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Abstract
Anomaly detection is a first and important step needed

to respond to unexpected problems and to assure high per-
formance and security in IP networks. We introduce a
framework and a powerful class of algorithms fornet-
work anomography,the problem of inferring network-level
anomalies from widely available data aggregates. The
framework contains novel algorithms, as well as a recently
published approach based on Principal Component Analy-
sis (PCA). Moreover, owing to its clear separation of infer-
ence and anomaly detection, the framework opens the door
to the creation of whole families of new algorithms. We
introduce several such algorithms here, based on ARIMA
modeling, the Fourier transform, Wavelets, and Princi-
pal Component Analysis. We introduce a newdynamic
anomographyalgorithm, which effectively tracks routing
and traffic change, so as to alert with high fidelity on intrin-
sic changes in network-level traffic, yet not on internal rout-
ing changes. An additional benefit of dynamic anomogra-
phy is that it is robust to missing data, an important opera-
tional reality. To the best of our knowledge, this is the first
anomography algorithm that can handle routing changes
and missing data. To evaluate these algorithms, we used
several months of traffic data collected from the Abilene
network and from a large Tier-1 ISP network. To compare
performance, we use the methodology put forward earlier
for the Abilene data set. The findings are encouraging.
Among the new algorithms introduced here, we see: high
accuracy in detection (few false negatives and few false
positives), and high robustness (little performance degra-
dation in the presence of measurement noise, missing data
and routing changes).

1 Introduction
The first step in fixing a problem is knowing it exists. This
is no less true in networking than anywhere else – we need
to know about a problem before we can repair it. Network-
ing vendors typically build alarms into network equipment
to facilitate fast, accurate detection and diagnosis of prob-
lems. However, in practice, there are many problems for
which explicit alarms are either absent (for new or uncom-
mon problems), or intrinsically hard to produce. In these
cases we must infer the problem from other data sources.
For instance, many types of network problems cause abnor-
mal patterns to appear in the network traffic. Such traffic
anomaliesmay be caused by problems ranging from secu-
rity threats such as Distributed Denial of Service (DDoS)

attacks and network worms, to unusual traffic events such
as flash crowds, to vendor implementation bugs, to network
misconfigurations. We refer to the problem of inferring
anomalies from indirect measurement asnetwork anomog-
raphy(combining “anomalous” with “tomography,” a gen-
eral approach to such inference problems).

Network tomography [31] bears some resemblance, in
that both involve the solution of a linear inverse prob-
lem. Examples include inference of individual link per-
formance characteristics from path performance character-
istics, and inference of traffic matrices from individual link
load measurements. For example, the traffic matrix estima-
tion problem arises because the obvious source of data for
direct measurement (flow-level data) can be hard to obtain
network-wide [5, 14, 22, 23, 28, 31, 34, 35]. On the other
hand, Simple Network Management Protocol (SNMP) data
on individual link loads is available almost ubiquitously.
Fortunately, the link loads and traffic matrices are simply
related by a linear equation

b = Ax (1)

The vectorb contains the link measurements, andA is the
routing matrix (defined formally below). We wish to in-
fer x, which contains the unknown traffic matrix elements
written as a vector. Tomographic inference techniques seek
to invert this relationship to findx.

The anomography problem is different and somewhat
more complex. First, note that anomaly detection is per-
formed on a series of measurements over a period of time,
rather than from a single snapshot. In addition to changes in
the traffic, the solution must build in the ability to deal with
changes in routing. Second, note that the anomalies that
we wish to infer may have dramatically different properties
from a traffic matrix, and so different methods than those
used for network tomography may be called for. Indeed, we
find that simple extensions to network tomography meth-
ods perform fair poorly here. Techniques that transform
the measurements prior to attempting to solve the inverse
problem are preferable.

As a simple example, imagine trying to detect an anoma-
lous traffic pattern caused by a flash crowd or DDoS attack
on a web site. This type of event will cause increases in
traffic flows headed towards a particular set of destinations.
It may be hard to rapidly identify which of the tens of thou-
sands of ingress links on a large network might be primar-
ily responsible, as large surges at a network egress link may
arise from small surges on several ingress links. We must



infer the change in the pattern of traffic to the particular
site from the complete set of link data, considered together,
rather than as individual time series. This illustrates an im-
portant feature of anomography – it extends anomaly de-
tection to network-level problems (automatically building
in correlation across the network) where link-level anomaly
detection might be inadequate or unreliable.

