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Abstract attacks and network worms, to unusual traffic events such

Anomaly detection is a first and important step neededs flash crowds, to vendor implementation bugs, to network
to respond to unexpected problems and to assure high pergnsconflguratlon_s. ‘We refer to the problem of inferring
formance and security in IP networks. We introduce adnomalies from indirect measurement@swork anomog-
framework and a powerful class of algorithms foet-  faphy(combining “anomalous” with “tomography,” a gen-
work anomographythe problem of inferring network-level €ral approach to such inference problems). _
anomalies from widely available data aggregates. The Network tomography [31] bears some resemblance, in
framework contains novel algorithms, as well as a recentljfhat both involve the solution of a linear inverse prob-
published approach based on Principal Component Analyl-em- Examples mc_luc_zle inference of individual link per-
sis (PCA). Moreover, owing to its clear separation of infer- formance characteristics from path performance character
ence and anomaly detection, the framework opens the dod#tics, and inference of traffic matrices from individualki
to the creation of whole families of new algorithms. We load measurements. For example, the traffic matrix estima-

introduce several such algorithms here, based on ARIMAon problem arises because the obvious source of data for
modeling, the Fourier transform, Wavelets, and Princi-direct measurement (flow-level data) can be hard to obtain
pal Component Analysis. We introduce a neynamic network_-wide [5, 14, 22, 23, 28, 31, 34, 35]. On the other
anomographyalgorithm, which effectively tracks routing hand, Simple Network Management Protocol (SNMP) data
and traffic change, so as to alert with high fidelity on intrin- ©n individual link loads is available almost ubiquitously.
sic changes in network-level traffic, yet not on internatrou Fortunately, the link loads and traffic matrices are simply
ing changes. An additional benefit of dynamic anomogralélated by a linear equation

phy is that it is robust to missing data, an important opera- b= Ax 1)
tional reality. To the best of our knowledge, this is the first

anomography algorithm that can handle routing change$he vectorb contains the link measurements, afds the

and missing data. To evaluate these algorithms, we usg@uting matrix (defined formally below). We wish to in-
several months of traffic data collected from the Abilenefer x, which contains the unknown traffic matrix elements
network and from a large Tier-1 ISP network. To comparewritten as a vector. Tomographic inference technigues seek
performance, we use the methodology put forward earlieto invert this relationship to finst.

for the Abilene data set. The findings are encouraging. The anomography problem is different and somewhat
Among the new algorithms introduced here, we see: highnore complex. First, note that anomaly detection is per-
accuracy in detection (few false negatives and few falsdormed on a series of measurements over a period of time,
positives), and high robustness (little performance degrarather than from a single snapshot. In addition to changes in
dation in the presence of measurement noise, missing dathe traffic, the solution must build in the ability to deal it
and routing changes). changes in routing. Second, note that the anomalies that
ducti we wish to infer may have dramatically different properties
1 Introduction from a traffic matrix, and so different methods than those
The first step in fixing a problem is knowing it exists. This used for network tomography may be called for. Indeed, we
is no less true in networking than anywhere else — we neefind that simple extensions to network tomography meth-
to know about a problem before we can repair it. Network-ods perform fair poorly here. Techniques that transform
ing vendors typically build alarms into network equipmentthe measurements prior to attempting to solve the inverse
to facilitate fast, accurate detection and diagnosis obpro problem are preferable.

lems. However, in practice, there are many problems for As a simple example, imagine trying to detect an anoma-
which explicit alarms are either absent (for new or uncom-ous traffic pattern caused by a flash crowd or DDoS attack
mon problems), or intrinsically hard to produce. In theseon a web site. This type of event will cause increases in
cases we must infer the problem from other data sourcesraffic flows headed towards a particular set of destinations
For instance, many types of network problems cause abnott may be hard to rapidly identify which of the tens of thou-
mal patterns to appear in the network traffic. Such trafficsands of ingress links on a large network might be primar-
anomaliesnay be caused by problems ranging from secu-ly responsible, as large surges at a network egress link may
rity threats such as Distributed Denial of Service (DDoS)arise from small surges on several ingress links. We must



infer the change in the pattern of traffic to the particular uation suggests that this algorithm can cope well with
site from the complete set of link data, considered together measurement noise, and degrade gracefully in the pres-
rather than as individual time series. This illustratesman i ence of missing or corrupted data.

portant feature of anomography — it extends anomaly de- . ) ] )
tection to network-level problems (automatically builgin ~ The paper is organized as follows. Section 2 summarizes

in correlation across the network) where link-level angmal Packground and related work. In Section 3 we describe our
detection might be inadequate or unreliable. framework, and the anomography algorithms examined in

Many approaches to anomography are possible. In piothiS paper, in the context of fixed routing. In Section 4
neering work, Lakhinat al. introduced a novel approach We extend the Box-Jenkins anomography to the case where
based on Principal Component Analysis (PCA) [19]. Ourfouting may change over time. In Section 5 we describe our
paper makes three major contributions to understandin§v@luation methodology, and Section 6 presents the results

and solving anomography problems: ection 7 provides final remarks.

1. We present a simple and powerful framework that2 Background
encompasses a Wide class of methods for netwc_)rlgll Networ k Tomography
anomography. We will see that the method of [19] is ) _
a member of this class. The framework clearly decoulNetwork tomography describes several problems: infer-
ples the inference and anomaly detection steps, and d¢9 link performance of a network from end-to-end mea-
immediately opens the door to the development of newgurements, or inferring Origin-Destination (OD) traffic-de
algorithms where one makes different choices for eacnands from link load measurements. These problems can
step. Accordingly, we introduce several such new a|_Iqe written as linear inverse problems_ Where_ one seeks to
gorithms here, based on ARIMA modeling, the Fourier find unknownsx from measurements given a linear rela-
transform, Wavelets, and Principal Component Analy-tionship (1), whered is the routing matrix. For a network
sis. Moreover, the framework is not restricted to theWith n links, andm OD flows, we define the routing matrix
analysis of link traffic data, and in particular also appliest® be then x m matrix A = [a;;] wherea;; indicates the

to the dual problem of inferring performance anomaliesfraction of traffic from flow; to appear on link.
from end-to-end performance measurements. SNMP provides link measurements of traffic volumes

. . . (bytes and packets), typically at 5 minute intervals (this

2. We mtr_odu_ce anew algorithm f@ynar_nlc anomogra- - qata js described in more detail in, for example [34]). We
phy, Wh'Ch identifies network Ie_vel traffic anomalle_s and gl assume data of this type is the input to our algorithms,
Work_s in the presence of routlng_changes. T_hat IS, dY2nd we wish to infer anomalous traffic matrix elements, but
hamic a.nomogr_aphy tracks routing a_nd traffic changg, e that anomography is not limited to this problem, and
B S|gnallng traffic an.omahes, but not internal net\{vork could equally be applied to inferring anomalous link per-
routing changes (which may dramatically change inter,mance from end-to-end measurements. An additional
nal traffic patterns but may leave the traffic matrix, de-gq,1ce of data used here comes from the routing protocols
scribing how traffic enters and exits the network, stable), s to puild the forwarding tables within each router. We
In IP“networks_, r(?’utlng changes occur as part of the_ NOMyse routing data (e.g., gathered from a route monitor as in
mgl seli-healing behawor of the n_etwork, and so iso- 27]) along with a route simulator (as in [10]) to predict the
Iat|n.g. these from_ traffic anomal|es IS advanta}geous: Altesults of these distributed computations, and deterrhime t
additional benefit of dynamic anomography is that it is network routing.

