Yuke Zhu RSS 2020

Generalization, Perceptual Grounding, and Abstraction

Imitation Learning in Robotics

Kinesthetic Teaching

"Dynamic Movement Primitives"

[Schaal et al. 2002; Pastor et al. 2009]

[Mandlekar et al. IROS'19; Mandlekar CoRL'18]

Learning to imitate, from video, without supervision

3rd-person observation

Teleoperation

"RoboTurk"

Imitation from Observation

"Time Contrastive Network" [Sermanet et al. ICRA 2018]

Why Imitation from Observation?

Imitation of Televised Models by Infants Andrew N. Meltzoff, Child Development 1988

Babies (14-24 months) can learn by imitating demonstrations from the TV screen.

Humans learn efficiently from visual demonstrations.

Meltzoff & Moore 1977; Meltzoff & Moore 1989, Meltzoff 1988

Why Imitation from Observation?

Humans learn efficiently from visual demonstrations.

10 🟴

THEVERGE TECH - SCIENCE - CULTURE - CARS - REVIEWS - LONGFORM VIDEO MORE - 🕇 🛩 🔊 🚨 🔍

TECH YOUTUBE CULTURE

Half of YouTube viewers use it to learn how to do things they've never done

Some of us are on there just to pass the time, though By Patricia Hernandez | @xpatriciah | Nov 7, 2018, 12:36pm EST

f 🍯 🗁 SHARE

how to

how to make slime how to tie a tie how to draw how to basic how to get boogie down dance how to cake it how to cake it how to train your dragon 3 how to get the galaxy skin in fortnite how to make slime without glue how to solve a rubik's cube

Report search predictions

A y 🗈 🔒

Many Turn to YouTube for Children's Content, News, How-To Lessons

An analysis of videos suggested by the site's recommendation engine finds that users are directed toward progressively longer and more popular content

BY AARON SMITH, SKYE TOOR AND PATRICK VAN KESSEL

(MaaHoo Studio/Getty Images)

Why Imitation from Observation? Towards large-scale imitation learning in the wild

- **Demonstrator flexibility**: Allow humans to perform the task using their own body.
- **High-DoF robots**: Get around the difficulty of controlling complex robot morphologies with high degrees of freedom.
- Massive video data sources: Internet videos of human doing tasks -- enabling "web-scale" imitation learning

video demonstration

robot execution

Today's Talk Visual imitation Learning from video demonstrations

Compositional Generalization

How can we generalize across task structures and task goals?

How to address perceptual uncertainty arising from visual imitation?

Perceptual Uncertainty

Long-horizon Tasks

How can we extrapolate to long-horizon tasks?

one-shot visual imitation learning as meta-learning

single video demonstration

policy for the demonstrated task

[Xu*, Nair*, et al. ICRA 2018; Huang*, Nair*, Xu*, et al. CVPR'2019; Huang et al. IROS'19]

training videos (seen tasks)

one-shot visual imitation learning as meta-learning

policy for the demonstrated task

[Xu*, Nair*, et al. ICRA 2018; Huang*, Nair*, Xu*, et al. CVPR'2019; Huang et al. IROS'19]

one-shot visual imitation learning as meta-learning

single test video (unseen task)

policy for the demonstrated task

[Xu*, Nair*, et al. ICRA 2018; Huang*, Nair*, Xu*, et al. CVPR'2019; Huang et al. IROS'19]

$\pi(a|x;D_1)$ One-Shotz In Digation Learning from Videos: Neural Task Graphs (NTG)

[Duan et al. 2017; Finn et al. 2017; Wang et al. 2017; Yu et al. 2018; Xu et al. 2018 "Neural Task Programming"]

video demonstration

Key idea: Opening the Black Box

Task Graph created by NASA for Mars Exploration

Capturing compositional structures

High degree of human interpretability

Questions

How to automatically construct these task graphs from video demonstrations?

How to use these task graphs as model priors in deep learning methods?

Task Graph

Qualitative

Quantitative (the higher the better)

Applying NTG to the real-world surgical video dataset JIGSAWS

video demonstration

"the black box"

infuse structural prior

"model with compositional inductive bias"

NTG is data-hungry and insufficient for "out-of-distribution" task generalization (extrapolation).

One-shot imitation with stronger task generalization

video demonstration

Classic symbolic planning (with additional domain knowledge) is capable of strong

generalization.

meta-policy

demo conditional policy

Blocks Word (define (**domain** hw5) **Domain File** (:requirements :strips) (:constants red green blue yellow) (:predicates (on ?x ?y) (on-table ?x) (block ?x) ... (clean ?x)) (:action pick-up :parameters (?obj1) :precondition (and (clear ?obj1) (on-table ?obj1) (arm-empty)) :effect (and (not (on-table ?obj1)) (not (clear ?obj1)) (not (arm-empty)) (holding ?obj1))) ... more actions ...)