Many approaches to anomography are possible. In pio-
neering work, Lakhinaet al. introduced a novel approach
based on Principal Component Analysis (PCA) [19]. Our
paper makes three major contributions to understanding
and solving anomography problems:

1. We present a simple and powerful framework that
encompasses a wide class of methods for network
anomography. We will see that the method of [19] is
a member of this class. The framework clearly decou-
ples the inference and anomaly detection steps, and so
immediately opens the door to the development of new
algorithms where one makes different choices for each
step. Accordingly, we introduce several such new al-
gorithms here, based on ARIMA modeling, the Fourier
transform, Wavelets, and Principal Component Analy-
sis. Moreover, the framework is not restricted to the
analysis of link traffic data, and in particular also applies
to the dual problem of inferring performance anomalies
from end-to-end performance measurements.

2. We introduce a new algorithm fordynamic anomogra-
phy, which identifies network level traffic anomalies and
works in the presence of routing changes. That is, dy-
namic anomography tracks routing and traffic change
– signaling traffic anomalies, but not internal network
routing changes (which may dramatically change inter-
nal traffic patterns but may leave the traffic matrix, de-
scribing how traffic enters and exits the network, stable).
In IP networks, routing changes occur as part of the nor-
mal “self-healing” behavior of the network, and so iso-
lating these from traffic anomalies is advantageous. An
additional benefit of dynamic anomography is that it is
robust to missing link load measurements, an important
operational reality (see Section 4 for why missing data
may result in changes in the routing matrix). To the best
of our knowledge, this is the first anomography algo-
rithm that can handle routing changes and missing data.

3. Using data sets collected from a large Tier-1 ISP and
from Internet2’s Abilene network, we report on the re-
sults of an extensive and thorough evaluation of a set
of anomography methods. To understand the fidelity
of the methods and to compare different methods, we
apply the methodology introduced in [19]. Under this
methodology, we find that in general the newtemporal
anomographymethods introduced here exhibit consis-
tently high fidelity. In particular, we find that the most
successful method (of those examined) is a variation of
dynamic anomography, combining Box-Jenkins model-
ing (ARIMA) with ℓ1 norm minimization. Further eval-

uation suggests that this algorithm can cope well with
measurement noise, and degrade gracefully in the pres-
ence of missing or corrupted data.

The paper is organized as follows. Section 2 summarizes
background and related work. In Section 3 we describe our
framework, and the anomography algorithms examined in
this paper, in the context of fixed routing. In Section 4
we extend the Box-Jenkins anomography to the case where
routing may change over time. In Section 5 we describe our
evaluation methodology, and Section 6 presents the results.
Section 7 provides final remarks.

2 Background

2.1 Network Tomography
Network tomography describes several problems: infer-
ring link performance of a network from end-to-end mea-
surements, or inferring Origin-Destination (OD) traffic de-
mands from link load measurements. These problems can
be written as linear inverse problems where one seeks to
find unknownsx from measurementsb given a linear rela-
tionship (1), whereA is the routing matrix. For a network
with n links, andm OD flows, we define the routing matrix
to be then × m matrix A = [aij ] whereaij indicates the
fraction of traffic from flowj to appear on linki.

SNMP provides link measurements of traffic volumes
(bytes and packets), typically at 5 minute intervals (this
data is described in more detail in, for example [34]). We
shall assume data of this type is the input to our algorithms,
and we wish to infer anomalous traffic matrix elements, but
note that anomography is not limited to this problem, and
could equally be applied to inferring anomalous link per-
formance from end-to-end measurements. An additional
source of data used here comes from the routing protocols
used to build the forwarding tables within each router. We
use routing data (e.g., gathered from a route monitor as in
[27]) along with a route simulator (as in [10]) to predict the
results of these distributed computations, and determine the
network routing.