robust_to missin_g link load measurements, an ir_nportant The problem of inferring the OD traffic-matrix has been
operatlonal_ reality (see_z Section 4 for Why missing datamuch studied recenthye(g, [5, 14, 22, 23, 28, 31, 34, 35]).
may resultin changeg In the routing matrix). To the beSTThe problem’s key characteristic is that it is massively un-
O.f our knowledge, this |s_the first anomogra}ph_y algo'derconstrained: there will be approximatéfy? OD flows
rithm that can handle routing changes and missing datg, ' . <timate and onlp (V) link measurements. Hence to-

3. Using data sets collected from a large Tier-1 ISP andnography methods seek to introduce additional informa-
from Internet2’s Abilene network, we report on the re- tion, often in the form of some kind of traffic model (for in-
sults of an extensive and thorough evaluation of a sestance a Poisson modelin [31, 28], a Gaussian modelin [5],
of anomography methods. To understand the fidelityor a gravity modelin [34, 35]). Anomography problems are
of the methods and to compare different methods, welso highly underconstrained, but the models used to de-
apply the methodology introduced in [19]. Under this scribe traffic are inappropriate for anomalies — by defini-
methodology, we find that in general the neamporal tion these events are generated by completely different pro
anomographymethods introduced here exhibit consis- cesses from normal network traffic. Moreover, in anomog-
tently high fidelity. In particular, we find that the most raphy we combine detection with inference, whereas in
successful method (of those examined) is a variation ostandard network tomography we seek only to infer a set
dynamic anomography, combining Box-Jenkins model-of traffic matrix elements. Hence there are important dif-
ing (ARIMA) with ¢ norm minimization. Further eval- ferences between this paper and network tomography.



It is also important to note that routing matrices changetiveness of the methods in the presence of noise, always a
over time. In much previous work, routing matrices arefactor in practice.
taken to be constant (an exception being [23], where th
traffic is assumed to bé somewﬁat consta?wt[, WLiIe the roug)’ Network Anomography
ing varies), but it is important (see [29]) to allow for the In this sectionwe shall assume that the routing matrices
fact that routing is not constant, and neither is the traffic.4; are time-invariant and are denoted by. (We will ex-

In order to allow for variable routing, we index not just the tend our work to time-varyingl; in Section 4.) Under this
traffic measurements over time, but also the routing matrixassumption, we can combine alinear systems (2) into a
Given these, we may write the relationship between the linksingle equation using matrix notation:
traffic, and OD traffic matrix as
B=AX, 3)
bj = Aij, (2)

whereB = [b; by - - - b;] is the matrix formed by having
whereA; is ann xm routing matrix x; is a lengthr vector b; as its column vectors, and similarly = [x; x2 - - - x¢].
of unknown OD flow traffic volumes, arld; is a lengthm
vector of link loads, at time interval;. 3.1 A General Anomography Framework
22 Rdated Work We identify two bas_ic solution _;trategies to network

anomography: (igarly inverseand (ii)late inverse Early-
Lakhinaet al. carried out the pioneering work in the area inverse approaches may appear more intuitive. The ear|y-
of inference of anomalies at network level, [19, 18, 20],inverse approach tackles the problem in two steps. The
and adapted Principal Components Analysis (PCA) to thisirst is thenetwork tomographgtep, where OD flow data
setting. Donoho [8, 9] introduced a powerful mathemati-at each intervalj are inferred from the link load mea-
cal treatment for tomography-like problems, wherein onesyrements by solving the ill-posed linear inverse problem
seeks solutions that maximize sparsity (intuitively, solu (2). Given the estimated OD flow datg at different time
tions with fewest explanations). These papers inspired ousointsj, in the second stepnomaly detectiosan then be
development of the new methods introduced here, and Olapp“ed to the(j_ For this step, there are many W|de|y used
development of a framework in which a very wide class ofspatial and temporal analysis techniques, which we will de-
methods all fit. scribe later in this section.

Anomaly detection is a burgeoning field. A great deal Early-inverse methods, although conceptually simple,
of research in network anomaly detection relies on som@ave an obvious drawback — errors in the first step, which
type of inference step, taking a set of alarms [13, 15, 16are unavoidable due to the ill-posed nature of the infer-
25, 30] as input. While anomography includes methodsence problem, can contaminate the second step, sabotaging
of this type, our results indicate that it is better to delayoyerall performance. Another disadvantage is that early-
alarm generation until after the inference Step. In that,Wayinverse methods app|y a potentia”y Computationa”y ex-
a single constructive alarm may be generated, rather thaensive anomaly detection step to high-dimensional data:
a storm of redundant alarms. Moreover, in delaying thegn a network of NV nodes, one must perform this step on
alarm generation until after the inference step, we can iy N2 OD pairs. As we will see, late-inverse performs
some cases greatly improve the sensitivity of detection, agnomaly detection on onl (V) dimensional data. We fo-
was demonstrated in [19]. cus on late-inverse methods in this paper for these reasons,

We approach the network anomaly detection problemhough we shall provide some comparisons between early-
from the point of detecting unknown anomalous behaviorgnd |ate-inverse methods.
rather than looking for particular signatures in the ddta,t  The idea of the late-inverse method is to defer “lossy”
focus of much work in the security community. A large jnference to the last step. Specifically, late inverse ap-
component of the work on machine learning, signal pro-proaches extract the anomalous traffic from the link load

cessing and time-series analysis is devoted to detecting OUppservation, then form and solve a new set of inference
liers or anomalies in time-series. This literature has beeproplems:

applied to networks in a number of cases; for examples B=AX, ()
see [1, 4, 15, 17, 30, 32]. These methods range in sophis- ~ L ~
tication from [4], which suggests the use of the standardvhereB = [by b, - - - b;| is the matrix of anomalous traffic
Holt-Winters forecasting technique for network anomalyin the observables, antl = [%; X2 - - - %] is the matrix of
detection, to [1], which uses a sophisticated wavelet base®D flow anomalies to be diagnosed, oveime intervals.
method with great potential. These methods focus on sin- While the new inference problems (4) share the same
gle time series rather than the multi-dimensional timesseri linear-inverse structure as in network tomography (3), the
that arise in anomography. characteristics of the unknowns are very different, andso i
Most earlier work ignores noise or provides weak tests othe solution strategy, which we will explore in Section 3.4.
robustness to noise (which can destroy utility). A strength We now introduce a simple framework for late-inverse
of the work presented here is that we provide tests of effecanomography methods. In this framewokkjs formed by



multiplying B with a transformation matrif’. Depending on each principal axis in order. As soon as a projection
on whether we use a left or right multiplying transforma-  is found that contains ac3deviation from the mean,
tion matrix, we can further divide the framework into the  that principal axis and all subsequent axes are assigned

following two classes: to the anomalous subspace. All previous principal axis
e spatial anomographywhere a left multiplying transfor- are assigned to the normal iubspace. .
mation matrixI is used to formB, i.e, B = T'B; We useP, = [v; Vy41...vip]" to denote the matrix of

« temporal anomographywhere a right multiplyin the principal axes in the anomalous subspace, where
P . graphy ght Multiplying is the first axis that fails to pass the threshold test.
transformation matrix’ is used to formB, i.e, B =

BT. 3. The anomalous traffic can now by extracted from link
load observation by first projecting the data into the
anomalous subspace and then transforming it back, by
taking B = (P P,)B, and so we obtain the transfor-

_ mation matrixl’ = PTP,.

