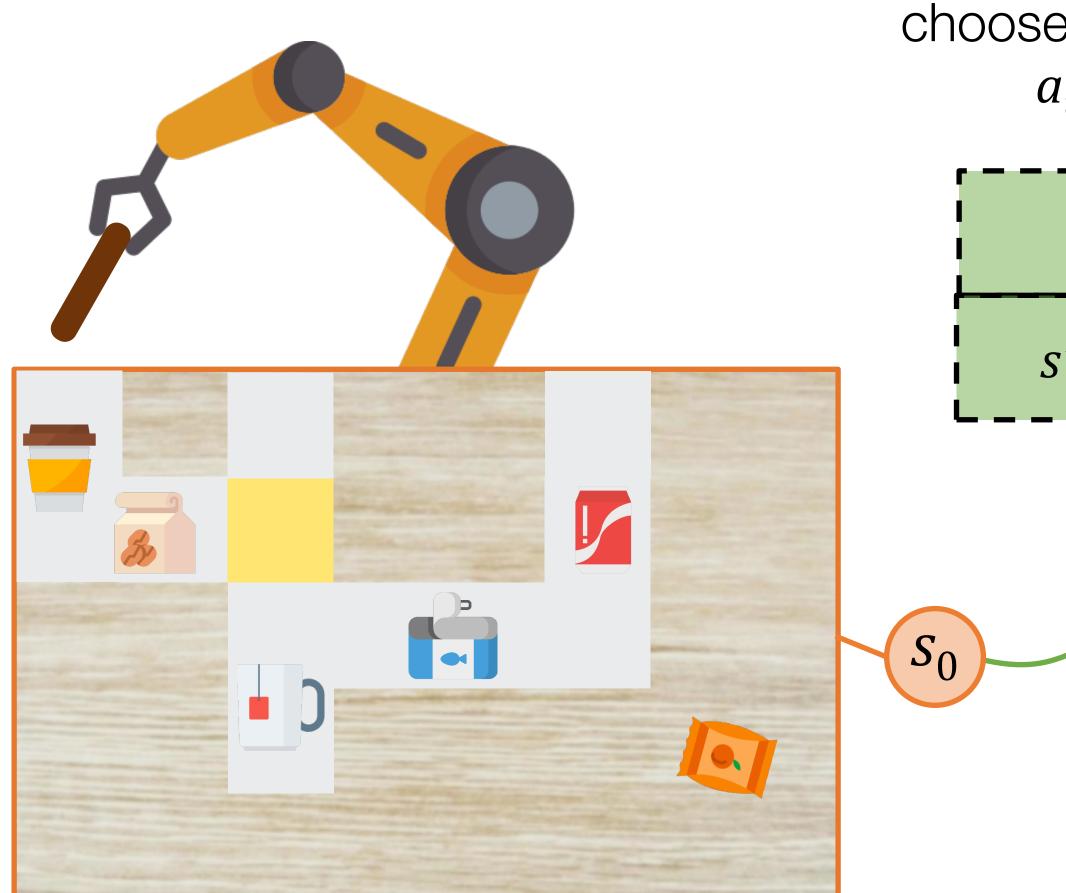








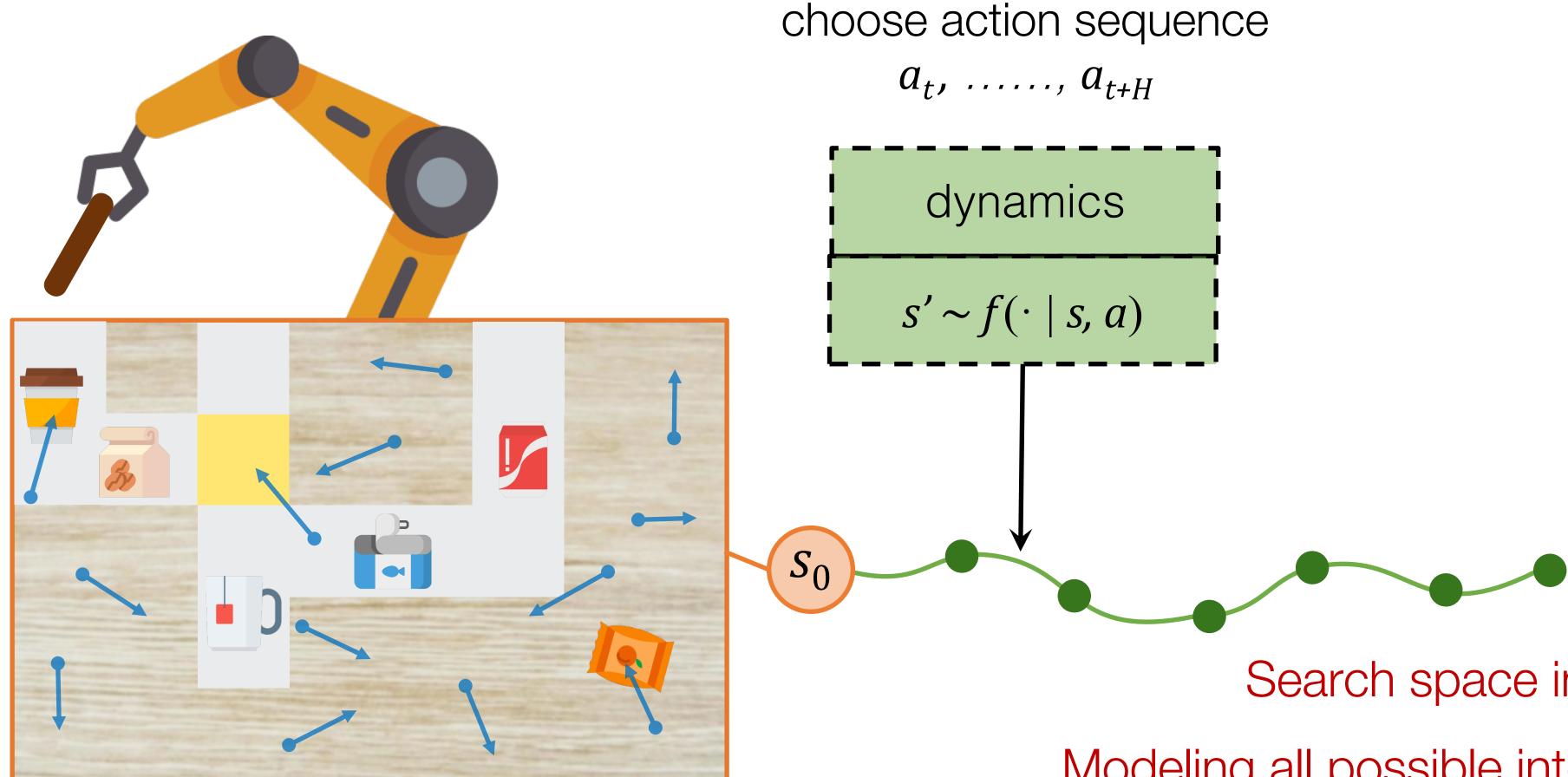
Long-Horizon Tasks: Model-Based Learning



[Deisenroth et al, RSS'07], [Guo et al, NeurIPS'14], [Watter et al, NeurIPS'15], [Finn et al, ICRA'17],

- choose action sequence a_t, \ldots, a_{t+H}
 - dynamics
 - $s' \sim f(\cdot \mid s, a)$

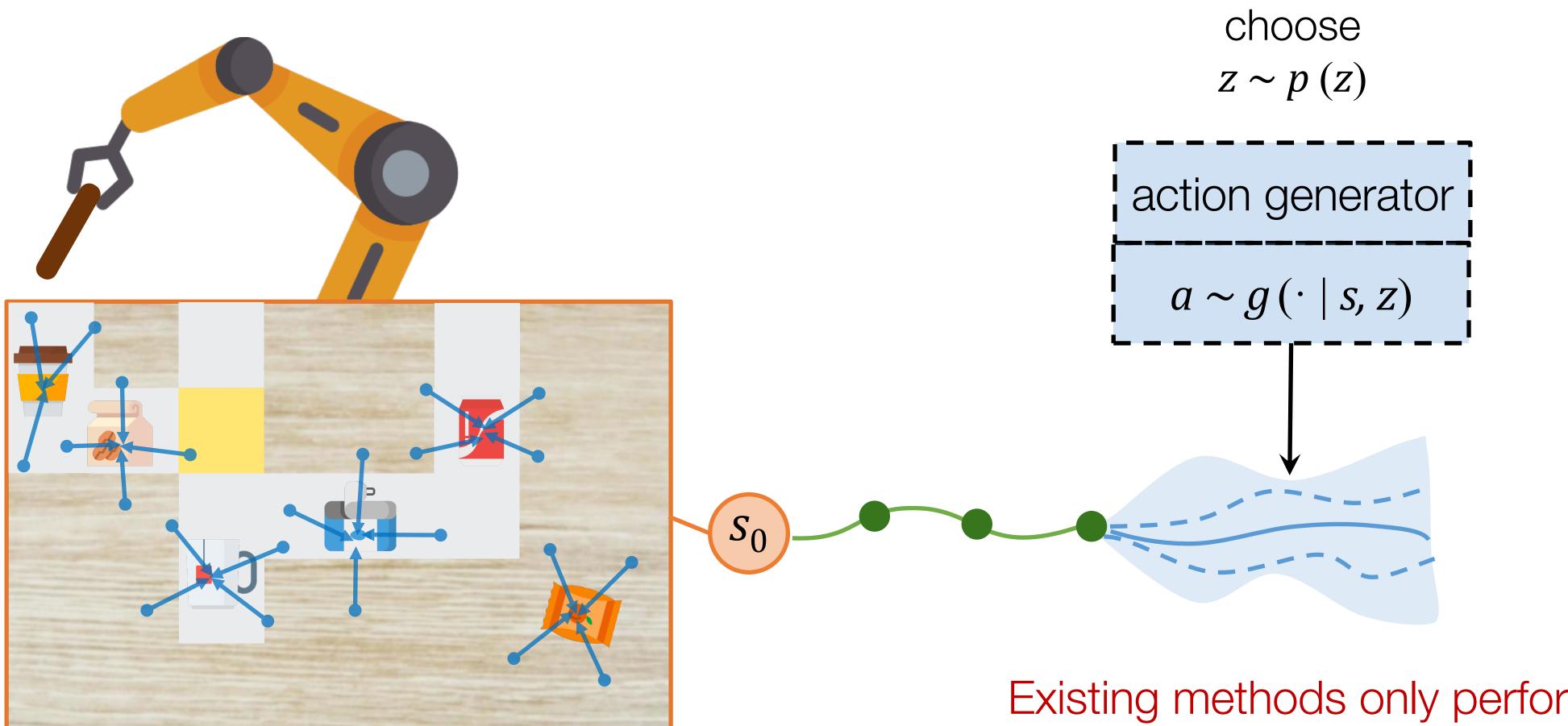
Long-Horizon Tasks: Model-Based Learning



[Deisenroth et al, RSS'07], [Guo et al, NeurIPS'14], [Watter et al, NeurIPS'15], [Finn et al, ICRA'17],

Search space increases exponentially. Modeling all possible interactions is intractable.

Long-Horizon Tasks: Planning in Learned Latent Spaces



Existing methods only perform flat planning.

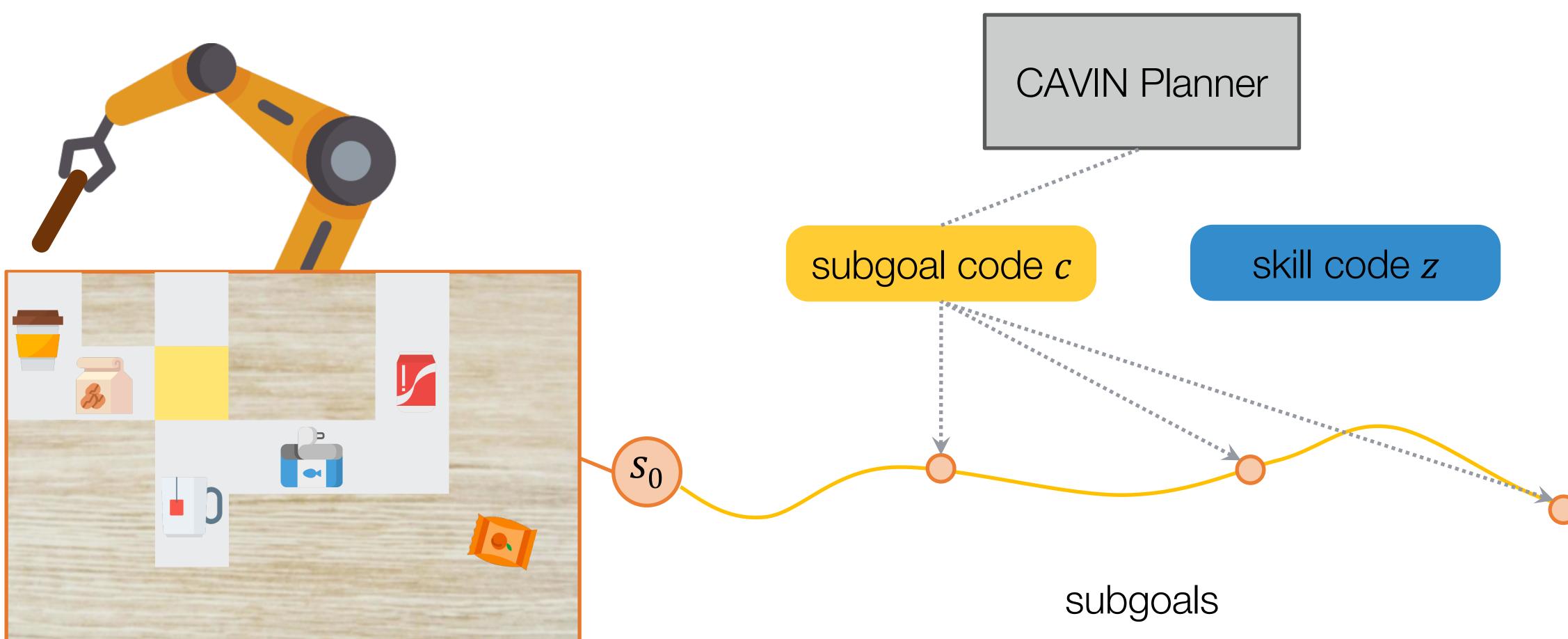
[Ichter et al, ICRA'19], [Kurutach et al, NeurIPS'18], [Co-Reyes et al, ICML'18]