The problem of inferring the OD traffic-matrix has been
much studied recently (e.g., [5, 14, 22, 23, 28, 31, 34, 35]).
The problem’s key characteristic is that it is massively un-
derconstrained: there will be approximatelyN2 OD flows
to estimate and onlyO(N) link measurements. Hence to-
mography methods seek to introduce additional informa-
tion, often in the form of some kind of traffic model (for in-
stance a Poisson model in [31, 28], a Gaussian model in [5],
or a gravity model in [34, 35]). Anomography problems are
also highly underconstrained, but the models used to de-
scribe traffic are inappropriate for anomalies — by defini-
tion these events are generated by completely different pro-
cesses from normal network traffic. Moreover, in anomog-
raphy we combine detection with inference, whereas in
standard network tomography we seek only to infer a set
of traffic matrix elements. Hence there are important dif-
ferences between this paper and network tomography.



It is also important to note that routing matrices change
over time. In much previous work, routing matrices are
taken to be constant (an exception being [23], where the
traffic is assumed to be somewhat constant, while the rout-
ing varies), but it is important (see [29]) to allow for the
fact that routing is not constant, and neither is the traffic.
In order to allow for variable routing, we index not just the
traffic measurements over time, but also the routing matrix.
Given these, we may write the relationship between the link
traffic, and OD traffic matrix as

bj = Ajxj , (2)

whereAj is ann×m routing matrix,xj is a length-n vector
of unknown OD flow traffic volumes, andbj is a length-m
vector of link loads1, at time intervalj.

2.2 Related Work
Lakhinaet al. carried out the pioneering work in the area
of inference of anomalies at network level, [19, 18, 20],
and adapted Principal Components Analysis (PCA) to this
setting. Donoho [8, 9] introduced a powerful mathemati-
cal treatment for tomography-like problems, wherein one
seeks solutions that maximize sparsity (intuitively, solu-
tions with fewest explanations). These papers inspired our
development of the new methods introduced here, and our
development of a framework in which a very wide class of
methods all fit.

Anomaly detection is a burgeoning field. A great deal
of research in network anomaly detection relies on some
type of inference step, taking a set of alarms [13, 15, 16,
25, 30] as input. While anomography includes methods
of this type, our results indicate that it is better to delay
alarm generation until after the inference step. In that way,
a single constructive alarm may be generated, rather than
a storm of redundant alarms. Moreover, in delaying the
alarm generation until after the inference step, we can in
some cases greatly improve the sensitivity of detection, as
was demonstrated in [19].

We approach the network anomaly detection problem
from the point of detecting unknown anomalous behavior,
rather than looking for particular signatures in the data, the
focus of much work in the security community. A large
component of the work on machine learning, signal pro-
cessing and time-series analysis is devoted to detecting out-
liers or anomalies in time-series. This literature has been
applied to networks in a number of cases; for examples
see [1, 4, 15, 17, 30, 32]. These methods range in sophis-
tication from [4], which suggests the use of the standard
Holt-Winters forecasting technique for network anomaly
detection, to [1], which uses a sophisticated wavelet based
method with great potential. These methods focus on sin-
gle time series rather than the multi-dimensional time series
that arise in anomography.

Most earlier work ignores noise or provides weak tests of
robustness to noise (which can destroy utility). A strength
of the work presented here is that we provide tests of effec-

tiveness of the methods in the presence of noise, always a
factor in practice.

3 Network Anomography
In this section,we shall assume that the routing matrices
Aj are time-invariant and are denoted byA. (We will ex-
tend our work to time-varyingAj in Section 4.) Under this
assumption, we can combine allt linear systems (2) into a
single equation using matrix notation:

B = AX, (3)

whereB = [b1 b2 · · ·bt] is the matrix formed by having
bj as its column vectors, and similarlyX = [x1 x2 · · ·xt].

3.1 A General Anomography Framework
We identify two basic solution strategies to network
anomography: (i)early inverse, and (ii) late inverse. Early-
inverse approaches may appear more intuitive. The early-
inverse approach tackles the problem in two steps. The
first is thenetwork tomographystep, where OD flow data
at each intervalj are inferred from the link load mea-
surements by solving the ill-posed linear inverse problem
(2). Given the estimated OD flow dataxj at different time
pointsj, in the second step,anomaly detectioncan then be
applied to thexj . For this step, there are many widely used
spatial and temporal analysis techniques, which we will de-
scribe later in this section.