3.2 Spatial Anomography We call the above methospatial PCAbecause it ex-

Data elements in high dimensional data sets, such as tHdoits the correlation between traffic on different links
link load observations, usually have dependencies. The if&cross space). Later in Section 3.3.4, we will describe
trinsic dependency structure among the data elements cd@mporal PCAwhich exploits temporal correlation by ap-
thus be exploited for filtering anomalous behavior by dis-Plying PCA to identify dominant patterns across time.
covering data points that violate the normal dep_endencg_?) Temporal Anomography

structure. In our context, the process of detecting such , .

data points can be performed by left-multiplication by a Tne anomalous link traffic can also be separated by per-
transformation matris@® such thatB = TB. An exam- forming temporal analysis on the time series for each link.
ple of such an approach is a recent study by Lakein. Consider a set of link traffic data_over time _B =
[19], where Principal Component Analysis (PCA) is used[P1 bz2...bs]. The process of extracting anomalies by ex-

in finding dominant patterns. We describe this method, and!oiting the temporal structure within the data points can
in particular its instantiation as a left-multiplicatiopera- 2& modeled as a linear transformation of the time series:
tion in the following section. B = [b; by...b;] = BT, where the transformation ma-

i trix T' can be either explicit or implicit. In this paper,
321 Spatial PCA we consider four types of temporal analysis: ARIMA,
In [19], Lakhinaet al. proposed a subspace analysis of link Fourier, Wavelet, and PCA (for identifying dominant pat-
traffic for anomaly detection, which can be summarized agerns across time). Although it may not be obvious at first

follows. glance, all these methods indeed fit in our framework of
1. Identify a coordinate transformation 8fsuch that the linear matrix transformation, as we will see next.
link traffic data under the new coordinate systems haves31 ARIMA Modeling
the greatest degree of variance along the first axis, the . _ .
second greatest degree of variance along the secorldnivariate time series. The Box-Jenkins methodology,
axis, and so forth. These axes are called the principa®" AutoRegressive Integrated Moving Average (ARIMA)
axes or principal components. modeling technique [2, 3], is a class of linear time-series
Recall thatB = [b; b, - - - by] is the collection of link ~ forecasting techniques that capture the linear dependency

traffic data atm links overt time intervals, where each Of the future values on the past. It is able to model a wide
rowi (1 < i < m) denotes the time series of thhe ~ spectrum of time-series behavior, and has been extensively

th link and each columpi (1 < j < t) represents an used for anomaly detection in univariate time-series.

Our framework encompasses a number of analysis tech-
niques for extracting anomalous traffi¢ from link load
observations3, as we next illustrate.

instance of all the link loads at time interval The An ARIMA model includes three order parameters: the
principal componentsyy, va, ..., v,, can be computed autoregressive parametq_f),( the number of differencing
iteratively as follows: passes d), and the moving average paramete). ( In

the notation introduced by Box and Jenkins, models are
T = T summarized as ARIMAp,d,q). A model described as
B” - ZB Vivi |V ARIMA (0, 1,2) means that it contains = 0 (zero) au-
=1 toregressive parameters ape- 2 moving-average param-
The coordinate transformation matrix can thus be ob-eters which were computed for the time series after it was
tained by arranging the principal components as rowslifferenced onced = 1).
of a matrixP = [vy va...v,,]T. A general ARIMA model of ordefp, d, q) can be ex-

2. Divide the link traffic space into theormal subspace Pressed as:
and theanomalous subspackakhinaet al.[19] devel- » q
oped a threshold-based separation method by examin- 2 — Z Gi - Zhi = € — Z 0; - ex—i, (5)
ing the projection of the time series of link traffic data =1 =

V) = argmax
Ivi=1



wherez;, is obtained by differencing the original time series matrix B with the measurements at each time peligds
d times (whend > 1) or by subtracting the mean from the its columns. Via the above transformations, we obtain

original time series (whed = 0), ey, is the forecast error -1

attimek, ¢; (i = 1,...,p) andé; (j = 1, ..., ¢) are the au- P ) a ,

toregression and moving-average coefficients, respégtive £ =2 <I - Z @Vl) I— Z 0;v’ -
Many commonly used smoothing models are special in- i=1 j=1

stances of ARIMA models. For example, the Exponen- ) )
tially Weighted Moving Average (EWMA), is equivalentto ARIMA based anomography. ReplacingZ by the matrix
ARIMA (0, 1, 1); linear exponential smoothing, also known form of (6), we see thatl = BT is indeed a transforma-
as Holt-Winters, is equivalent to ARIM@, 2,2). See [26]  ton given by right-multiplyingB3 with & matrixT". In fact,

for detailed equations for various smoothing models andnY linear filtration of the elements of a time series can be
their equivalence with ARIMA models. modeled by a right multiplying matrix transformation.

There are well known techniques for estimating the pa- 10 9étback to anomaly detection, we simply identify the
rametersp, d, g, ¢; and g, for a given time series [2, 3], fore_cast errors as anomalous link traffi¢,= E. That is,
and given the parameters, the model is simply applied térafﬂc b_ehaV|0r that cannot be well captured by the model
get 2, a prediction ofz;, (using for instance the Durbin- 1S considered anomalous.

Levinson algorithm [3]). The prediction errors are then3.3.2 Fourier Analysis

€k+1 = Zk+1 — Zk+1, Which then form our anomalous traf-
fic (the traffic which does not fit the model). In practice the
parameters used in the ARIMA model are sometimes cho

Fourier analysis [21] is the process of decomposing a com-
plex periodic waveform into a set of sinusoids with differ-

¢ ¢ particul Is intended by the impl i ent amplitudes, frequencies and phases. The sum of these
Sen 1o meet particular goals intended by the ImpIementog, < ,;qs can exactly match the original waveform. This

(sge [4] fpr some discussion of these choices), rather thalI%ssless transform presents a new perspective of the signal
being estimated from the data set, because the parametey

; fider study (in the frequency domain), which has proved
of a data set may change over time. However, we prefer tQseful in ve};y(many apglicatigns ) P
use adaptlve_techmqu_es to overcome this problem. For a discrete-time signab, 1, . . ., #x_1, the Discrete
If we consider the time series to be vectors of length Fourier Transform (DFT) is o’Iefi;led ’by '
then the above results can be written in matrix form. Tak-

ing the measurements = (by,...,b;)7, we can obtain 1 N2 _

the errorse = (e, ..., e;)", via right-multiplication by a fn = ¥ Z zre RN for0<n < N —1,

transformation matrib” = e = b”7T. Specifically, let! k=0

deno_te the x t identity matrix,v denqte.the “back shift” \\here f, is a complex number that captures the ampli-

matrix, andl denote the x ¢ unit matrix, i.e., tude and phase of the signal at th¢h harmonic frequency
100,00 01000 L1111 .(Wlth base f_requency/N). Note that for a real signdlf,, }
010..00 00100 11111 is symmetric, i.e.f,, = fN—1—n. L_owern corresponds to

I= v = 1= . a lower frequency component, wiffy being the DC com-

000...10 000..01 111.11 ponent, or the average of the input series, gpdvith n
000..01 000...00 1111 close toN/2 corresponding to high frequencies.