Long-Horizon Tasks: Hierarchical Planning in Latent Spaces

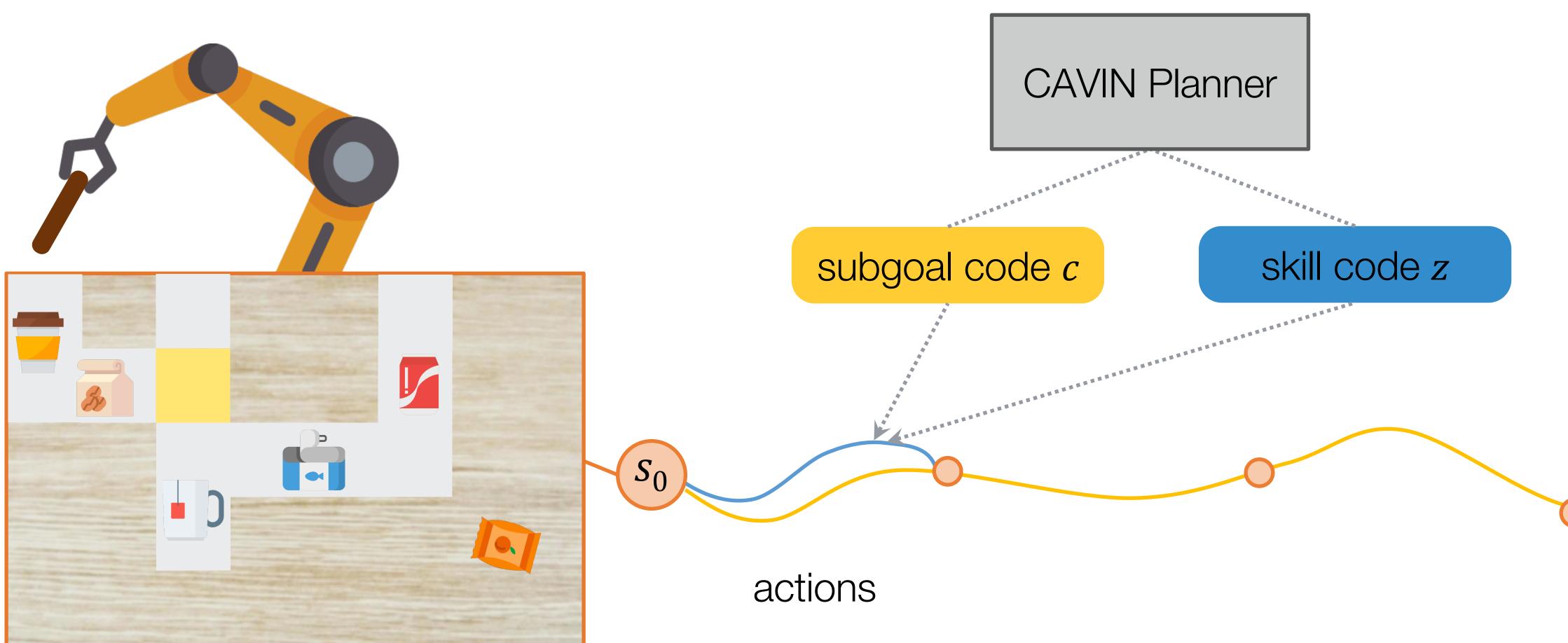
CAVIN Planner

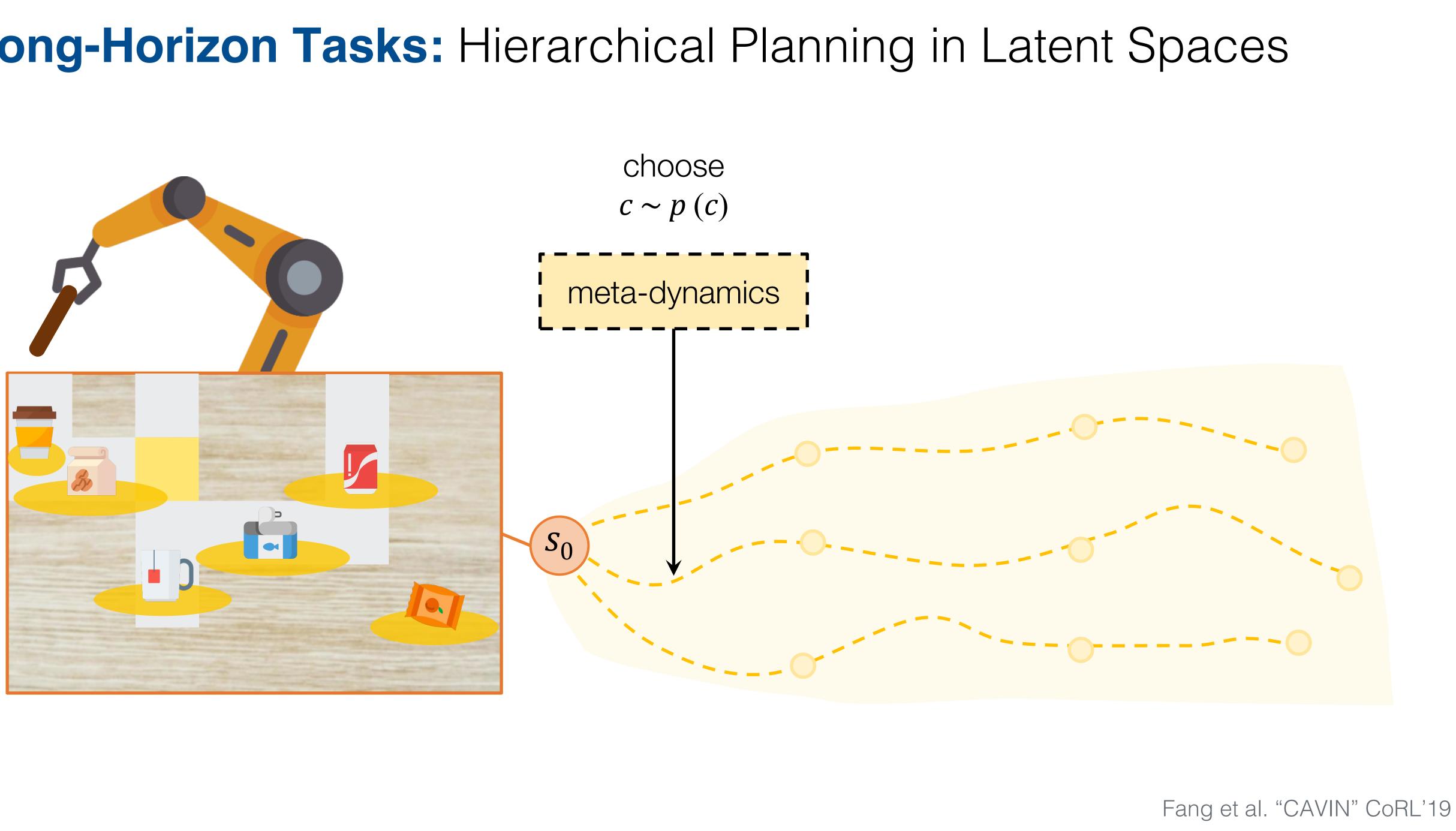
Fang et al. "CAVIN" CoRL'19

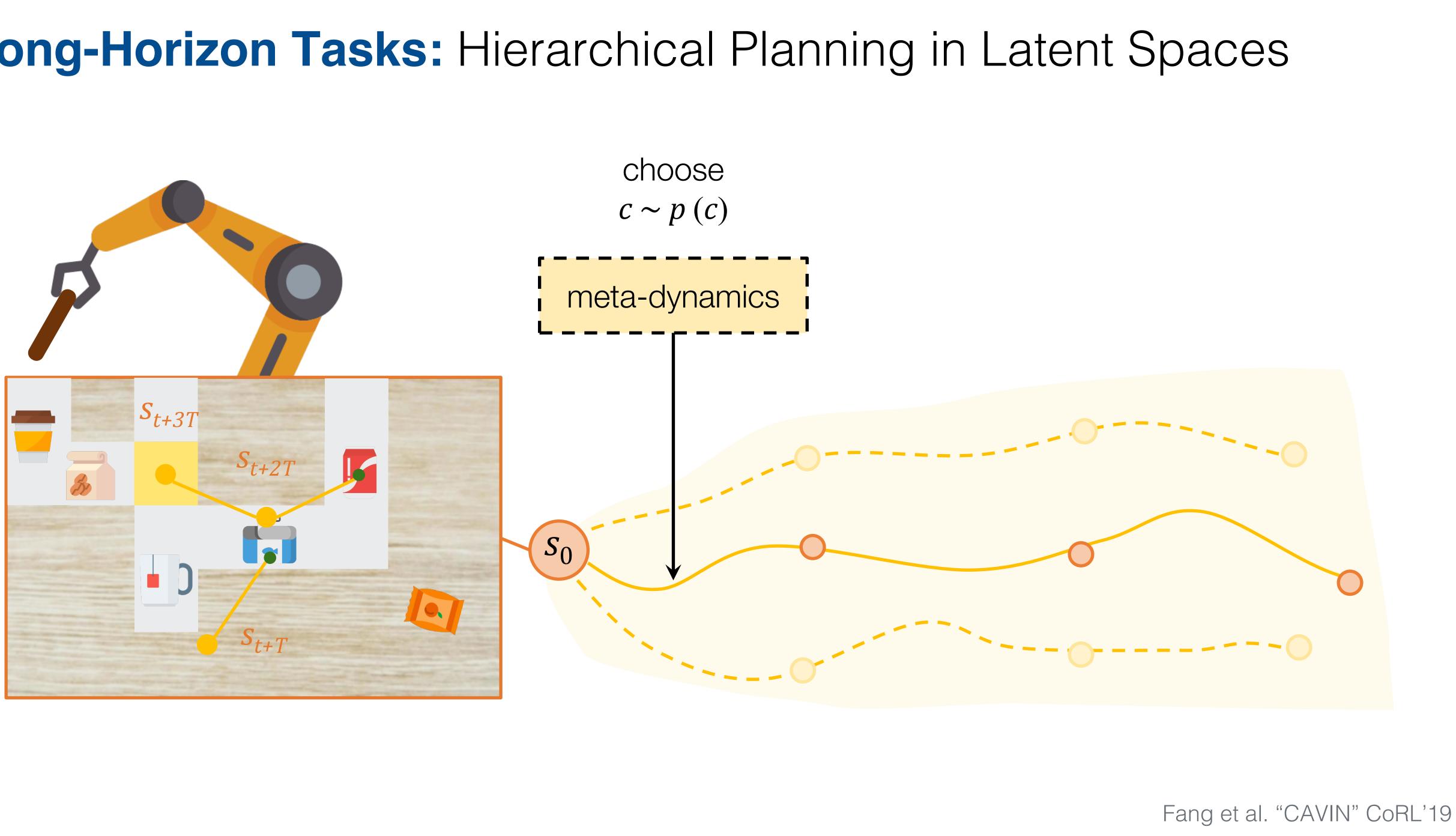
Long-Horizon Tasks: Hierarchical Planning in Latent Spaces