Early-inverse methods, although conceptually simple,
have an obvious drawback — errors in the first step, which
are unavoidable due to the ill-posed nature of the infer-
ence problem, can contaminate the second step, sabotaging
overall performance. Another disadvantage is that early-
inverse methods apply a potentially computationally ex-
pensive anomaly detection step to high-dimensional data:
on a network ofN nodes, one must perform this step on
all N2 OD pairs. As we will see, late-inverse performs
anomaly detection on onlyO(N) dimensional data. We fo-
cus on late-inverse methods in this paper for these reasons,
though we shall provide some comparisons between early-
and late-inverse methods.

The idea of the late-inverse method is to defer “lossy”
inference to the last step. Specifically, late inverse ap-
proaches extract the anomalous traffic from the link load
observation, then form and solve a new set of inference
problems:

B̃ = AX̃, (4)

whereB̃ = [b̃1 b̃2 · · · b̃t] is the matrix of anomalous traffic
in the observables, and̃X = [x̃1 x̃2 · · · x̃t] is the matrix of
OD flow anomalies to be diagnosed, overt time intervals.

While the new inference problems (4) share the same
linear-inverse structure as in network tomography (3), the
characteristics of the unknowns are very different, and so is
the solution strategy, which we will explore in Section 3.4.

We now introduce a simple framework for late-inverse
anomography methods. In this framework,B̃ is formed by



multiplying B with a transformation matrixT . Depending
on whether we use a left or right multiplying transforma-
tion matrix, we can further divide the framework into the
following two classes:

• spatial anomography, where a left multiplying transfor-
mation matrixT is used to formB̃, i.e., B̃ = TB;

• temporal anomography, where a right multiplying
transformation matrixT is used to formB̃, i.e., B̃ =
BT .

Our framework encompasses a number of analysis tech-
niques for extracting anomalous traffic̃B from link load
observationsB, as we next illustrate.

3.2 Spatial Anomography
Data elements in high dimensional data sets, such as the
link load observations, usually have dependencies. The in-
trinsic dependency structure among the data elements can
thus be exploited for filtering anomalous behavior by dis-
covering data points that violate the normal dependency
structure. In our context, the process of detecting such
data points can be performed by left-multiplication by a
transformation matrixT such thatB̃ = TB. An exam-
ple of such an approach is a recent study by Lakhinaet al.
[19], where Principal Component Analysis (PCA) is used
in finding dominant patterns. We describe this method, and
in particular its instantiation as a left-multiplication opera-
tion in the following section.

3.2.1 Spatial PCA

In [19], Lakhinaet al.proposed a subspace analysis of link
traffic for anomaly detection, which can be summarized as
follows.
1. Identify a coordinate transformation ofB such that the

link traffic data under the new coordinate systems have
the greatest degree of variance along the first axis, the
second greatest degree of variance along the second
axis, and so forth. These axes are called the principal
axes or principal components.
Recall thatB = [b1 b2 · · ·bt] is the collection of link
traffic data atm links overt time intervals, where each
row i (1 ≤ i ≤ m) denotes the time series of thei-
th link and each columnj (1 ≤ j ≤ t) represents an
instance of all the link loads at time intervalj. The
principal components,v1,v2, ...,vm can be computed
iteratively as follows:

vk = argmax
‖v‖=1

∥

∥

∥

∥

∥

(

BT −

k−1
∑

i=1

BT viv
T
i

)

v

∥

∥

∥

∥

∥

The coordinate transformation matrix can thus be ob-
tained by arranging the principal components as rows
of a matrixP = [v1 v2...vm]T .

2. Divide the link traffic space into thenormal subspace
and theanomalous subspace. Lakhinaet al. [19] devel-
oped a threshold-based separation method by examin-
ing the projection of the time series of link traffic data

on each principal axis in order. As soon as a projection
is found that contains a 3σ deviation from the mean,
that principal axis and all subsequent axes are assigned
to the anomalous subspace. All previous principal axis
are assigned to the normal subspace.
We usePa = [vr vr+1...vm]T to denote the matrix of
the principal axes in the anomalous subspace, wherevr

is the first axis that fails to pass the threshold test.