The Inverse Discrete Fourier Transform (IDFT) is used

The differencing resuliz = ..z T, is then . . . .
9 b= [212...2] to reconstruct the signal in the time domain by

bT(I — V)d, for d > 1, N—-1
T = 1 1 _ ik2nn /N
z bT_nglsz(I_Zl)’ ford = 0. ,an—kae‘] / s fOI’OSnﬁN—l
k=0
(6)

An efficient way to implement the DFT and IDFT

Equation (5) can be written in matrix notation as , ) .
is through an algorithm called the Fast Fourier Trans-

P _ a _ form (FFT). The computational complexity of the FFT is
2" = ¢in" ' =el =D 0,6, O(N log(N)).
=1 g=1 FFT based anomography. The idea of using the FFT
or equivalently, to extract anomalous link traffid3 is to filter out the low

frequency components in the link traffic time series. In
general, low frequency components capture the daily and

p q
ol — 7 <I _ Z @,vi) I Z 0,77 . weekly traffic patterns, while high frequency components
i=1 j=1

—1

represent the sudden changes in traffic behavior. Working
in the frequency domain provides us with the opportunity
Extending ARIMA based models to multivariate time se- to distinguish these two kinds of behaviors.
ries is straightforward. As noted earlier, we construct the We summarize FFT based anomography as follows.



1. Transform link trafficB into the frequency domain: the results presented in Section 6, we U&eninute ag-
F = FFT(B): apply the FFT on each row &. (Recall gregated link traffic data of one week duration, and
that a row corresponds to the time series of traffic data is set at3. That is, we only keep coefficients at fre-
on one link.) The result is the corresponding frequency quency leveld, 2, and3, which is consistent with [1].

domain series, in each row . 3. Reconstruct the signaB = WAVEREC(B). The re-
2. Remove low frequency components: i.e. #t= sultis the high-frequency components in the traffic data.
0,fori € [1,¢] U [N — ¢, N], whereF; is thei-th col- It is easy to verify that the process of WAVEDEC and

umn of F' andc is a cut-off frequency. (For example, WAVEREC only involves linear combinations of columns

for the results presented in Section 6, we use 10-minutef B. As a result, theé3 derived through the wavelet based

aggregated link traffic data of one week duration, andanomography can also be modeled as right multiplying ma-
= (%N], corresponding to a frequency of one cycle trix transformation.

per hour.) 3.34 Temporal PCA

In Section 3.2.1, we presented a method of applying PCA
in the traffic data, which we will use as anomalous IinktO f_ind domin_ant patterns among diffe_rent Iink-l_oad timg
traffic. 3 ' series. A similar method can be used in identifying domi-
T ) _ nant patterns across time.
The DFT and IDFT may be represented as right-matrix consider the link load matris — [by by...b]. We can

products. In setting columns &f to zero, and performing  {hink of each row as adimensional vector. What we are
the IDFT we are taking a linear combination of the columns|goking for is a new coordinate systemy, vo, ... v

of I/, whichin turn are a linear combination of those®f g ,ch that the projection of the links (Onv1, va, ..., v¢)
Hence, the overall process above can be modeled as a rigias energy concentrated on the first several axes. This is
multiplying matrix transformatio®? = BT'. Note also that  exactly what PCA provides. The only difference is that
in thresholding at frequeneywe preserve the symmetry of \ya now apply PCA onB” as opposed td3 (as used in

F, and so althougl#” may contain complex elements, the gpatial PCA). Then we follow the same procedure to de-
resulting transform will be real. fine an anomalous subspace and to extract anomalies that
3.3.3 Wavelet Analysis have projections in the anomalous subspace. In this way,

, , we obtain a left multiplying transformation matri, i.e.,
Wavelets [7, 12, 21] are mathematical functions that cutupgr _ 7T Taking transpose on both side of the equa-

data into different frequency components, and then study,qy we haveld — (BT)T = (TBT)T = BTT whereT™”
each component with a resolution matched to its scaleg 5 right multiplying transformation matrix that extracts
They provide a powerful means for isolating characteris-;omalies fron.

tics of signals via a combined time-frequency representa- i

tion and are often considered superior to traditional Fouri 3.4 |nference Algorithms

methods especially in situations where the signal containg)nCe we obtain the matrix of link anomalié the next

tralln5|intsé Sl;Ch das d'fcr? ntlnl:jmeslandjharp sp|:<esk.) q stepis to reconstruct OD flow anoma[ié’sby solving a se-
n [1], Barford et al. have developed a wavelet-based joq otji| posed linear inverse problerbs = A% ;. For ex-

algorithm for detecting anomalies in the link traffic data. ample, Lakhinat al[19] proposed to find the single largest
It shares the same principle as the FFT based approachsﬁomé|y in each time interval by applying a greedy al-
— exposing anomalies by filtering low frequency compo- orithm. We present below three common inference al-
nents. Mpre specifically, it.uses Wa\(elets to decompose th orithms for solving these problems. All three algorithms
original signal into low-, mid-, and high-frequency compo- ge| ith the underconstrained linear system by searching
nents and then detects anomalies by close examination gf, 5 5o1ution that minimizes some notions of vector norm,
the mid- and high-frequency components. three examples of which are

Below we computé3 as the high-frequency components ) ) i
of link traffic B. We can also comput® as the mid- ® The - norm of a vectorv is defined as||v|, =

3. Transform back into the time domain: i.e. we tdke=
IFFT(F). The result is the high frequency components

frequency components & in essentially the same way. (>, v?) %, wherew; is thei-th element of vectoy.
1. Use wavelets to decomposkinto different frequency e The¢! norm of a vectow is defined agv||, = Y, |vi/,
levels:W = WAVEDEC(B), by applying a multi-level i.e, the sum of the absolute value of each element.of

1-D wavelet decomposition on each rowBf The re-

sult is a wavelet decomposition vector, which we save
as one row in matriX¥’. The wavelet we use is the ) .
Daubechies wavelet [6] of order 6. 34.1 Pseudoinverse Solution

2. Then remove low- and mid-frequency components inA standard solution tb = Ax is the pseudoinverse solu-
W by setting all coefficients at frequency levels highertionx = A*b, whereA" is the pseudoinverse (or Moore-
thanw, to 0. Herew, is a cut-off frequency level. For Penrose inverse) of matrif. It is known thatc = A™b is

e The/Y norm of a vectow is defined ag/v|jo = >, v?,
i.e., the number of non-zero elementswof



the solution to the problerh = Ax that minimizes the/
norm of the anomaly vector, i.e. it solves:

minimize ||X|, subjectto|b — A%||; is minimal (8)

3.4.2 Sparsity Maximization

of non-zero positions fok and then iteratively adds new
non-zero positions td. During each iteration, for each po-
sitionp ¢ I, the algorithm tests how much it can reduce
the residuab — Ax by includingp as a non-zero position.
More specifically, letV = TU{p}. The algorithm estimates
the values for the non-zero elementsxofdenoted as ;)

In practice, we expect only a few anomalies at any onedy solving the following least squares problem

time, sox typically has only a small number of large val-
ues. Hence it is natural to proceed by maximizingshar-
sity of %, i.e., solving the following/® norm minimization
problem:

minimize||x||o subject tob = Ax.

9)

The ¢ norm is not convex and is notoriously difficult to

minimize||b — A %]|2 (13)
where A; = A[., J] is a submatrix ofA formed by the
column vectors ofd corresponding to positions ii. The
residual is then computed ag = ||b — A% s|]2. The al-
gorithm then greedily chooses the positipthat gives the
smalleste; and adds it td'. The algorithm stops whenever

minimize, so in practice one needs to either approximateither the residual energy falls below some tolerance to in-
the /9 norm with a convex function or use heuristics, for accuracy,,. or the number of non-zero positions exceeds

example the greedy algorithm of Lakhiatal [19].