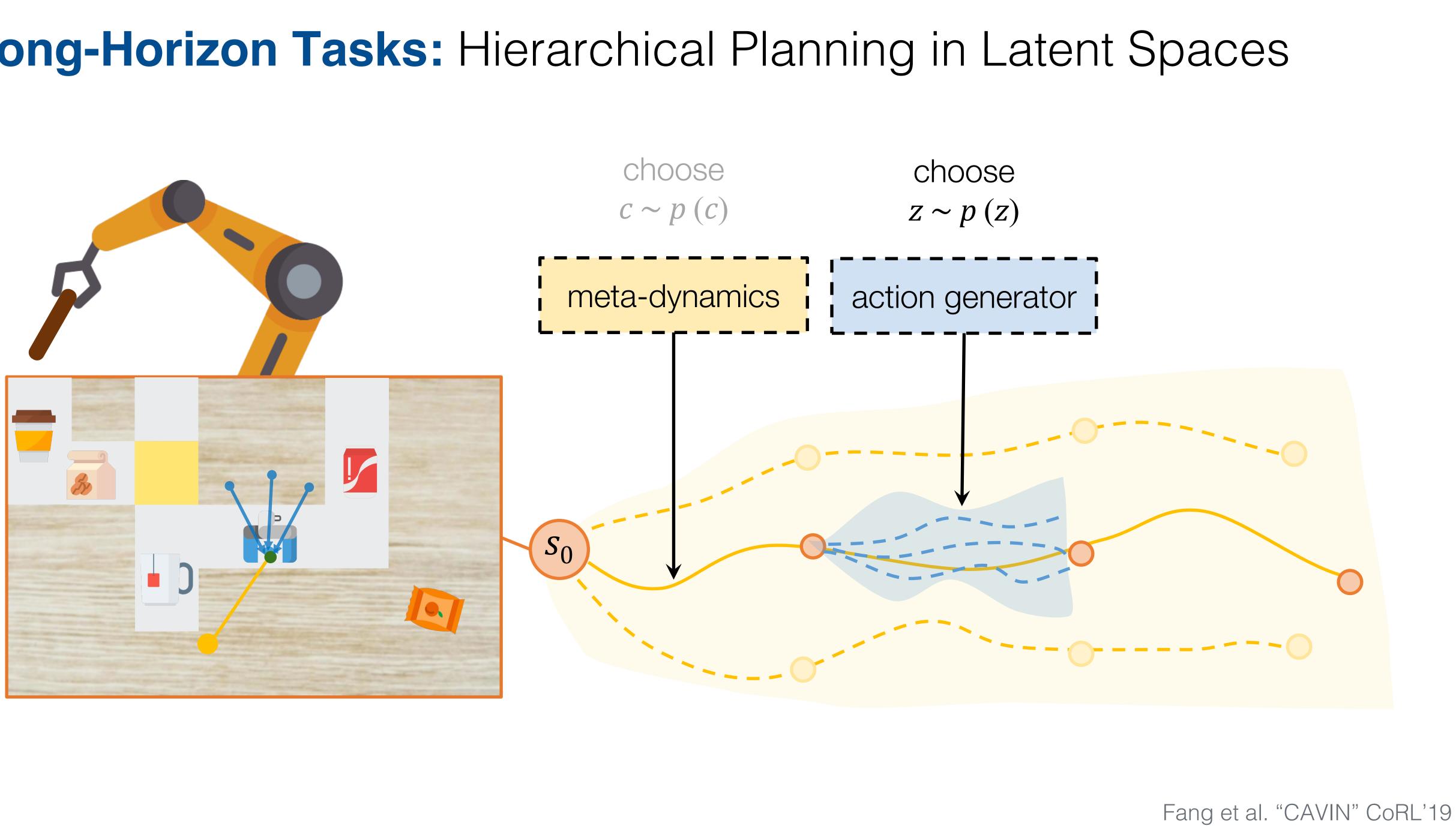


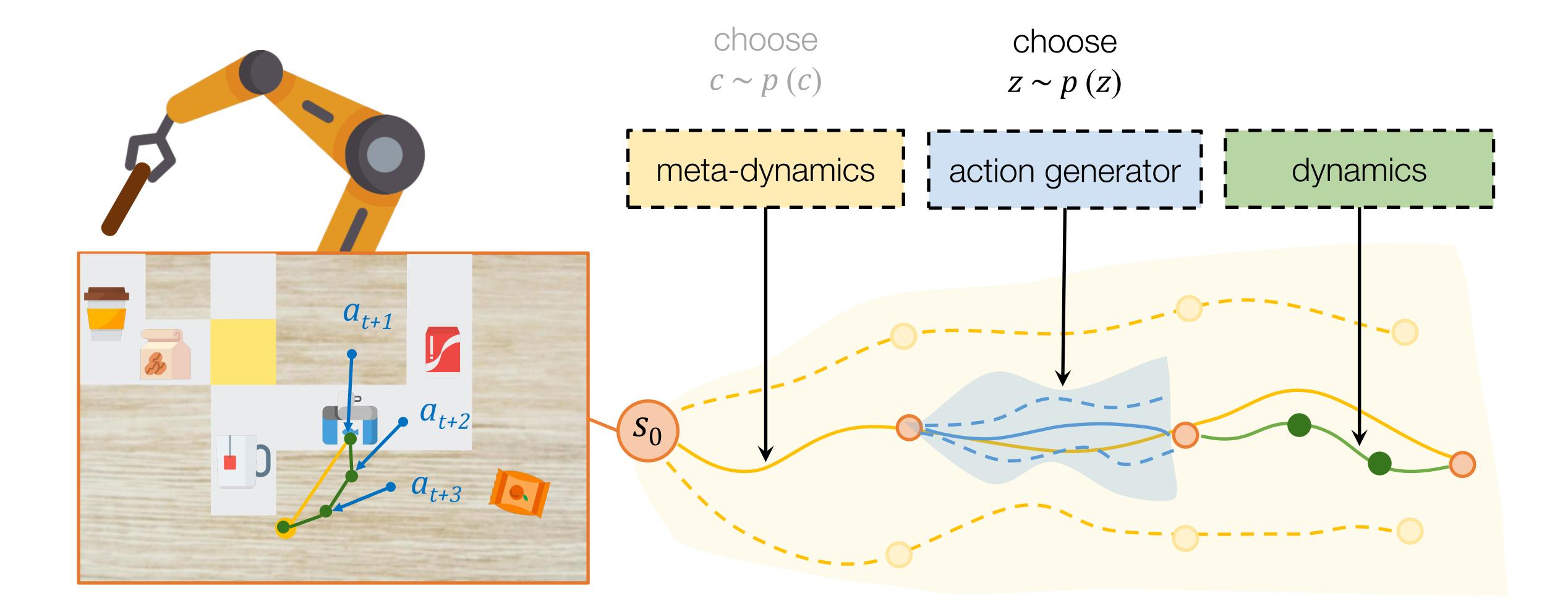
Fang et al. "CAVIN" CoRL'19



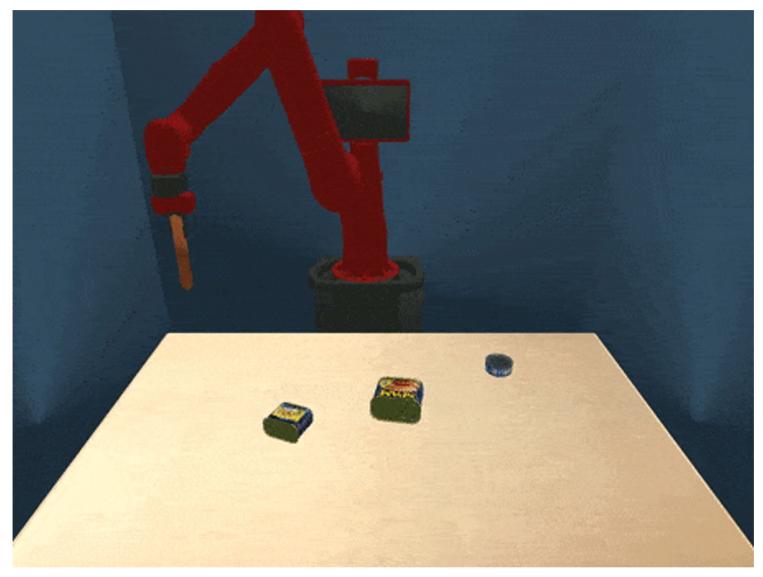


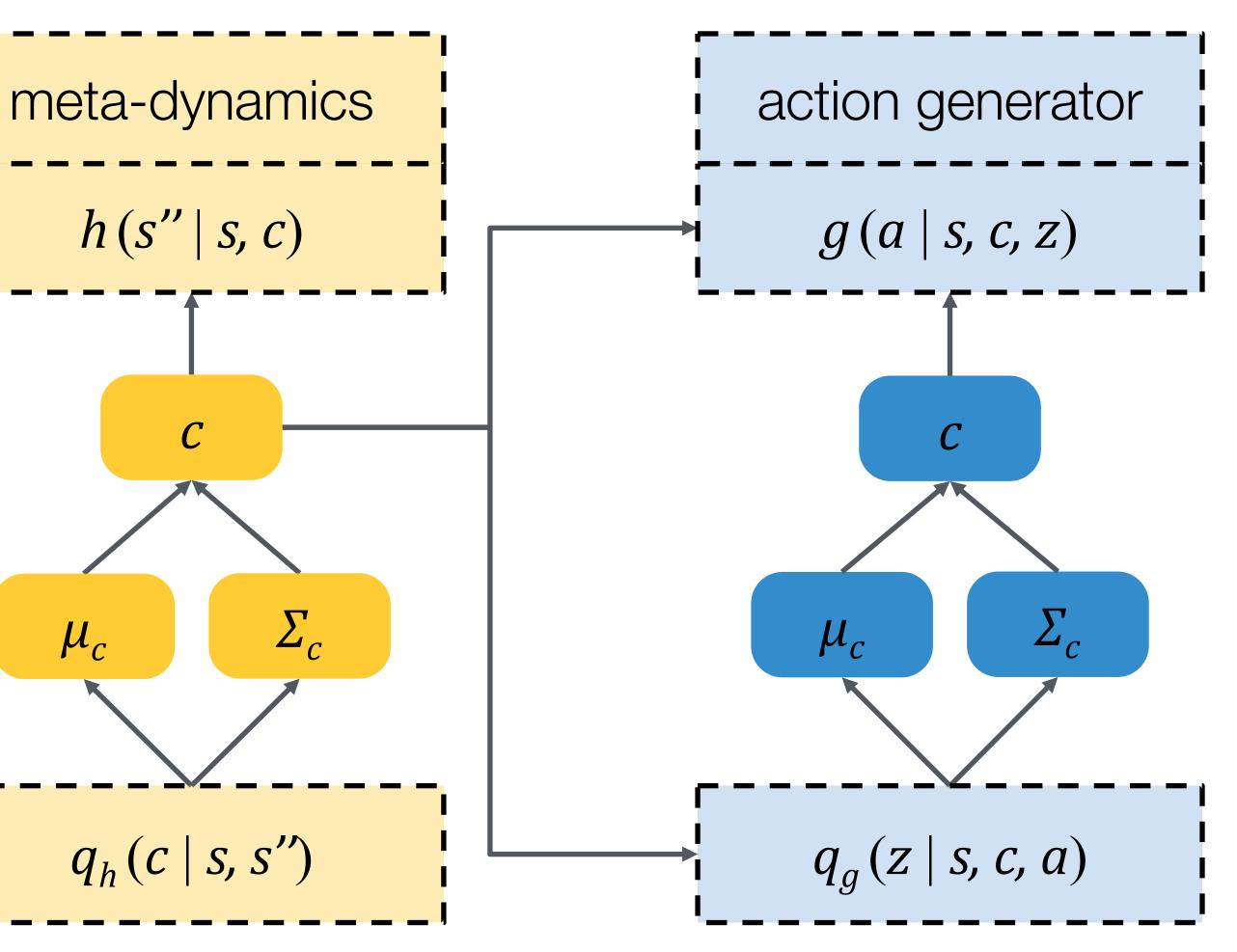




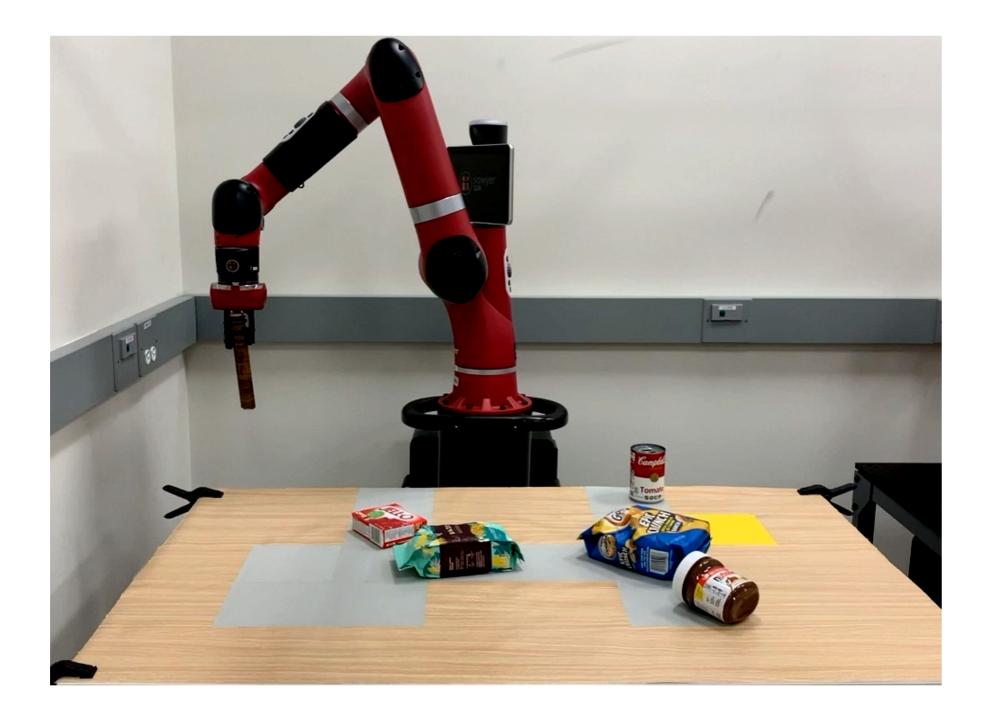


task-agnostic interaction

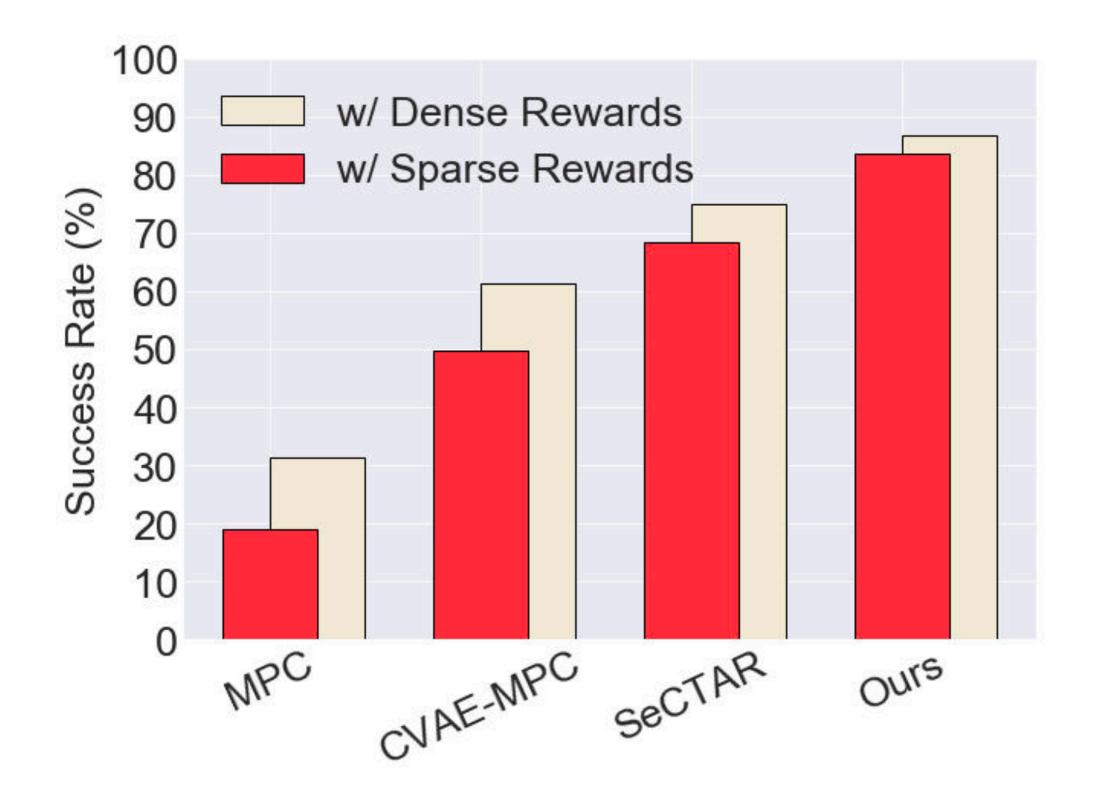




Long-Horizon Tasks: Cascaded Variational Inference



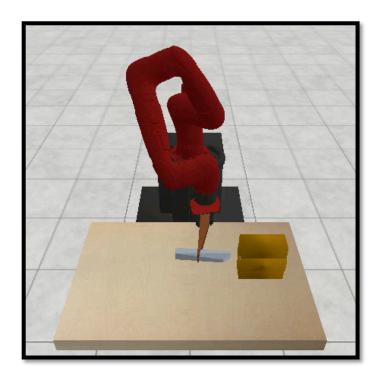
"move away obstacles"



Summary - Part II

Hierarchical planning and symbolic abstraction scale up

to long-horizon manipulation tasks.