3. The anomalous traffic can now by extracted from link
load observation by first projecting the data into the
anomalous subspace and then transforming it back, by
taking B̃ = (PT

a Pa)B, and so we obtain the transfor-
mation matrixT = PT

a Pa.
We call the above methodspatial PCAbecause it ex-

ploits the correlation between traffic on different links
(across space). Later in Section 3.3.4, we will describe
temporal PCA, which exploits temporal correlation by ap-
plying PCA to identify dominant patterns across time.

3.3 Temporal Anomography
The anomalous link traffic can also be separated by per-
forming temporal analysis on the time series for each link.
Consider a set of link traffic data over timet: B =
[b1 b2...bt]. The process of extracting anomalies by ex-
ploiting the temporal structure within the data points can
be modeled as a linear transformation of the time series:
B̃ = [b̃1 b̃2...b̃t] = BT , where the transformation ma-
trix T can be either explicit or implicit. In this paper,
we consider four types of temporal analysis: ARIMA,
Fourier, Wavelet, and PCA (for identifying dominant pat-
terns across time). Although it may not be obvious at first
glance, all these methods indeed fit in our framework of
linear matrix transformation, as we will see next.

3.3.1 ARIMA Modeling

Univariate time series. The Box-Jenkins methodology,
or AutoRegressive Integrated Moving Average (ARIMA)
modeling technique [2, 3], is a class of linear time-series
forecasting techniques that capture the linear dependency
of the future values on the past. It is able to model a wide
spectrum of time-series behavior, and has been extensively
used for anomaly detection in univariate time-series.

An ARIMA model includes three order parameters: the
autoregressive parameter (p), the number of differencing
passes (d), and the moving average parameter (q). In
the notation introduced by Box and Jenkins, models are
summarized as ARIMA(p, d, q). A model described as
ARIMA (0, 1, 2) means that it containsp = 0 (zero) au-
toregressive parameters andq = 2 moving-average param-
eters which were computed for the time series after it was
differenced once (d = 1).

A general ARIMA model of order(p, d, q) can be ex-
pressed as:

zk −

p
∑

i=1

φi · zk−i = ek −

q
∑

j=1

θj · ek−i, (5)



wherezk is obtained by differencing the original time series
d times (whend ≥ 1) or by subtracting the mean from the
original time series (whend = 0), ek is the forecast error
at timek, φi (i = 1, ..., p) andθj (j = 1, ..., q) are the au-
toregression and moving-average coefficients, respectively.

Many commonly used smoothing models are special in-
stances of ARIMA models. For example, the Exponen-
tially Weighted Moving Average (EWMA), is equivalent to
ARIMA (0, 1, 1); linear exponential smoothing, also known
as Holt-Winters, is equivalent to ARIMA(0, 2, 2). See [26]
for detailed equations for various smoothing models and
their equivalence with ARIMA models.

There are well known techniques for estimating the pa-
rametersp, d, q, φi and θj for a given time series [2, 3],
and given the parameters, the model is simply applied to
get ẑk a prediction ofzk (using for instance the Durbin-
Levinson algorithm [3]). The prediction errors are then
ek+1 = zk+1 − ẑk+1, which then form our anomalous traf-
fic (the traffic which does not fit the model). In practice the
parameters used in the ARIMA model are sometimes cho-
sen to meet particular goals intended by the implementor
(see [4] for some discussion of these choices), rather than
being estimated from the data set, because the parameters
of a data set may change over time. However, we prefer to
use adaptive techniques to overcome this problem.

If we consider the time series to be vectors of lengtht,
then the above results can be written in matrix form. Tak-
ing the measurementsb = (b1, . . . , bt)

T , we can obtain
the errorse = (e1, . . . , et)

T , via right-multiplication by a
transformation matrix̃bT = eT = bT T . Specifically, letI
denote thet × t identity matrix,▽ denote the “back shift”
matrix, and11 denote thet × t unit matrix, i.e.,

I =

2

6

6

6

4

1 0 0...0 0

0 1 0...0 0

· · ·
0 0 0...1 0

0 0 0...0 1

3

7

7

7

5

, ▽ =

2

6

6

6

4

0 1 0...0 0

0 0 1...0 0

· · ·
0 0 0...0 1

0 0 0...0 0

3

7

7

7

5

, 11 =

2

6

6

6

4

1 1 1...1 1

1 1 1...1 1

· · ·
1 1 1...1 1

1 1 1...1 1

3

7

7

7

5

.