¢ norm minimization One common approach to ap-
proximate/’ norm minimization is to convexify (9) by re-
placing the® norm with an¢! norm, so that we seek a
solution to

subject tob = A%

minimize||x||; (10)

As shown in [8, 9],/ norm minimization results in the

some threshold®

4 Dynamic Network Anomography

Up to this point, we have assumed that the routing matrices
are constant. However, we wish to allow for dynamic rout-
ing changes, and so we must allody to vary over time.

In IP networks, routing changes occur as part of the nor-
mal “self-healing” behavior of the network, and so it is
advantageous to isolate these from traffic anomalies and

sparsest solution for many large under-determined linea@nly signal traffic anomalies. In addition, if some mea-

systems.

surements are missing (say at tifjewe may still form a

In the presence of measurement noise, the constrain@@nsistent problem by setting the appropriate rowd pfo
b = Ax may not always be satisfiable. In this case, weZero. Thus, for realistic SNMP measurements where miss-

can add a penalty terffb — Ax||; to the objective and re-
formulate (10) as:
minimize A[|x|; + ||b — Ax] (11)

where A € [0,1] controls the degree to which the con-

ing data are often an issue, we still wish to vaty even
for static routing. Routing measurements may be obtained
using a route monitor, to provide accurate, up-to-date mea-
surements of routing (at least at the time scale of SNMP
measurements, e.g. minutes).

Where the tomography step can be done separately at

straintsb = Ax are satisfied. As shown in Section 6, the each time interval (for instance see [34, 35)), it is sim-

algorithm is not very sensitive to the choiceofin the rest
of this paper, unless noted otherwise, we se 0.001,
which gives satisfactory results.

ple to adapt early-inverse methods dgnamic network
anomographyy inverting (2) at each time step. Given the
straight forward approach for early-inverse methods, We

We can cast (11) into the following equivalent Linear seek here to generalize late-inverse methods to dynamic

Programming (LP) problem, for which solutions are avail-

able even whenl is very large, owing to modern interior-
point linear programming methods.

minimize A" u; + 35505

subjectto b = Ax + z
u>x, u>-—-Xx
v>z, V2>—Z

(12)

network anomography.
4.1 Dynamic Temporal Anomography

When the routing matrix is non-constant, there is no reason
to believe that the measuremeritshould follow a simple
model such as an ARIMA model. Even where the traffic
itself follows such a model, a simple routing change may
change a link load measurement by 100%, for instance by
routing traffic completely away from a particular link. If

Greedy algorithm Another common heuristic solution we were to apply the ARIMA model to the measurements
for £° norm minimization is to apply the greedy algorithm. B, we would see such a change in routing as a level-shift
For example, the greedy heuristic has been successfully apghomaly. However, its cause is not an unknown change in
plied to wavelet decomposition, where it goes by the nameX (to be discovered), but rather a known change in the rout-
of Orthogonal Matching PursuifOMP) [24]. In the same ing matrices4;. Likewise, it no longer makes sense to try
spirit here, we develop a greedy solution to maximize theo exploit spatial correlations which arose from a paracul
sparsity ofx. The algorithm starts with an empty sét routing, to the case of another routing.



However, it is no less reasonable to approximate the trafWWe can computex;,Xs,--- ,X; iteratively by solving
fic matrix X by an ARIMA model (thanB when the rout- a series of¢! norm minimization problemsP;, (k¢ =
ing is constant), even when routing may change. Undet,?2,--- ).
such a modeling assumption, we can wiife= X7. We
know also that the measurements are given by (2). Area- Pr: minimize||x;||; subjectto (14) and (15). (16)
sonable approach to the solution is therefore to seek a so- ) )
lution X which is consistent with these equations, but also AS an example, consider the simplest ARIMA model,
minimizes one of the norms (described above) at each tim&RIMA (0, 1,0). In this casep = ¢ = 0, so we have
step. We choose to minimize tfé norm ||x;||; here be-

" - . . 1
cause (i) it allows us to naturally incorporate link load €on _ i
straints at multiple time intervals, and (ii) it is more aecu o(L) = Z%L =(1-1),
rate than both the pseudoinverse and the greedy algorithms =0
for static anomography (as we will show in Section6).  so~, = 1 andy, = -1, and (14) becomes;, =

Unfortunately, for transform based methods (the Fourierz,l_o Yk—i, thus problen®Py, is simply
wavelet and PCA methods) the number of constraints be-~
comes very large (asgrows). On the other hand, the setof ~ minimize ||x;||;

constraints for the ARIMA model can be written in a form Xp =  Yr+Yeoi
such that it does not grow with Hence, in the follow- subject to Ayyr = by (17)
ing we concentrate on generalizing the ARIMA approach. Ap1ye-1 = —bp_1

We present the algorithm for ARIM@, d, ¢) models with

d > 1 (Section 4.2). We have also extended the algorithm As in Section 3.4.2, we can accommodate measurement

to handle ARIMA models with/ = 0, though we omit this  noise by incorporating penalty terms into the objective to

treatment here for brevity (as it is a straightforward exten penalize against violation of constraints (14) and (15). We

sion). Due to space limits, we will leave out the discussioncan then solve the resultirfg norm minimization problem

on model selection and parameter estimation, two imporby reformulating it as an equivalent LP problem. We omit

tant issues for applying ARIMA-based anomography. In-such details in the interest of brevity.

terested readers can find this in our technical report [33].  We have also developed two techniques to significantly

4.2 Algorithm for ARIMA Models (d > 1) reduc_e_ the size of the above mir)imizat_ion prob_lélmsby
exploiting the fact that changes in routing matrices tend to

We are going to seek solutions that are consistent witthe infrequenti(e., notin every time interval) and local¢.,

the measurements; = A;x;, for j = 1,....¢, and an  only in a small subset of rows). Interested readers please

ARIMA model that givesX = XT whereT is the same refer to our technical report [33] for detalils.

transformation matrix implicitly defined by (6) and (7). Im- .

portantly, we do not wish to have to estima&e(or we may 5 Evaluation Methodology

as well use an early-inverse method). The advantage of th§1 Data Sets

ARIMA model, is we do not need to knod, but only .
: . We apply our techniques to real network measurement data
linear combinations ok . thered wo | backb works — Int s
Let L be the backshift operator, whose effect on a pro-ga. ered from two 1arge backbone networks — Internets s
. B Abilene network and a Tier-1 ISP network. Both networks
cessz can be summarized d4.z), = zx—1. Let the AR . ) )
polynomial® (L) be span the contl.nental USA. The Abilene backbon_e is rela-
tively small, with 12 core routers, 15 backbone links and
d+p p 144 OD flow elements in its traffic matrix. The Tier-1 ISP
O(L) = Z v Lt d:ef 1— Z ¢ L' ) (1 — L)% network is much larger, consisting of hundreds of routers,
=0 =1 thousands of links and tens of thousands of different OD
_ ) . flows. To reduce computation complexity without loss of
Letyy—; = vixx—i. We nowidentifye = x inthe ARIMA  jlity, we use the technique in [34] to lump edge routers
model described in (5) (or rather its multivariate extenyio  with topologically equivalent connectivity. This reduces