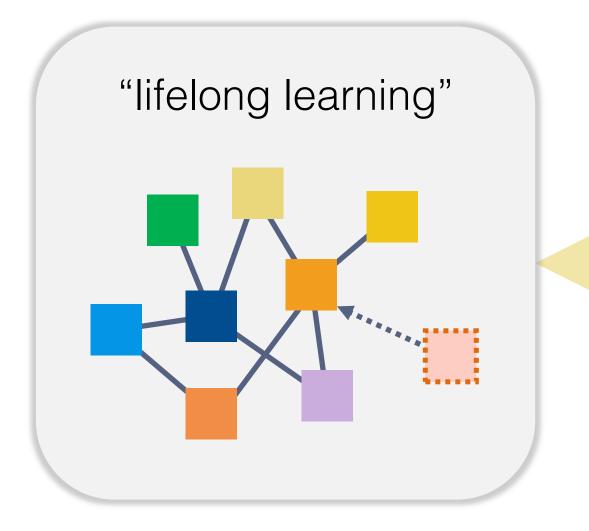


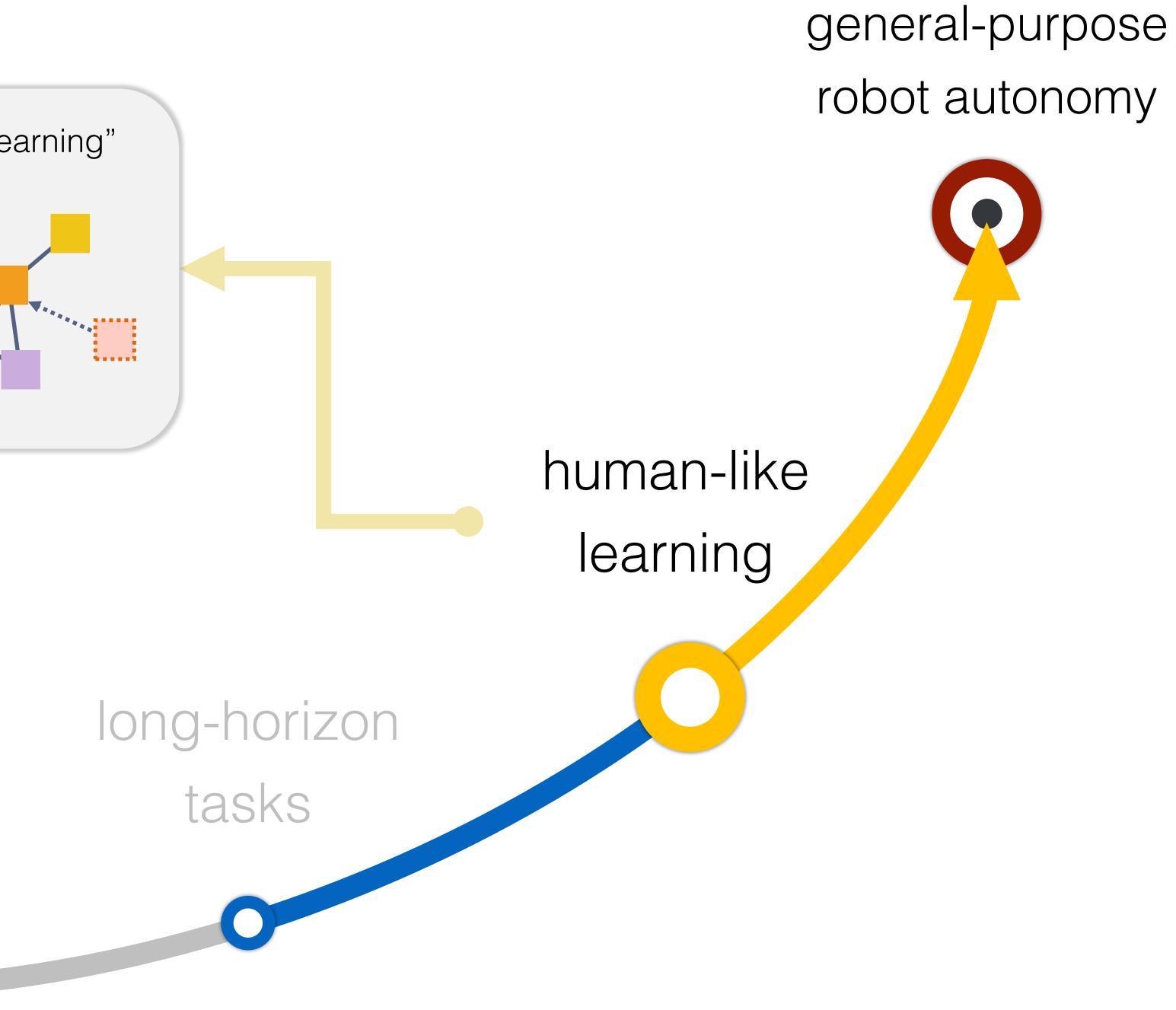
High-level plans and low-level skills can be learned jointly from task-agnostic interactions.

Part I: Primitive Skills

Part II: Long-Horizon Tasks

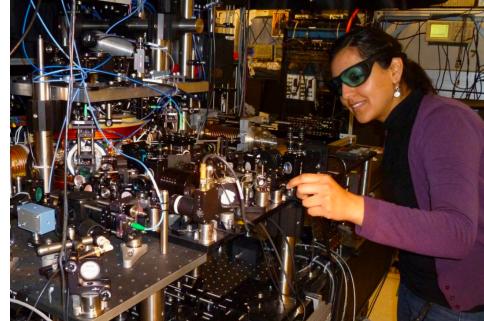
Part III: Human-like Learning





Human-Like Learning: A Lifelong Process

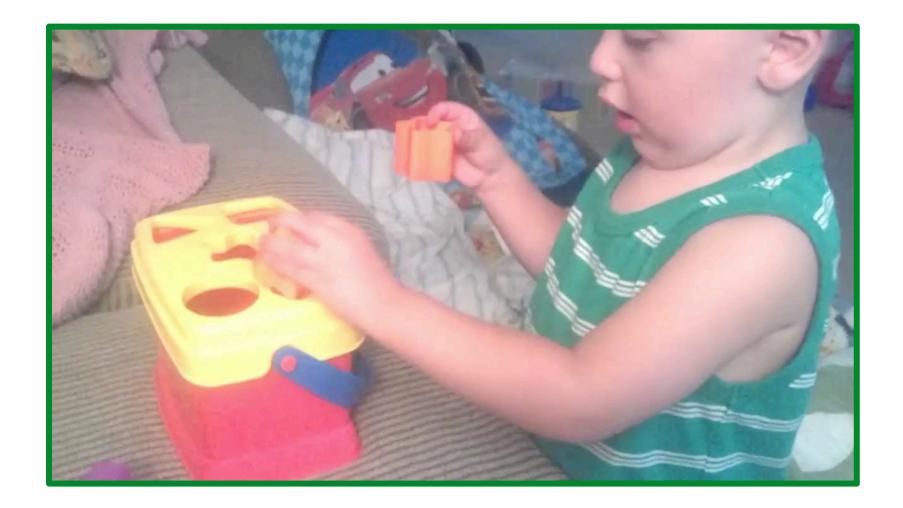
Learning as a lifelong process of active exploration and model building



Human-Like Learning: Harvesting Human Ingenuity

X Narrow-minded

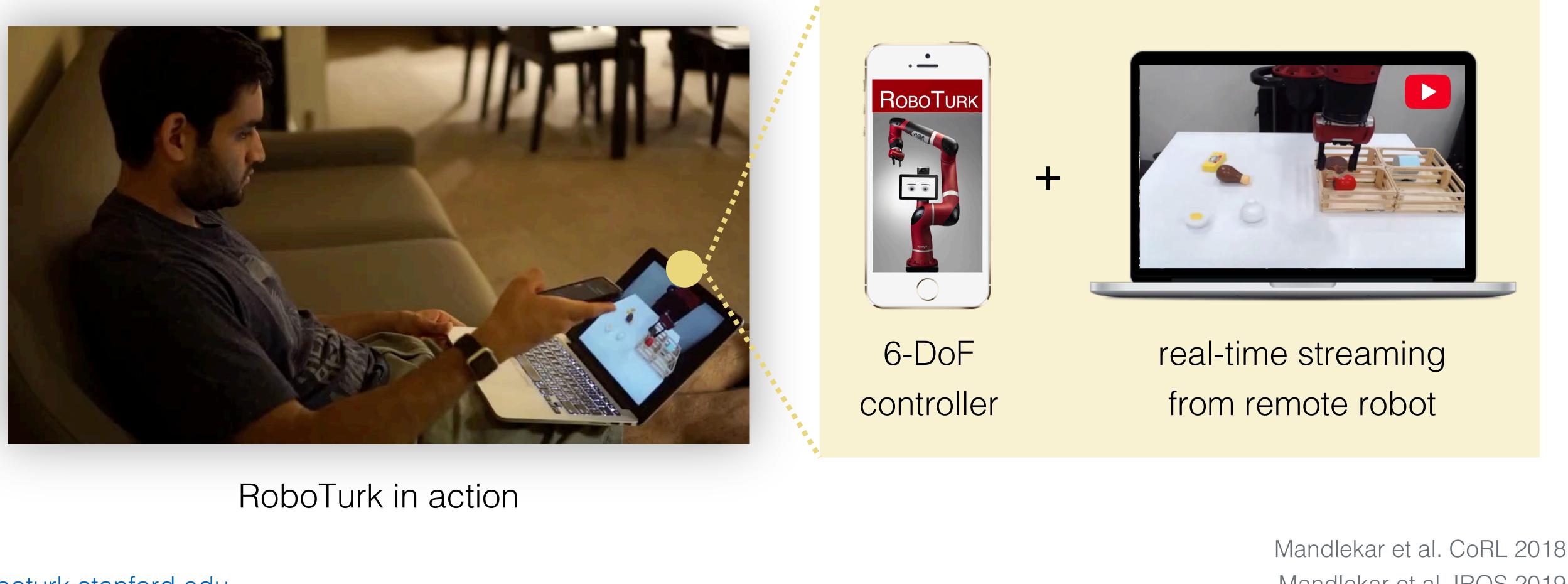
X Limited object manipulation



Rich object manipulation

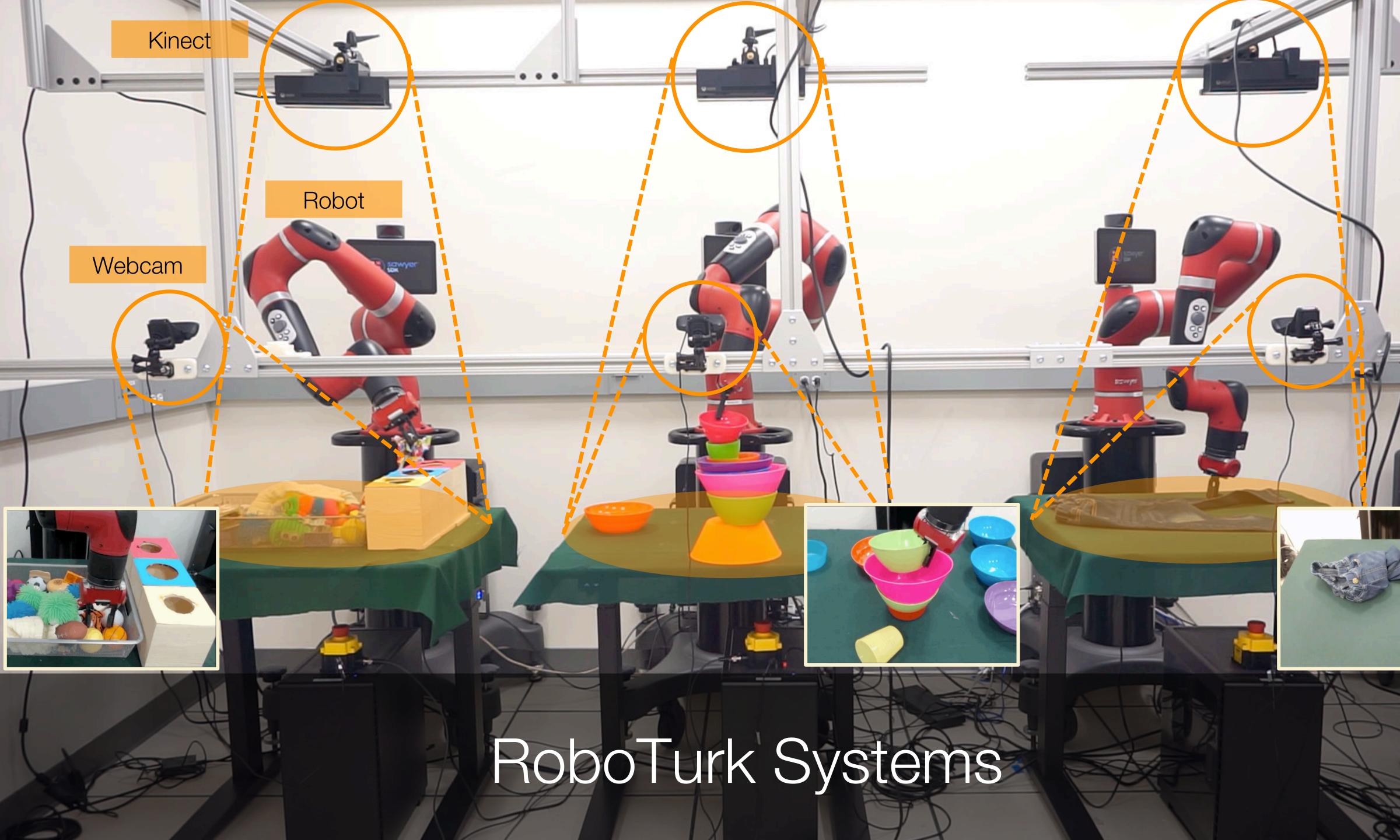
Human-Like Learning: Harvesting Human Ingenuity

RoboTurk: Crowdsourcing Platform for Large-Scale Teleoperation



roboturk.stanford.edu

Mandlekar et al. IROS 2019

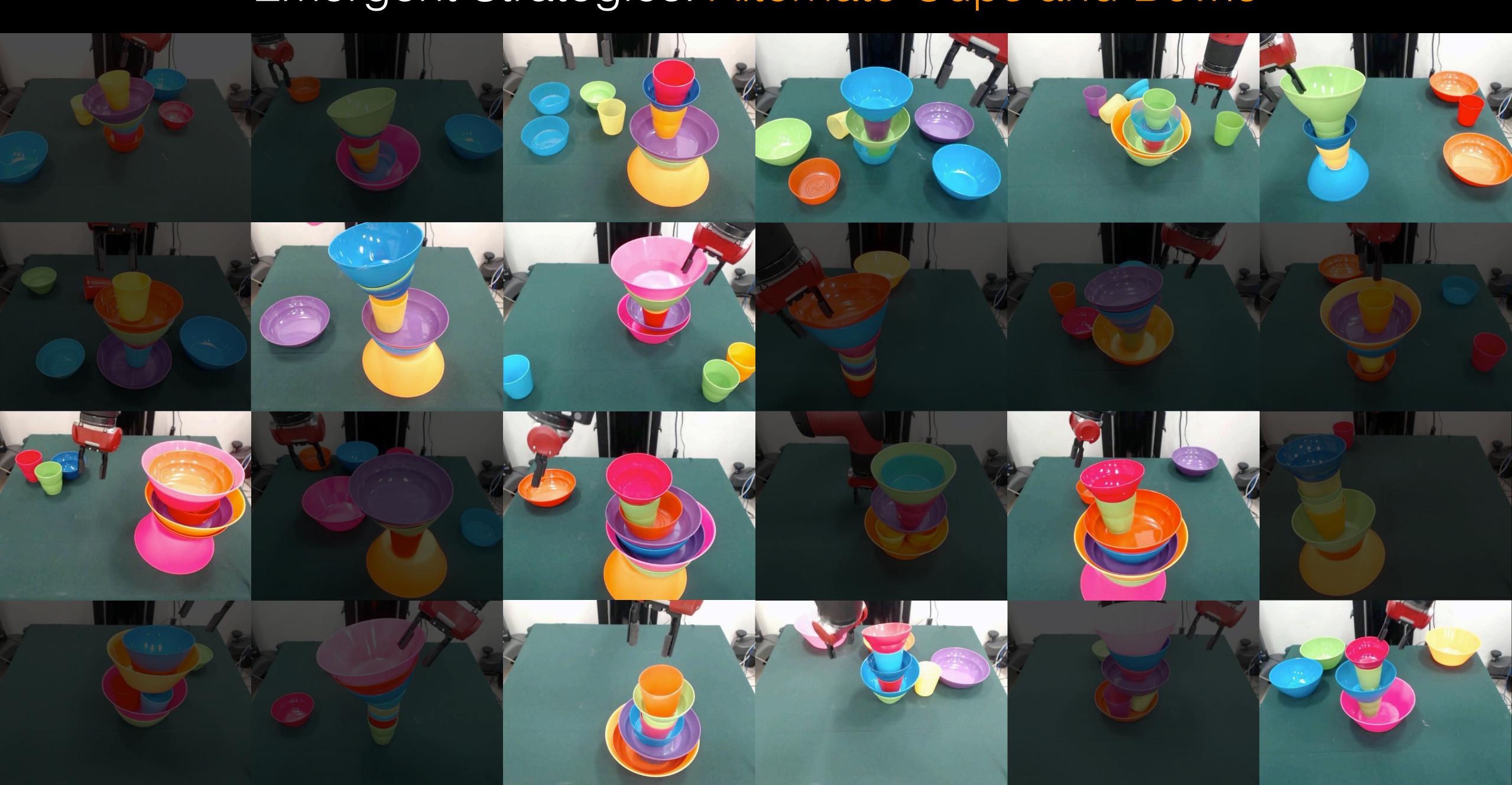


Human Ingenuity in Solution Strategies

Human Ingenuity in Solution Strategies



Emergent Strategies: Alternate Cups and Bowls



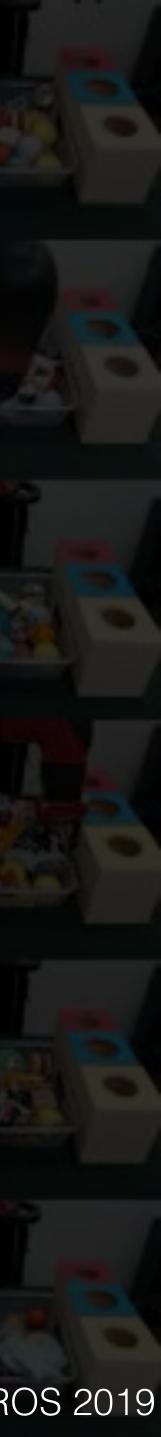
Emergent Strategies: Flip Bowl for Base

Emergent Strategies: 3 Cups for a Stable Platform

Real Robot Dataset

roboturk.stanford.edu/realrobotdataset

111 hours of robot demonstrations 1 week of data collection **3 dexterous** manipulation tasks 54 non-expert users **2144** demonstrations **10x** larger than prior work