 $\pi(a|x; D_2)$ One-shot imitation with stronger task generalization

 $\pi(a|x;D_1)$

 $\pi(a|x;D_1)$ $\pi(a|x;D_2)$

 $\pi(a|x;D_1)$ $\pi(a|x;D_2)$

 $\pi(a|x;D_1)$ $\pi(a|x;D_2)$

current observation

((On A B) (Clear A))

symbolic state

current observation

Symbol Grounding Networks

current observation

Symbol Grounding Networks

0.2	
0.9	
0.7	

Concept definition or learning

+ Markov Logic Networks

(clear (?block) :percepts ((block ?block)) :negatives ((on ?other?block)))

Clear(A)

On(A,B)

(:Init (On A B) (Clear B))

Clear(B)

MAP inference

discrete symbols

current observation

Symbol Grounding Networks

0.2	
0.9	
0.7	

8.0	(
0.9	(
8.0	(

current observation

Symbol Grounding Networks

0.2	
0.9	
0.7	

8.0	(
0.9	(
8.0	(

current observation

Symbol Grounding Networks

1. state representation

2. applicable actions

0.7	Clear(A)	((On A B) (Clear A))	$0.7 \times 0.9 \times (1 -$		
0.9	On(A,B)		$= 0.7 \times 0.9 \times 0.2$		
0.2	Clear(B)	((On A B) (Clear A)	$0.7 \times 0.9 \times 0.2$		
		(Clear B))			

3. action application

4. goals satisfaction

Huang et al. "Continuous Relaxation of Symbolic Planner", IROS 2019

0.2)

current observation

Stack(B,A)

(:Precondition (and (Clear B) (Holding A) ...))

1. state representation

2. applicable actions

 $0.6 \times 0.9 \times \dots$

4. goals satisfaction

1. state representation 2. applicable actions

3. action application

4. goals satisfaction

current state distribution

1. state representation

2. applicable actions

goal state distribution

On(B,A) Clear(B) Clear(A)

3. action application

4. goals satisfaction

) Key idea: Continuous Relaxation of Discrete Symbolic Reasoning $\pi(a|x; D_2)$

ノ) Key idea: Continuous Relaxation of Discrete Symbolic Reasoning $\pi(a|x; D_2)$

Block Stacking

Stronger generalization and alternative execution orders from limited training demonstrations

Object Sorting

Visual Imitation Learning integrating deep learning with symbolic reasoning

[Waldinger 1975; Korf 1987; Kaelbling ICRA'11]

classical symbolic planning

human-interpretable and long-horizon symbols and planning domain required

[Finn et al. ICRA'17; Oh et al. NIPS'15; Hafner et al. ICLR'20]

plan from observations

grounded on raw sensory data myopic sampling, short-horizon tasks

Visual Imitation Learning integrating deep learning with symbolic reasoning

[Waldinger 1975; Korf 1987; Kaelbling ICRA'11]

classical symbolic planning

No planning domain required

[Finn et al. ICRA'17; Oh et al. NIPS'15; Hafner et al. ICLR'20]

plan from observations

plan backward (regression planning) in a symbolic space conditioning on the visual observation Strong generalization to long-horizon tasks

"How to make a cake?"

high-level plan

low-level action

"How to make a cake?"

high-level plan

low-level action

Current Observation

...........

Cooked (Cabbage) On (Cabbage, Plate)

On(Pot, Stove) Next Subgoal

Is this subgoal reachable? NO!

Scene graph as **object-centric representations** for entities and relationships

Cooked (cabbage)
Sat: False	Rec: Fals

Subgoal serialization: determine the execution order of subgoals by predicting their dependencies

: depends on: precondition of

Cooked (cabbage)
Sat: False	Rec: Fals

Reachability: determines if the subgoal can be achieved by a low-level primitive skill

: depends on: precondition of

Learning

Trained on expert demonstrations {(observation o_t, action a_t, subgoal g_t)}

Tested on unseen task goals (does not require test-time demonstration)

Goal Multiplicity (DoorKey)

- Train: Open two doors
- **Test:** Open *D* > 2 doors

Plan Composition (RoomGoal)

- **Train:** 1. get key \rightarrow open door
 - 2. open door \rightarrow reach goal
- **Test:** get key \rightarrow open door \rightarrow reach goal

DoorKey			RoomGoal		
Train	Eval		Tra	ain	Eval
D=2	D=4	D=6	k-d	d-g	k-d-g
81.2	1.2	0.0	100.0	100.0	3.2
92.2	18.2	0.0	100.0	100.0	100.0
99.7	46.0	21.1	99.9	100.0	7.8
99.1	91.9	64.3	98.7	99.9	98.8

Model trained on 2 dishes with 3 ingredients

Qualitative

(cook 3 dishes with 4 ingredients)

near perfect generalization to longer tasks

Quantitative

(the higher the better)

Conclusions

Visual imitation Learning from video demonstrations

Compositional Generalization How can we generalize across diverse task structures and task goals? Using neural task graph as compositional inductive bias [CVPR'19]

Perceptual Uncertainty

How to address perceptual uncertainty arising from visual imitation? Continuous relaxation of symbolic planner for one-shot imitation [IROS'19]

Long-horizon Tasks How can we extrapolate to long-horizon tasks? Symbolic regression planning with deep learning [NeurIPS'19]

De-An Huang

Danfei Xu

Suraj Nair

Conclusions

Visual imitation Learning from video demonstrations

Compositional Generalization How can we generalize across diverse task structures and task goals? Using neural task graph as compositional inductive bias [CVPR'19]

Perceptual Uncertainty

How to address perceptual uncertainty arising from visual imitation? Continuous relaxation of symbolic planner for one-shot imitation [IROS'19]

Long-horizon Tasks How can we extrapolate to long-horizon tasks? Symbolic regression planning with deep learning [NeurIPS'19]

Open Challenges Towards web-scale visual imitation learning

Imitation learning meets activity understanding.

Extracting meaningful task knowledge from unconstrainted web video data.

Where are the symbols coming from?

Concept learning and symbol discovery from self-supervised active exploration.

The next generation of hybrid AI systems

Imitation learning algorithms that seamlessly integrate neurosymbolic hybrid methods.

video demonstration

robot execution