By definition the sumy "y, =z, — 30, ¢izx—i,  the total number of OD flows to about 6000.
and so, ford > 1, the ARIMA model (5) can be rewritten The primary data inputs for our anomaly diagnosis are

the time series of link loads (bytes across interfaces) for
Z e ZQ'N ‘ (14) every network, gathered through SNMP. We use flow level
2 Yh=i = Xk = 2 ViXh—j: data, where available, for validation. As is often the case,
=0 =1 the flow data is incomplete. The flow data are collected
Definecy_; = v;br_i, then asy,_; = ~vixx_;, the mea- at the edge of the network where data packets are sampled
surement equation (2) implies and aggregated by the IP source and destination address,
and the TCP port number. Adjusted for sampling rate and
Ay _iyk—i=c¢Cr_i, 1=0,1,---,d+0p. (15) combined with BGP and ISIS/OSPF routing information,

d+p q



these sampled IP flow statistics are then aggregated into sess sensitivity ta, robustness to noise in Section 6.2, and
real traffic matrix [11], where each element is an OD flow the effectiveness of the methods for time-varying routmg i
with the origin and destination being the ingress and egresSection 6.3.
point of the flow to/from the network. Consistent with [19],  In Section 6.4.2 we step away from the simple anomaly
we aggregate these measurements into bins of 10 minutefetection algorithm applied to test the inference compo-
to avoid any synchronization issues that could have arisenent, and compare the complete set of anomography meth-
in the data collection. ods described in Section 3. As before we use detection
Ideally, to evaluate the methods, one would like com-rate to measure whether the anomaly detection method
plete flow level data, SNMP link load measurements, androduces similar results when applied to the OD pairs di-
continuous tracking of routing information, providing a rectly, or applied to the link load data, along with an inver-
consistent, comprehensive view of the network in operasion method — we use the Sparsity-L1 method (the best
tion. Unfortunately, we do not have the complete set ofperforming of the methods tested using the methodology
flow level data across the edge of the network (due to probabove). In other words, we benchmark the anomography
lems in vendor implementations or in data collection), andmethod against the anomalies seen in direct analysis of the
our routing information is only “quasi-” real time (we rely OD flows.
on snapshots available from table dumps carried out every Since different methods may find different sets of bench-
8 hours). As a result, inconsistencies sometimes arise benark anomalies, we need an objective measure for assess-
tween these measurements. To overcome these problering the performance of the methods. Ideally, we would
and provide a consistent means for evaluating the algolike to compare the set of anomalies identified by each of
rithms, we adopt the method in [34] and reconstruct theghe methods to the set of “true” network anomalies. How-
link traffic data by simulating the network routing on the ever, isolating and verifying all genuine anomalies in an
OD flow traffic matrix generated from the available set of operational network is, although important, a very difficul
flow level data. Note that we use derived link load measuretask. It involves correlating traffic changes with otheredat
ments for validation purposes only. In practice, our meth-sources (e.g., BGP/OSPF routing events, network alarms,
ods are applicable to direct measurement of traffic data agnd operator logs), an activity that often involves case-

obtained from SNMP. by-case analysis. Instead, we perform pair-wise compar-
_ isons, based on the top ranked anomalies identified by each
5.2 Performance Metrics of the anomography methods, an approach also taken in

L . Lakhinaet al. [19].

We conduct our evaluation in two steps. First, we com- Specificallv. for each of the anomoaraphy methods. we

pare the different solution techniques for the inverse prob b y, Tor ograpny : '
apply the underlying anomaly detection method directly to

lemb; = A%; (as described in Section 3.4). The in- :
verse problem is common to all the late-inverse anomogEhe OD flow data. We think of the top rankéd anoma-

raphy methods discussed in Section 3, so for simplicityli€S, denoted by the sét;) for anomaly detection method
we choose to use the simplest temporal forecasting model, @ @ benchmark. For each of the anomography methods
ARIMA (0, 1,0), for evaluation. This model predicts the i, we examine the set df largest anomaliesty inferred

next observation to have the same value as the current onsom link load data. To help understand the fidelity of the
Thus, the inverse problem on the prediction error can b@nomography methods we consider the overlap between
constructed by simply taking the difference between conthe benchmark and the anomography methm%i), N 85\34),
secutive link load observationstx; = b, = b, — b,_1.  across the benchmarks and the anomography methods. We
The performance of the inversion technique is measured ballow a small amount of slack (within one ten-minute time
comparing the inferred solutio®,, to the direct difference  shift) in the comparison between events, in order that phase
of the OD flow,x; —x:_1; the closer the values are, the bet- differences between methods not unduly impact the results.
ter the result. In the context of anomaly detection, it ieoft We are interested in understanding both false positives
the case that the large elements (large volume changes) agid false negatives:

of chief interest to network management. Hence, we de- _

fined a metric — detection rate — to compare the top ranked) False Positives. TakingBJ(\? as the benchmark, the

N elements (sorted by size) in solutien to the top N false positives produced by anomography methace

prediction errors; — x;_1 for t spanning a period of one Ag\i,) _ 35&)_ The magnitudes of the anomalies}tﬁ)
week. As we will see in Section 6, the top anomalies in our andBJ(\? may vary. Yet, intuitively if one of thev = 30
data are easily resolved by magnitude (close ties are rare). L)

The detection ratds the ratio of the overlap between the top anomalies indy’ is not among the topl/[ = 50

two sets. Note that the detection rate avoids some prob- from the benchmark, then this anomaly, is likely
lems with comparing false-alarm versus detection proba- a false positive. This leads to the following heuristic for
bilities, as it combines both into one measure. A high de- detecting false positives. We choose (reasonable) pa-
tection rate indicates good performance. Detection rate is rametersV and M, with N' < M, and count the false
used to compare inference techniques in Section 6.1, to as- positives as the size 045\1,) - 85\7{).
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(i) False Negatives. Our reasoning is similar. Taking 0.016 ——————
Bg\?} as the benchmark, the false negatives produced by
anomography methodareBg\? — Ag\i,). Intuitively if
one of theM = 30 top anomalies in the benchmark is
not among the togv = 50 anomalies inAg\i,) then this

anomaly intff) is missed by the anomography method
i1, and is a false negative. This leads to the following
heuristic for detecting false negatives. We choose (rea-
sonable) parametefé andM, with N > M, and count

5 10 15 20 25 30 35 40 45 50

the false negat|ves as the S|Zeli§f{) - AEV) . Rank by anomaly size (based on real OD flow)
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For our reports in the next section, we choose the smaller Figure 1: Anomalies by Size

of M and N to be 30, since this roughly represents the ‘oA T
number of traffic anomalies that network engineers might iy o
have the resources to analyze deeply on a weekly basis. We i T e
would like to show comparative results where the larger pa- LA N

06 3NN |

rameter varies, but cannot within a reasonable amount of
space, and so show results for one fixed valielt is im-
portant to note that the results we obtained for other values
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of M andN change none of our qualitative conclusions. 02 Pseudoinverse ——
o
6 Results 0 L . ) Early Ipverse-jo?nogqavity 1
5 10 15 20 25 30 35 40 45 50
We obtained six months (03/01/04-09/04/04) of measure- N