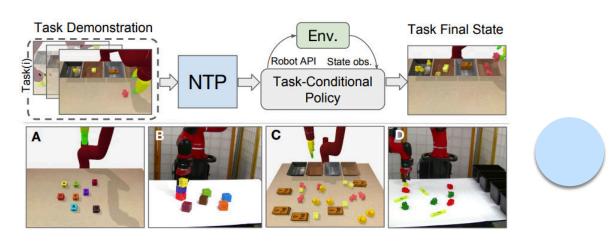
Human-Like Learning: Three Key Ingredients

A human-like learning agent will

Learning to Learn

Re-use prior knowledge to learn and adapt fast

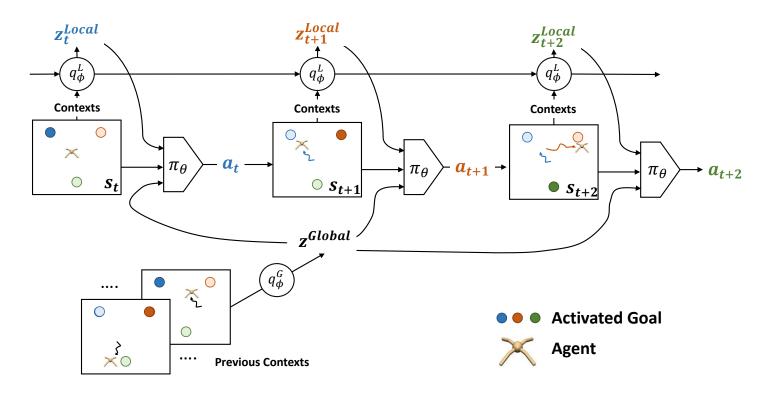
Causal Understanding



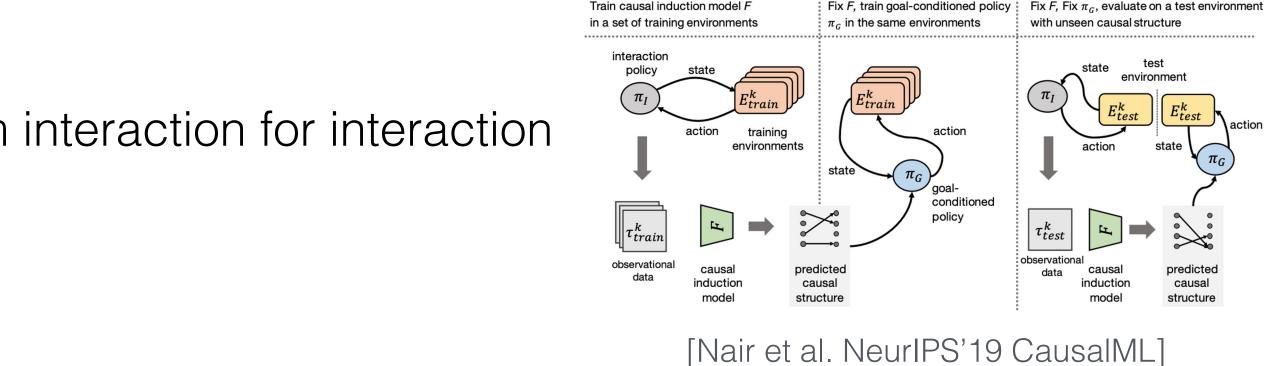
[Xu*, Nair*, et al. ICRA'18; Huang*, Nair*, Xu*, et al. CVPR'19]

Compositionality

Capture the compositional structure of semantics and tasks



[Ren et al. UAI'20 (to appear)]



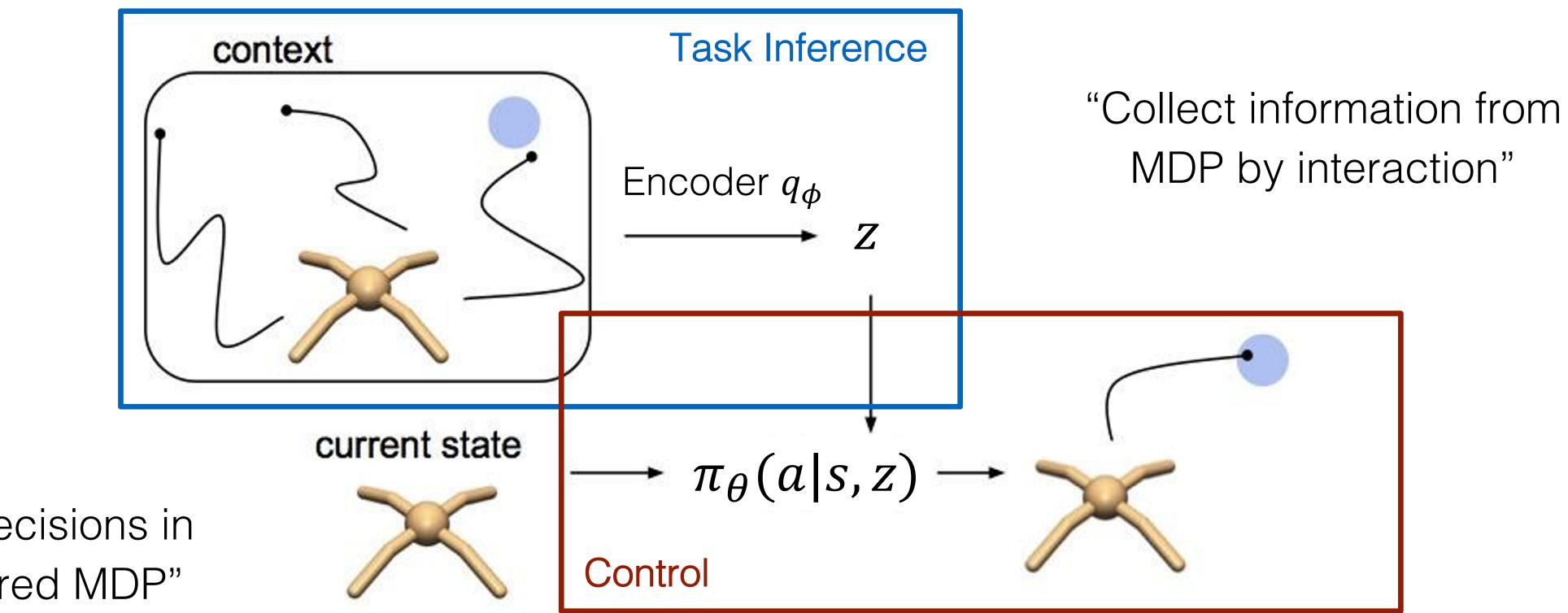
raining Step #1

Training Step #2

Testine

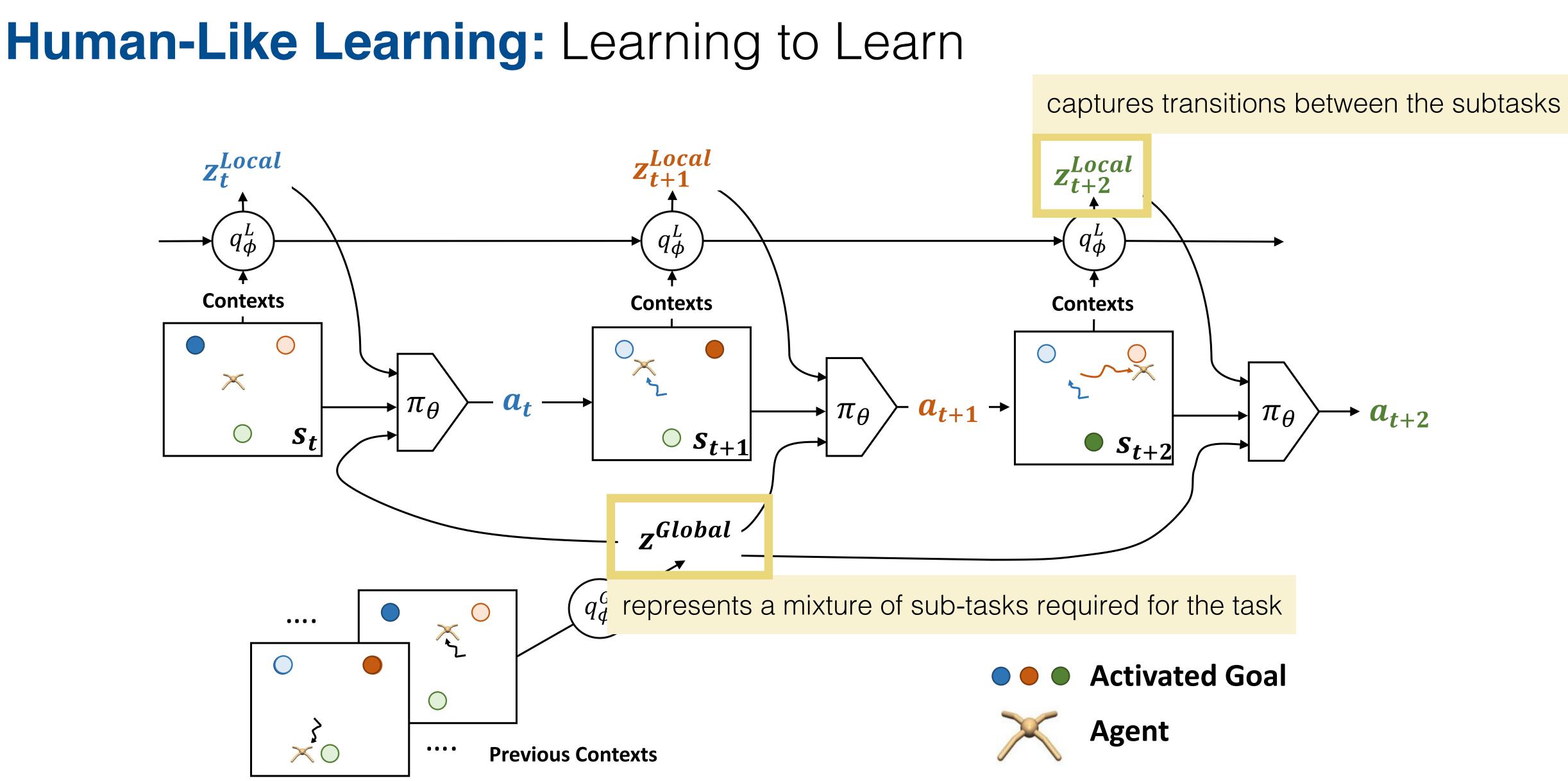
Human-Like Learning: Learning to Learn

Meta-reinforcement learning through online task inference



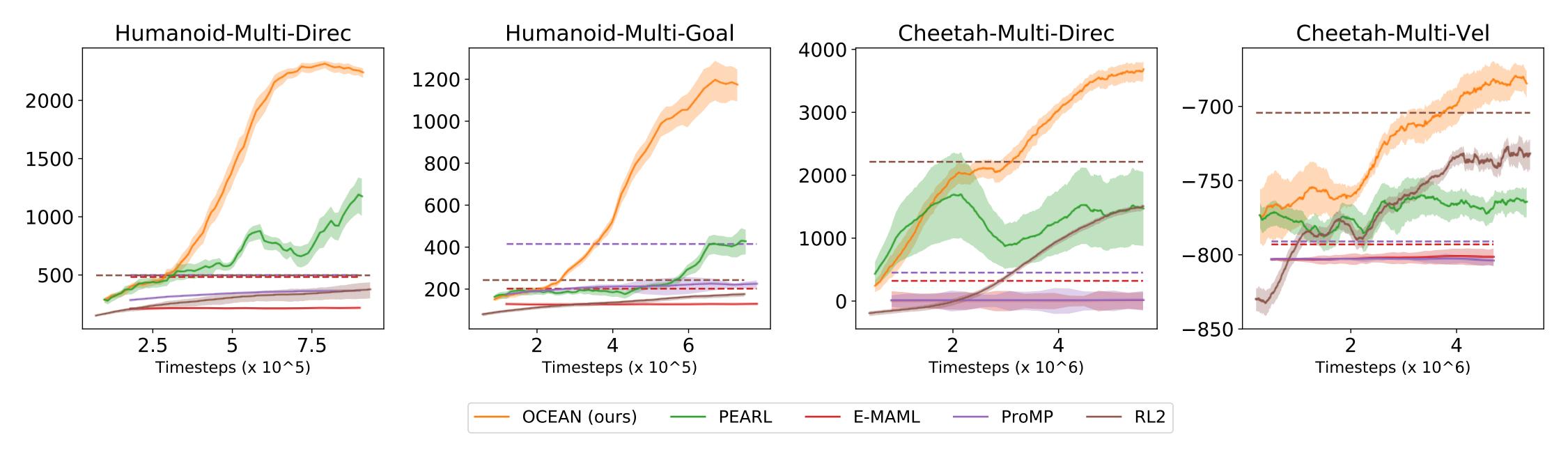
"Make decisions in the inferred MDP"

Ren et al. "OCEAN" UAI'20



Ren et al. "OCEAN" UAI'20

Human-Like Learning: Learning to Learn



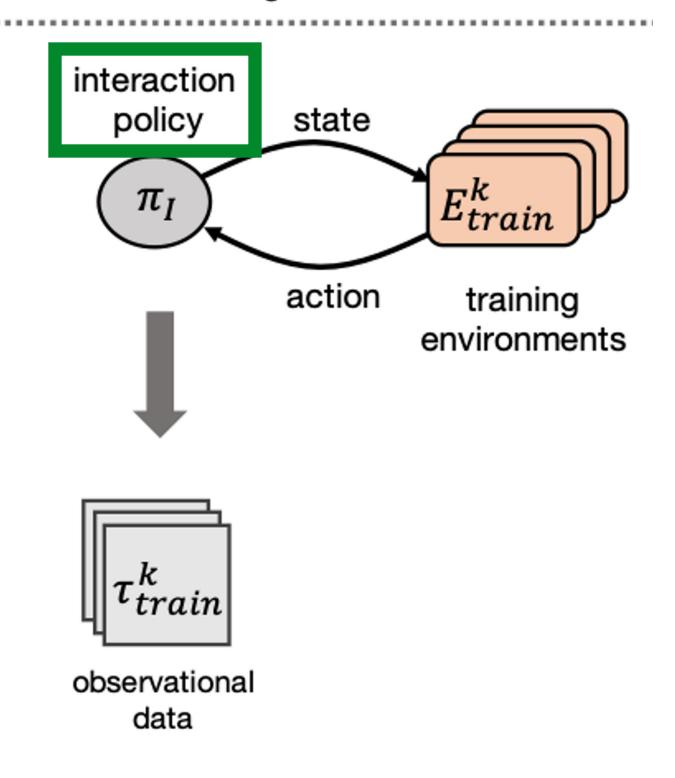
OCEAN is especially effective in **long-horizon tasks** that involve a sequence of primitive skills.

Ren et al. "OCEAN" UAI'20

Learning causal models from interaction for goal-directed tasks in visual environments

Training Step #1

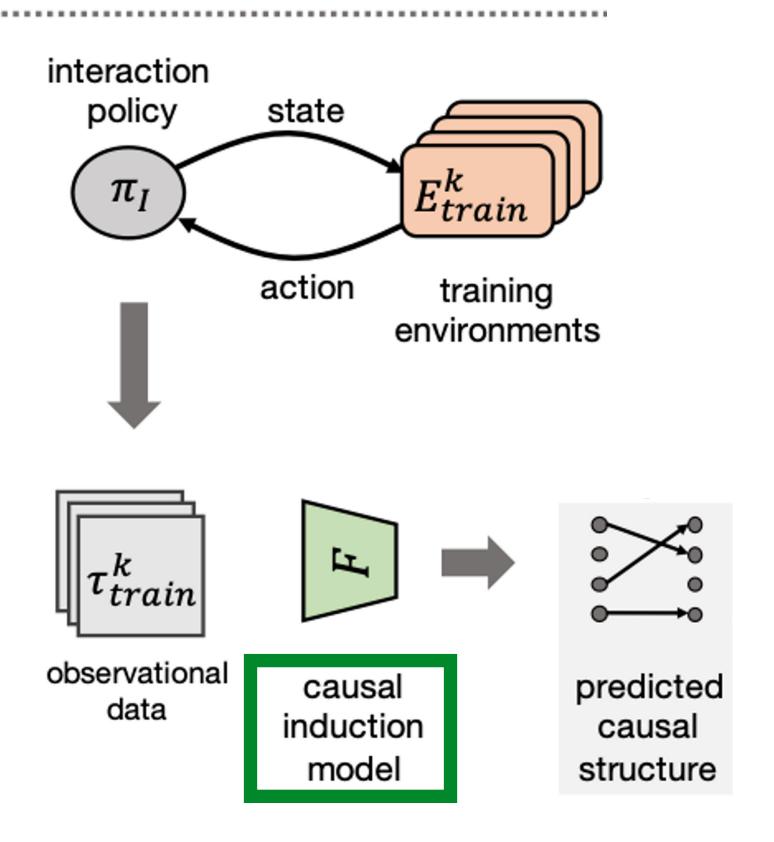
Train causal induction model *F* in a set of training environments



Interaction policy π_{l} collects observational data in environment

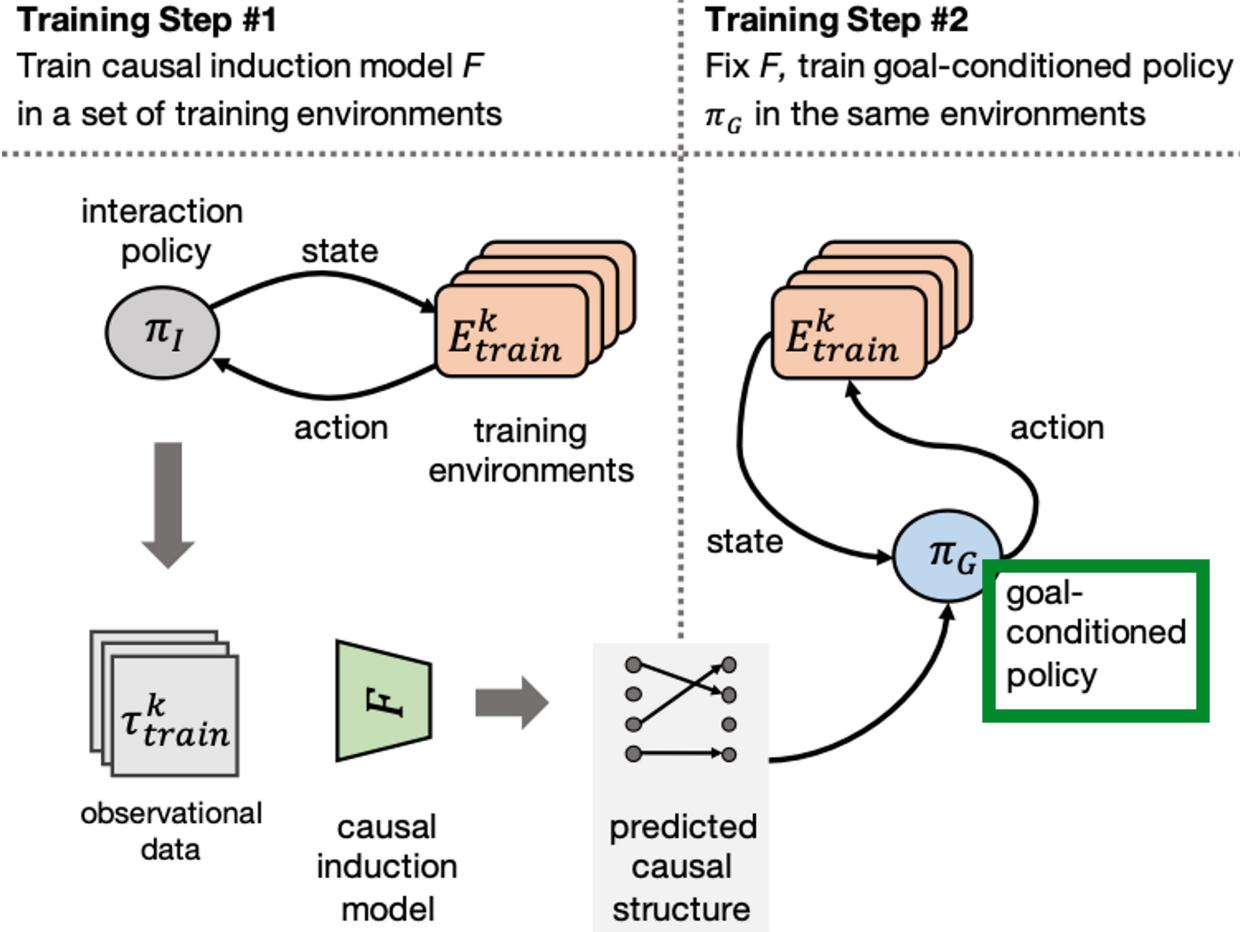
Learning causal models from interaction for goal-directed tasks in visual environments

Training Step #1 Train causal induction model *F* in a set of training environments



Causal induction model F predicts causal graph from observational data.

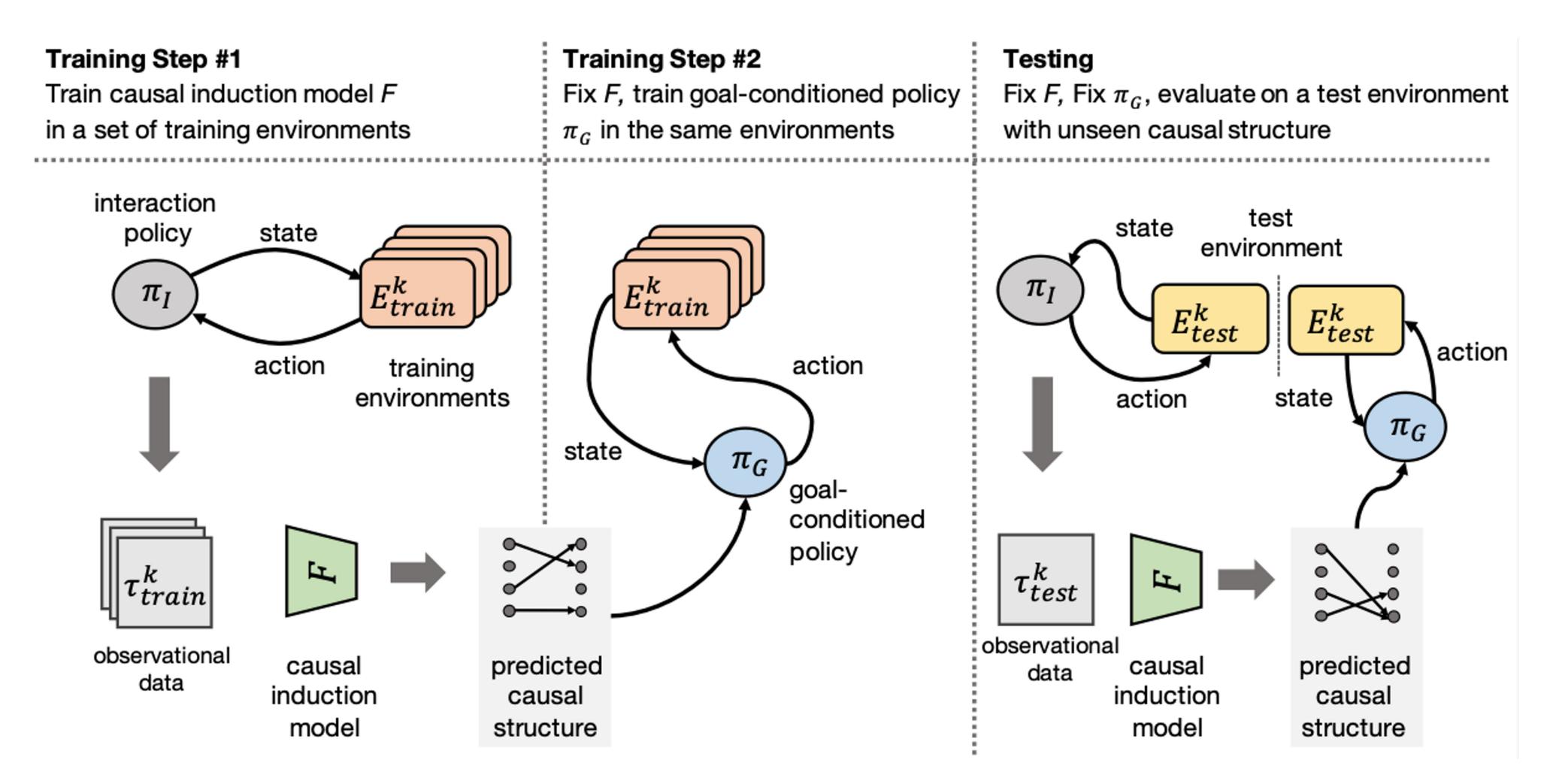
-



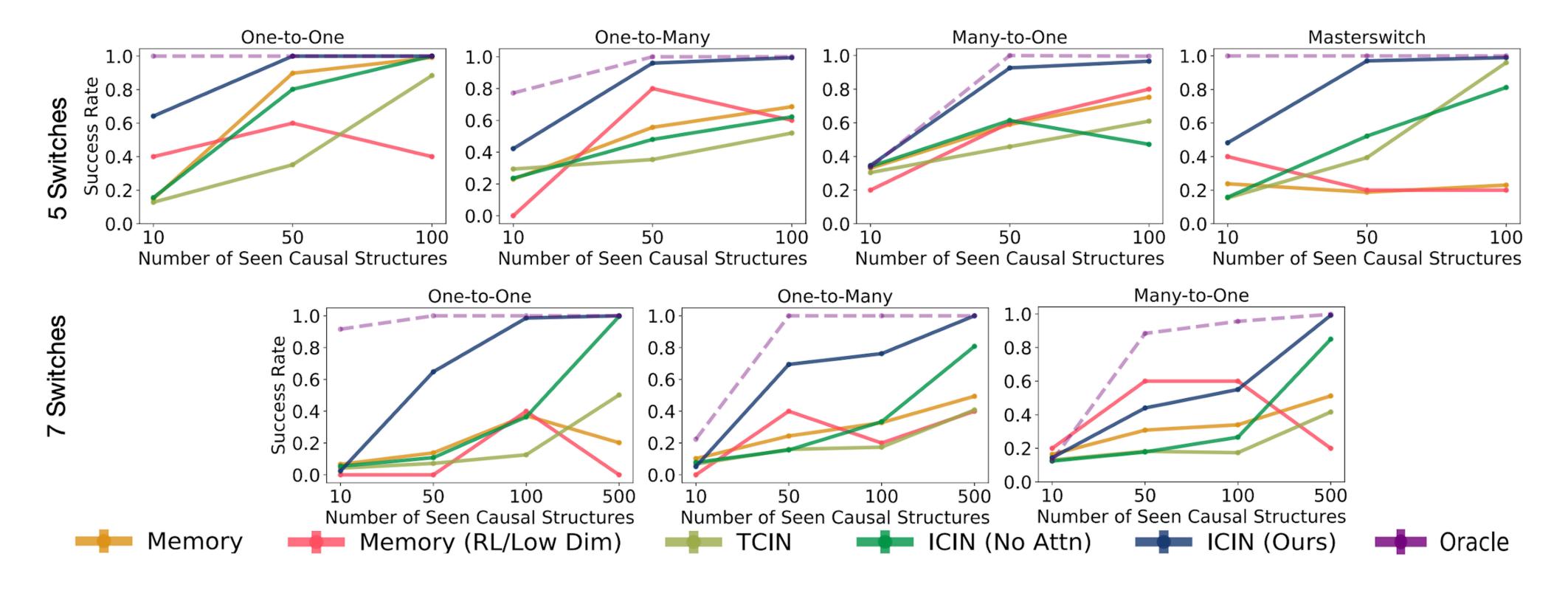
Learning causal models from interaction for goal-directed tasks in visual environments

Conditioned on causal graph, goal conditioned policy π_{G} tries to complete the tasks in environment.