ments for the Abilene network and one month (10/06/04-Figure 2: Detection Rate by Various Inference Techniques
11/02/04) for the Tier-1 ISP network. We partitioned the
data into sets spanning one week each, and evaluated teenstitute more than 0.5% of total traffic. This agrees with
methods on each data set. Due to space limits, we preseatr intuition on the sparsity of network anomalies.
only one set of representative results — Tier-1 ISP (10/6/04 Wwe see that Pseudoinverse significantly underestimates
10/12/04). In our technical report [33], we also report re-the size of the anomalies. Intuitively, Pseudoinverse finds
sults in other weeks for the Tier-1 ISP network as well asthe least square solution which distributes the “energy” of
for the Abilene network. These results are qualitativelythe anomaly evenly to all candidate flows that may have
similar to those reported here. contributed to the anomaly, under the link load constraint.
. . This is directly opposed to the sparsity maximization phi-
6.1 Comparison of Inference Techniques losophy. Among the sparsity maximization techniques,
We first compare different solution techniques for the in-Sparsity-L1 performs the best. Sparsity-L1 always finds
ference problemb = Ax. More specifically, we con- solutions close to the real anomalies. Sparsity-Greedy, in
sider three late inverse algorithnRseudoinver se (Section ~ general, is more effective than Pseudoinverse, although it
3.4.1),Sparsity-Greedy (Section 3.4.2), an@parsity-L1 ~ sometimes overestimates the size of anomalies. As a repre-
(Section 3.4.2), and one early inverse techniqi&arly  sentative of the early inverse technique, Tomogravity also
Inverse-Tomogravity. We choose to use the tomograv- performs well. With few exceptions, tomogravity finds so-
ity method [35] as the early inverse technique since it hagutions that track the real OD flow anomalies. Intuitively,
demonstrated high accuracy and robustness for estimatirighen a proportionality condition holds, i.e., when the size
traffic matrix for real operational networks [14, 35]. of the anomalies are proportional to the sizes of the OD
Figure 1 plots the sizes of the top 50 anomalies (the foreflows, then early inverse methods work well. However,
cast errors) of the OD flows (the solid lines) and the correhere the proportionality condition does not hold, the erro
sponding values diagnosed by the different inference techéan be significant.
niques (the points) for 10/6/04 to 10/12/04, for the Tier-1 Figure 2 presents the detection rate for the different in-
ISP network. The y-axis provides the size of the anomaference techniques. We observe that for the Tier-1 ISP net-
lies normalized by the average total traffic volume on thework, Sparsity-L1 and Tomogravity, which have about 0.8
network. The x-axis is the rank by the size of anomalies di-detection rate, significantly outperform other methods.
rectly computed from the OD flows. We observe that there Due to space limits, we will consider only Sparsity-L1
are very few large changes — among more than 6 milliorand Tomogravity in the rest of the evaluation, as these
elements { 6000 OD flows at 1007 data points), there is method demonstrate the greatest performance and flexibil-
one instance where the size of anomaly is more than 1% dfy in dealing with problems such as missing data and rout-
total traffic and there are 18 cases where the disturbancéssg changes.
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Figure 4: Sensitivity to Measurement Noise Figure 6: Impact of Route Change
6.2 Robustness rithms in dealing with imperfect measurements.

Ain Sparsity-L1. Sparsity-L1 involves a paramet&rin 6.3 Time Varying Routing Matrices
its formulation (Eg. 11). Figure 3 investigates the sensi-

tivity to the parameter choice. Specifically, Figure 3 plotsMissing Data. Missing measurement data, arising from
the detection rate of Sparsity-L1 far= 0.1, 0.01, 0.001, problems such as packet loss during data collection, is com-
0.0001 and0.00001. All X in this range achieve good per- mon in real networks. Indeed, this can be tricky to deal
formance. This is reassuring, since it suggests that littiavith, since the loss of link load data has the effect of pro-
training or parameter tuning is needed to match the metho@ucing time varying routing matrices in the anomography
to a different network or traffic pattern. formulation. Fortunately, as discussed in Section 4, our ex
tended Sparsity-L1 algorithm can handle this situation.

Measurement Noise. Thus far, we have assumed per- ; .
Figure 5 shows the performance of the inference algo-

fect link load information for anomaly detection. However, ith ih 5% of the d - L |
in real networks, SNMP byte counts are collected from allfithms wit Iup tg 9fo tl e data gussmg\;N— mssn;g VS' h
routers across the network. Inevitably, measurementgssud!€S aré selected uniformly at random. We see that bot

such as lack of time synchronization may introduce noise>Parsity-L1 and Tomogravity suffer only minor (almost

Below we evaluate the impact of measurement noise bnegligible) pe.nfolrmance. im_pact, in t-erms_of detection rate
%’he low sensitivity to missing data is an important feature

multiplying white noise termsV (1, o) with each element L o0 ; X
of the link load, and then using the result as input to Ourof these methods, which is critical for real implementation

inference algorithms. Routing Changes. In an operational network, the rout-
Figure 4 compares how well the methods perform withing matrix is unlikely to remain unchanged over a few
no noise, to how well they do with noise levels= 0.5% days. Hardware failures, engineering operations, mainte-
ando = 1%. Note that measurement errors near 1%nance and upgrades all may cause traffic to be rerouted on
throughout the network are quite significant, since the sizalternative paths. Here we evaluate the impact of routing
of the largest anomalies are themselves near 1% of the t@hanges on the performance of our algorithms. We intro-
tal traffic (Figure 1). It is a challenging task to accurately duce routing changes by simulating faults on internal links
diagnose anomalies given the comparable level of noise. Figure 6 presents results where we have randomly
Nevertheless, we find that both Sparsity-L1 and Tomogravfailed/repaired up to 3 links at each time instance. We ob-
ity are quite robust to measurement noise. For the Tier-berve that Sparsity-L1 is very robust to such a disturbance
ISP network, the detection rate remains above 0.8 for bign the routing structure, while Tomogravity suffers signifi
anomalies (smallV) and above 0.7 for the top 50 anoma- cant performance impact. It appears that Tomogravity suf-
lies. These results demonstrate the strength of our algders here because errors in the (early) inference stepgbein



computed from different routing matrices, add to become
comparable to the anomalies themselves. This demon-
strates another advantage of the late-inverse over the earl
inverse approach.

6.4 Comparison of Anomography Methods
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6.4.1 Impactson Inference Accuracy

Thus far, we have compared the performance of Sparsity- ozr P ——
L1 and Early Inverse-Tomogravity, under the simple tem- . rowwiers e
poral model (forecasting the next data point using the cur- % 10 15 20 25 30 35 40 45 50

rent value). We found that Sparsity-L1 in general out- N

performs the Early Inverse approach. We also observed (8) ARIMA family of anomography methods
that Sparsity-L1 is robust to measurement noise, is insen-
sitive to parameter choice, and is able to handle missing
data and route changes. We now evaluate overall perfor- os k[ /4
mance when applying Sparsity-L1 with other temporal and 2
spatial anomography methods. In particular, we compare
FFT (Section 3.3.2)Wavelet (Section 3.3.3)PCA (Sec-
tion 3.2.1),TPCA (Section 3.3.4), and four ARIMA based
methodsDiff (the simple forecasting model of the last sec- 5 M o R g a5
tion), Holt-Winters, EWMA, and generaARIM A, which o T FET —— 1
determines the appropriate model using the method in [33]. -
As noted in Section 5, for each model considered, we ° 0 15 20 25 0 3 40 45 50
computex directly from the OD flow traffic data and use N
it as the benchmark. Next, we compdtiewith the same (b) Other anomography methods
anomography model, and construct tH& = b infer-
ence problem. We compare the solution derived throug