Learning causal models from interaction for goal-directed tasks in visual environments



Learning causal models from interaction for goal-directed tasks in visual environments

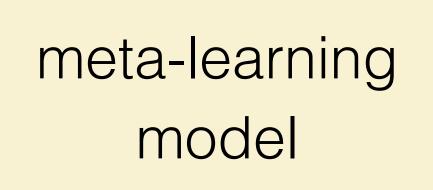


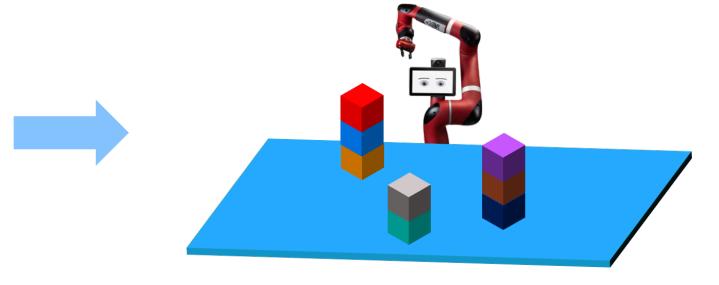
policy success rate in (unseen) light-switch environments

Human-Like Learning: Compositionality

Modeling complex tasks as compositional program structures

single video demonstration





policy for the demonstrated task

Xu*, Nair*, et al. ICRA'18; Huang*, Nair*, Xu*, et al. CVPR'19; Huang et al. IROS'19

Neural Task Programming (NTP): Hierarchical Policy Learning as Neural Program Induction

Move_to (Blue)

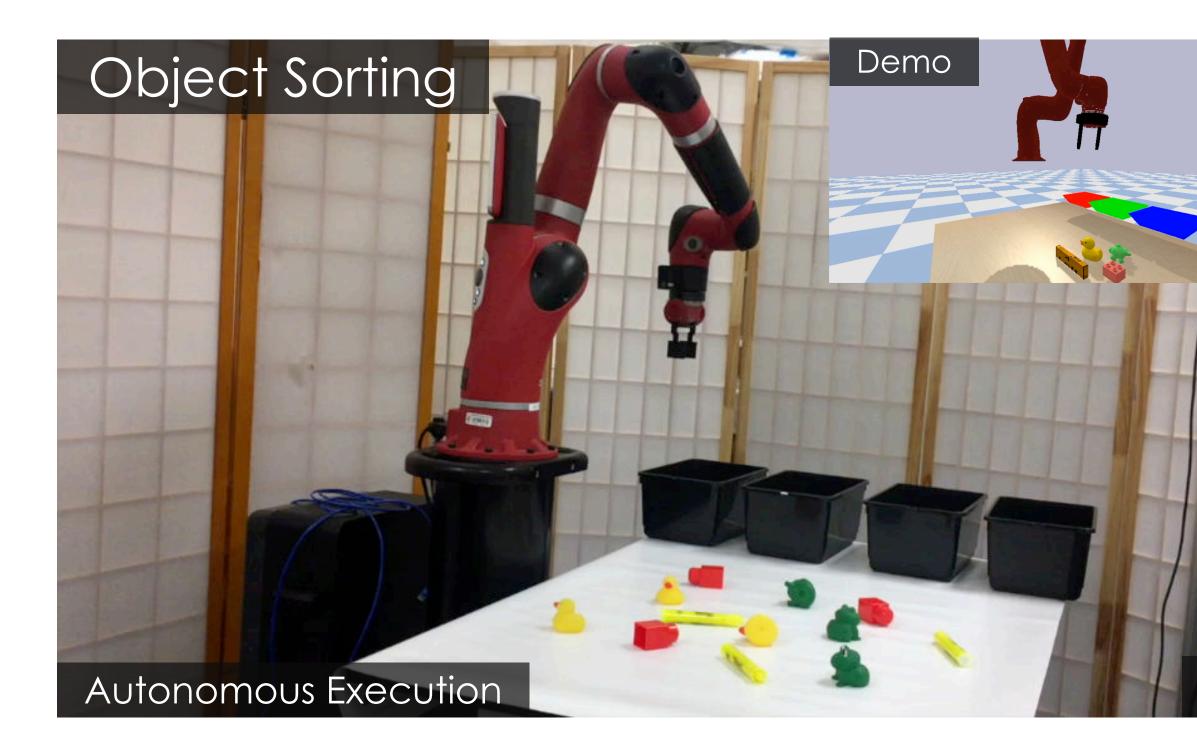


Grip (Blue)

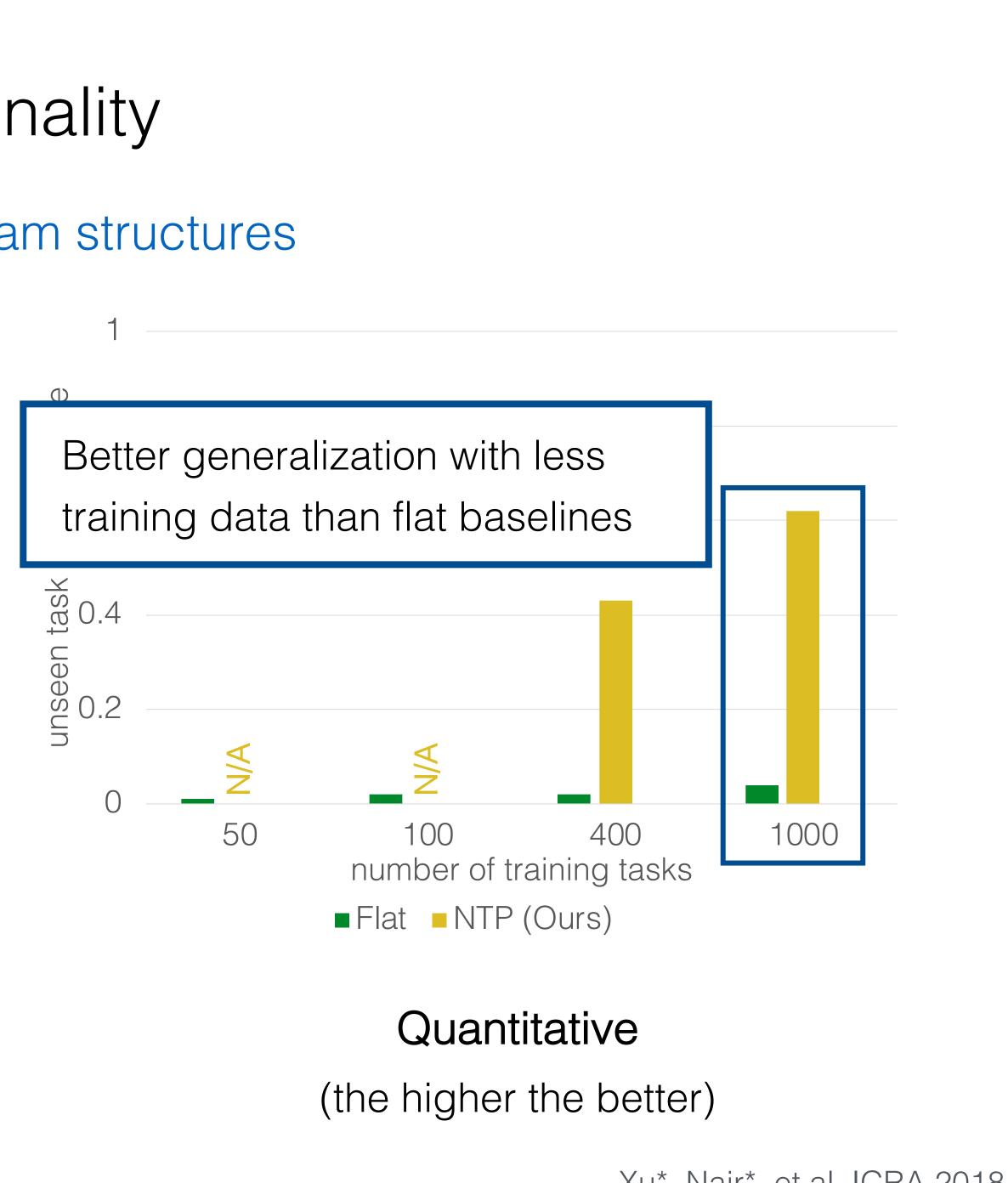
Move_to (Red)

Human-Like Learning: Compositionality

Modeling complex tasks as compositional program structures

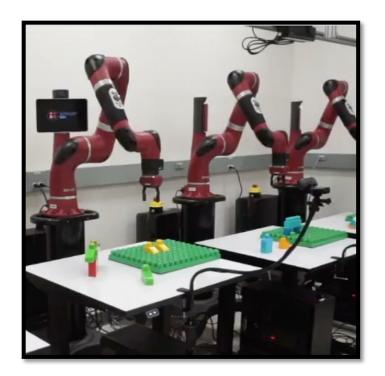


Qualitative



Xu*, Nair*, et al. ICRA 2018

Summary - Part III



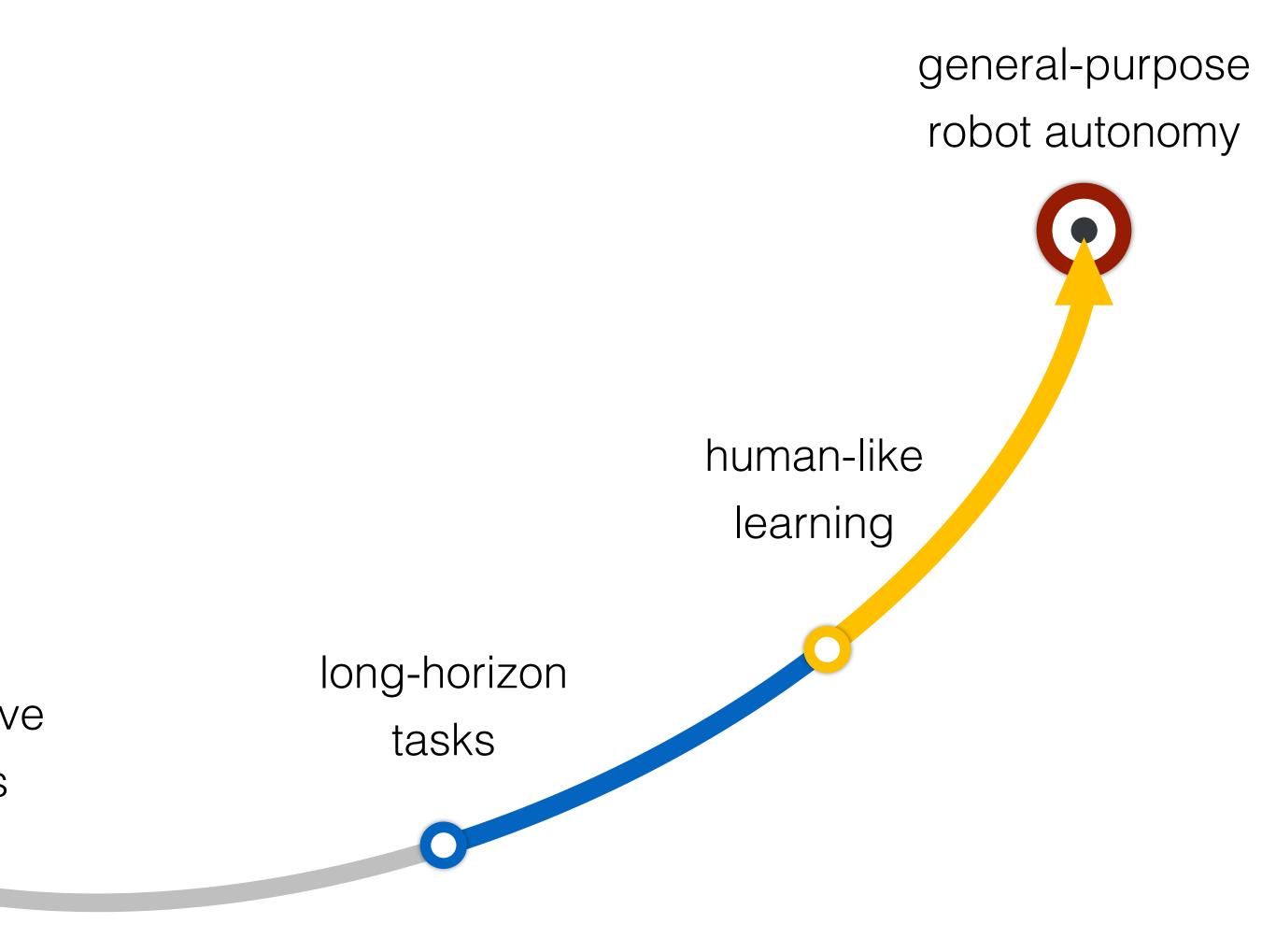
Learning from humans: Harvesting human ingenuity through teleoperated crowdsourcing with **RoboTurk**

Learning like a human: Building agents that **learn to learn**, reason about causal & effect, and exploit compositionality

Part I: Primitive Skills

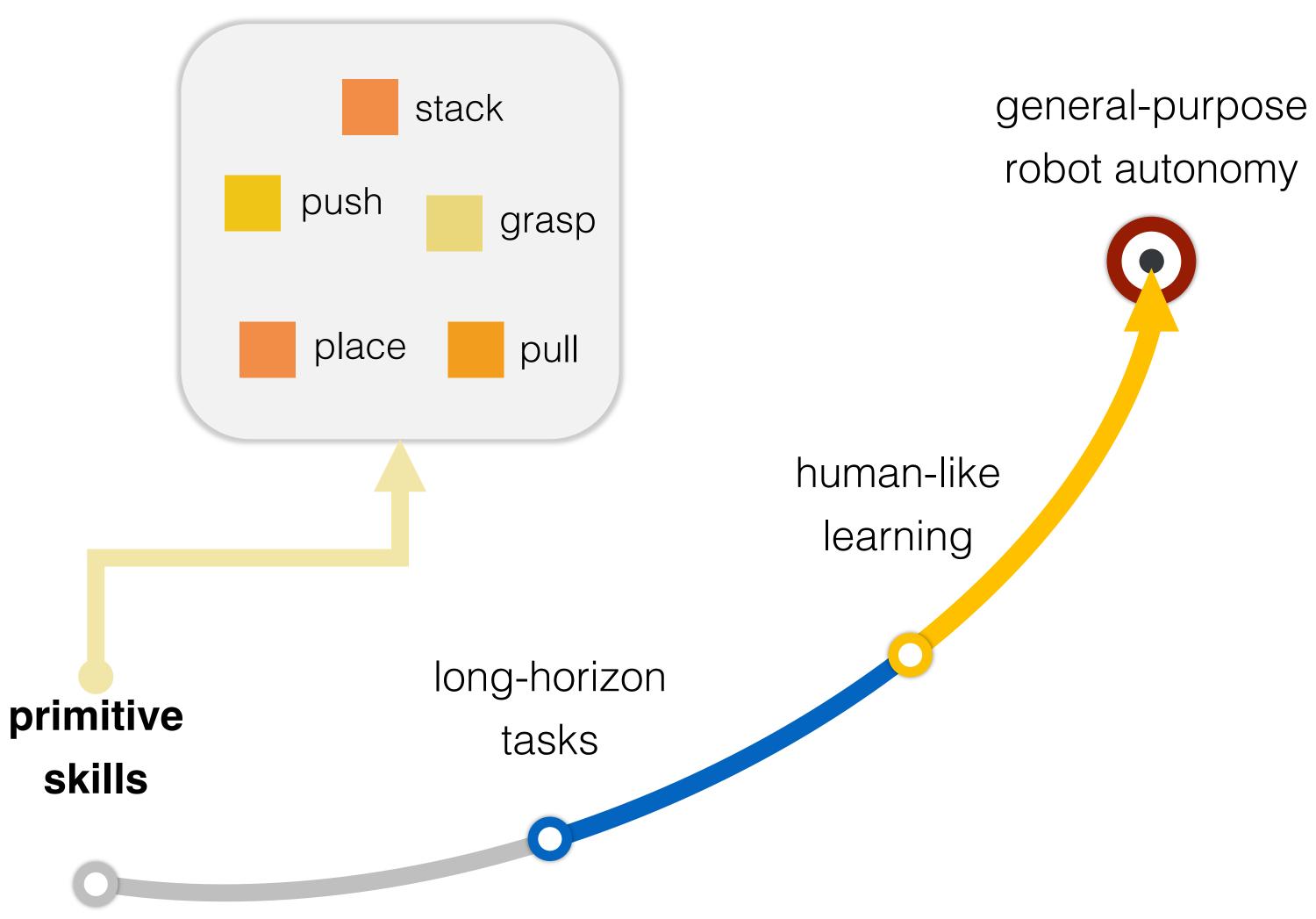
Part II: Long-Horizon Tasks

Part III: Human-like Learning



self-supervised learning of primitive

skills from raw sensory input



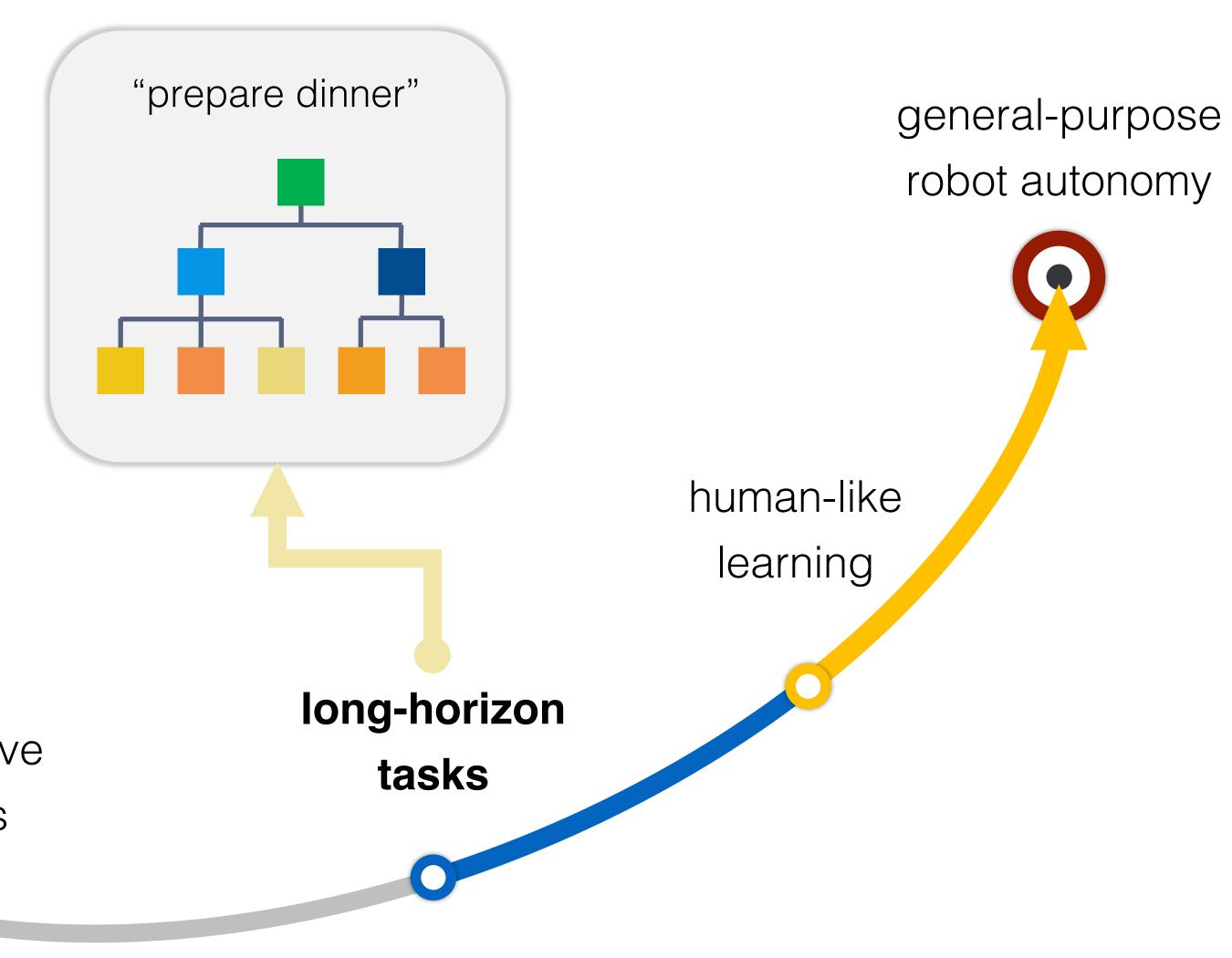


self-supervised learning of primitive

skills from raw sensory input

scaling to long-horizon tasks through

hierarchy and abstraction



self-supervised learning of primitive

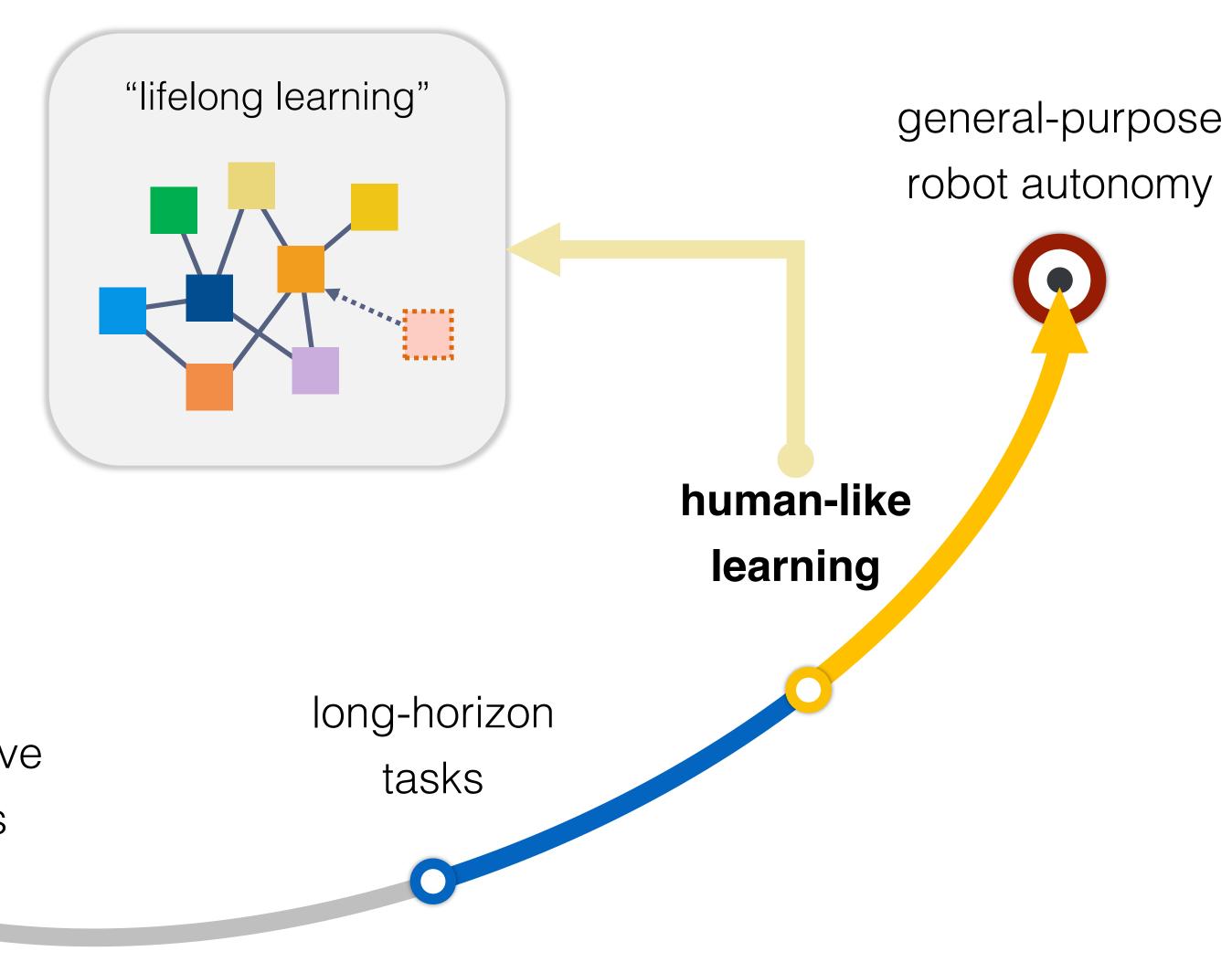
skills from raw sensory input

scaling to long-horizon tasks through

hierarchy and abstraction

human-like learning via active

exploration and model building



self-supervised learning of primitive

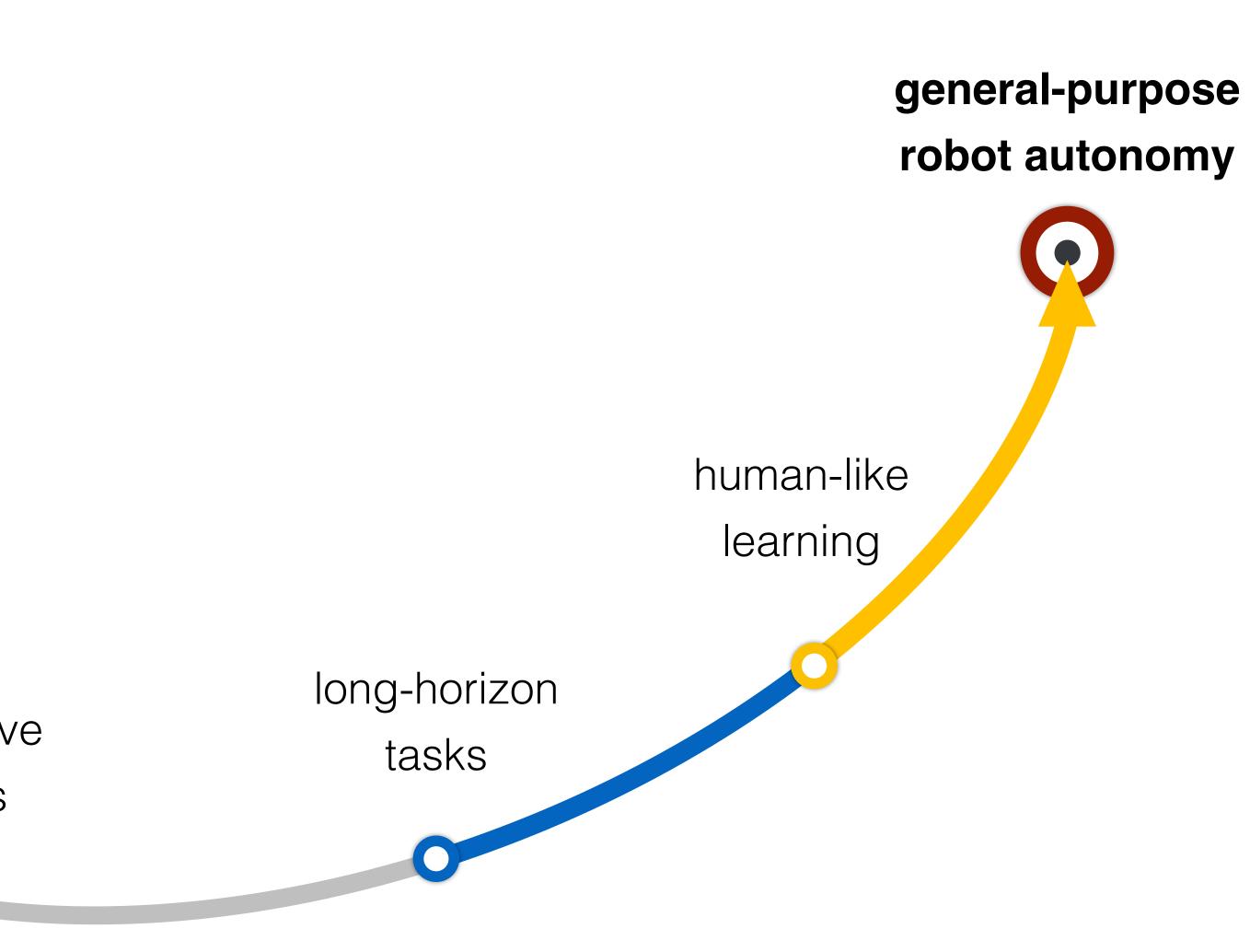
skills from raw sensory input

scaling to long-horizon tasks through

hierarchy and abstraction

human-like learning via active

exploration and model building



self-supervised learning of primitive

skills from raw sensory input

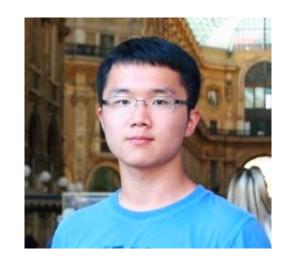
scaling to long-horizon tasks through

hierarchy and abstraction

human-like learning via active

exploration and model building

Roberto Martín-Martín



Acknowledgements

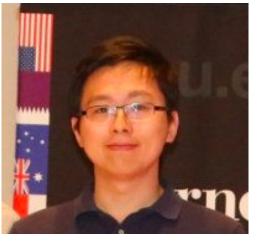
Fei-Fei Li

Silvio Savarese

Jeannette Bohg

Animesh Garg

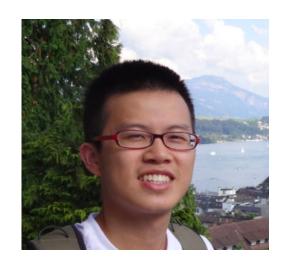
Anima Anandkumar



Danfei Xu

Michelle Lee

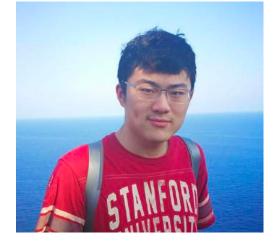
Ajay Mandlekar



De-An Huang

Kuan Fang*

Zengyi Qin



Hongyu Ren

Suraj Nair

self-supervised learning of primitive

skills from raw sensory input

scaling to long-horizon tasks through

hierarchy and abstraction

human-like learning via active

exploration and model building

primitive skills

Yuke Zhu

general-purpose robot autonomy

human-like learning

long-horizon

tasks