Sparsity-L1 with the benchmark. Figure 7 presents the de- . . .
tection rate for these approaches. To avoid overcrowdin(glSt comment applies to spatial anomography methods in

the graph, we divide the anomography methods into twd€neral). Thus, the spatial PCA anomography solution is
groups. Figure 7 (a) plots the results for the ARIMA fam- N0t €xpected to completely overlap with tieidentified
ily of anomography approaches and Figure 7 (b) plots thdy directly applying spatial PCA on the OD traffic flows.
results for the rest. We observe that for all the ARIMA [N contrast, the temporal anomography methodssait
based approaches, Sparsity-L1 finds very good solutiong€onsistentn that given3 = BT if we apply the same
With the traffic data aggregated at the 10-minute level, simiransformatiori” on X' and obtain¥ = XT', we guarantee
ple Diff and EWMA can sufficiently extract the anoma- thatB = AX (= AXT).
Ic_>us traffic and warrant a solu_tion that maximizes the sparg 4 o  Cross Validation for Different Methods
sity of the anomalies. Holt-Winters produces better perfor
mance than Diff and EWMA. This is because the model isWe now turn to comparing the various anomography meth-
more sophisticated, and thus is able to capture more con®ds . To do so, we use a set of benchmarks, as described in
plex temporal trends exhibited in the traffic data. FurtherSection 5, each derived from applying anomaly detection
sophistication, as incorporated in ARIMA, however, can-algorithm directly to the OD flows. For each benchmark,
not significantly improve performance. In the family of we report on the success of all of the anomography meth-
ARIMA models, Holt-Winters appears to provide the bestods. The hope is that methods emerge that achieve both
complexity-performance trade-off. low false positives and low false negatives for nearly all of
From Figure 7 (b), we observe that Sparsity-L1 can alsghe benchmarks.
achieve high detection rate under FFT, Wavelet and TPCA. In Table 1 (a) we present the false positives for the Tier-
However, it doesn’t work well with PCA This can be ex- 1 ISP network withM = 50 and N = 30 (see Section
plained as follows. When we apply spatial PCA on the reab). We found results for different values 8f and N to
traffic matrix X' and the link load matrix3, we obtain two  be qualitatively quite similar. To align our results witreth
linear transformatioX’ = 7, X, andB = T,B = T, AX, methodology reported in [19], we include the bottom row,
respectively. However, the two transformation matriceslabeled PCA*, where we use a squared prediction error
T, andT, may differ significantly because the spatial cor- (SPE) based scheme to determine the set of time intervals at
relation among link loads and that among OD flows arewhich big anomalies occur, and the greedy approach (Sec-
rather different. Even if we us€, = T,, we cannot en- tion 3.4.2) to solve the inference problem. Note that the
sure thatAT, X = T,AX (i.e., AX = B (Note that this number of anomalies reported by PCA* may be less than
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Top 30 False Positives with Top 50 Benchmark We observe that the ARIMA methods, FFT and Wavelet
'”fDei'f;ed Déﬁ AR'GMA EWS’V'A H‘GW FgTW""Ze' tplcf Tigﬁ anomography approaches have superb performance — the
ARIMA T2 11 7 T8 3 1ol 13 number o_f false negatives are very low. This indicates that
EWMA 1 31 6 3 61 71 5 15 13 very few important traffic anomalies can pass undetected
Holt-Winters 4 | 1 4 18 3 | 10| 13 by these approaches. The PCA based approaches, however,
FET 6] 6 6 | 7] 2| 6 [18] 19 identify about half of the anomalies.
Wavelet | 6 6 6 6| 8 1 12| 13
TPCA | 17| 17 | 17 | 17| 20| 13 | 14| O ;
PCA |18 18 | 18 | 18| 20| 14 | 14| 1 7 Conclusions
PCA*@r)| 18] 17 | 18 [ 17] 23] 16 | 11] 8 In this paper, we introducedetwork anomographythe

] . . . problem of inferring network-level anomalies from widely
'I_'able 1: False positives seen in the Bipinferred anoma-  svailable data aggregates. Our major advances are:
lies compared against the t6p benchmark anomalies.

1. We introduced a powerful framework for anomography

Top 50 False Negatives with Top 30 Benchmark ;
Inforred | GTFARTMAEWMA W EET WavsletPCA TP that cIean_Iy separates the anomaly detection component
Oiff 0 1 0o T 115 5 T 7 from the inference component. The framework opens
ARIMA | 1| 0 T | 0] 6| 4 |12] 18 up a wide field for innovation and for the development
EWMA [0 ] 1 0 |1[5] 5 [12] 17 of families of new algorithms. The novel method of
Holt-Winters 1 | O 1 ]1016) 4 112 18 Lakhinaet al. based on PCA falls within the framework.
FFT 3| 8 4 | 8| 1| 7 | 18] 19
Wavelet | 0 | 2 1 ]2]5)] 0 [11] 13 2. Within the framework, we put forward a number of
TPCA | 14) 14 | 14 [ 14/19] 15 | 15) 3 novel algorithms, taking advantage of the range of
PCA |[10| 13 | 10 | 13| 15| 11 | 13] 1 hoi : v d ; q inf
PCAFGT) [ 17| 18 | 18 | 18] 21| 19 | 16] 8 choices for anomaly detection and inference compo-
nents and choosing between temporal versus spatial ap-
Table 2: False negatives seen in the i6pnferred anoma- proaches.
lies compared against the t8p benchmark anomalies. . .
P 9 p 3. We developed a nedynamic anomographgigorithm,

which tracks both routing and traffic measurements, and
N. We therefore report the actual number of anomalies in so enables alerting with high fidelity on traffic matrix
the table next to the label PCA*. anomalies, without alerting on internal routing changes
From the table, we observe from the upper Igfk 6 that leave the traffic matrix relatively stable. As rout-
quadrant that the ARIMA, FFT and Wavelet approaches ing changes are often due to normal internal self-healing
tend to have relative low false positives among detected behavior separating these changes from intrinsic traffic
anomalies. Thus, the top 30 ranked anomalies derived anomalies is advantageous. An additional benefit of dy-
through these approaches indeed appear to be anomaloushamic anomography is that is robust to missing data, an
traffic events that are worth investigating. important operational reality.

The PCA based approaches, however, exhibit a highef ' gjng extensive data from Internet2’s Abilene net-
false positives when benchmarked against other ap- work and a Tier-1 ISP, we evaluated these anomogra-
proaches. This appears to be partially due to PCA iden- phy methods. The findings are encouraging. Specifi-
tifying anomalies of a different type than those identified cally, the results indicate that the new settefporal
by the methods. Consider, for example, a sudden increase anomography methods introduced here have better fi-
of traffic for an OD flow that persists for a couple of hours. delity, particularly when using' minimization for the
PCA methods may identify every instance within the two- inferénce step. Dynamic anomography using ARIMA
hour period as anomalous. ARIMA based approaches de- based methods and norm minimization shows uni-
tect abrupt traffic changes. Hence ARIMA based_methods formly high fidelity (low false positive and false nega-
likely extract only the “edges” — the first and last instance tives) and high robustness (to routing changes and miss-
— of the two-hour period. Another factor contributing to ing or corrupted data).

PCA'’s false positives may be its lack of self-consistency:

anomalies present in the OD pairs but not detected by the While we believe our work represents a significant ad-
method in the link loads. In addition, unlike ARIMA, FFT, vance in the state of the art, we recognize that the the ul-
or wavelet based tomography, both spatial PCA and temtimate test of performance is significant operational expe-
poral PCA cannot fully utilize temporal ordering informa- rience: utility is bringing to light in the field new anoma-
tion in the measured time series data. For example, anlies that were “flying under the radar” of other techniques,
reordering of the time serieby, by, ... b, does not affect while producing very few false alarms. Our larger goal in
the outcome of the algorithm. future work is to explore the feasibility and performance

Table 2 presents the number of false negatives\for of automated traffic management systems, which incorpo-
30 and N = 50, where we are interested in the number of rate anomaly detection, root cause diagnosis and traffic and
large anomalies that are not identified by each approachioute control for operational networks.
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