The differencing result,z = [z1z2...zt]
T , is then

zT =







bT (I −▽)d, for d ≥ 1,

bT −
1

t
bT 11 = bT

(

I −
1

t
11

)

, for d = 0.

(6)
Equation (5) can be written in matrix notation as

zT −

p
∑

i=1

φiz
T▽i = eT −

q
∑

j=1

θje
T▽j,

or equivalently,

eT = zT

(

I −

p
∑

i=1

φi▽
i

)



I −

q
∑

j=1

θj▽
j





−1

.

Extending ARIMA based models to multivariate time se-
ries is straightforward. As noted earlier, we construct the

matrixB with the measurements at each time periodbi as
its columns. Via the above transformations, we obtain

E = Z

(

I −

p
∑

i=1

φi▽
i

)



I −

q
∑

j=1

θj▽
j





−1

. (7)

ARIMA based anomography. ReplacingZ by the matrix
form of (6), we see thatE = BT is indeed a transforma-
tion given by right-multiplyingB with a matrixT . In fact,
any linear filtration of the elements of a time series can be
modeled by a right multiplying matrix transformation.

To get back to anomaly detection, we simply identify the
forecast errors as anomalous link traffic,B̃ = E. That is,
traffic behavior that cannot be well captured by the model
is considered anomalous.

3.3.2 Fourier Analysis

Fourier analysis [21] is the process of decomposing a com-
plex periodic waveform into a set of sinusoids with differ-
ent amplitudes, frequencies and phases. The sum of these
sinusoids can exactly match the original waveform. This
lossless transform presents a new perspective of the signal
under study (in the frequency domain), which has proved
useful in very many applications.

For a discrete-time signalx0, x1, . . . , xN−1, the Discrete
Fourier Transform (DFT) is defined by

fn =
1

N

N−1
∑

k=0

xke−jk2πn/N , for 0 ≤ n ≤ N − 1,

wherefn is a complex number that captures the ampli-
tude and phase of the signal at then-th harmonic frequency
(with base frequency1/N ). Note that for a real signal{fn}
is symmetric, i.e.,fn = fN−1−n. Lowern corresponds to
a lower frequency component, withf0 being the DC com-
ponent, or the average of the input series, andfn with n
close toN/2 corresponding to high frequencies.

The Inverse Discrete Fourier Transform (IDFT) is used
to reconstruct the signal in the time domain by

xn =

N−1
∑

k=0

fkejk2πn/N , for 0 ≤ n ≤ N − 1.

An efficient way to implement the DFT and IDFT
is through an algorithm called the Fast Fourier Trans-
form (FFT). The computational complexity of the FFT is
O(N log(N)).

FFT based anomography. The idea of using the FFT
to extract anomalous link traffic,̃B is to filter out the low
frequency components in the link traffic time series. In
general, low frequency components capture the daily and
weekly traffic patterns, while high frequency components
represent the sudden changes in traffic behavior. Working
in the frequency domain provides us with the opportunity
to distinguish these two kinds of behaviors.

We summarize FFT based anomography as follows.



1. Transform link trafficB into the frequency domain:
F = FFT(B): apply the FFT on each row ofB. (Recall
that a row corresponds to the time series of traffic data
on one link.) The result is the corresponding frequency
domain series, in each row ofF .

2. Remove low frequency components: i.e. setFi =
0, for i ∈ [1, c] ∪ [N − c, N ], whereFi is thei-th col-
umn ofF andc is a cut-off frequency. (For example,
for the results presented in Section 6, we use 10-minute
aggregated link traffic data of one week duration, and
c = ⌈ 10

60N⌉, corresponding to a frequency of one cycle
per hour.)

3. Transform back into the time domain: i.e. we takeB̃ =
IFFT(F ). The result is the high frequency components
in the traffic data, which we will use as anomalous link
traffic, B̃.

The DFT and IDFT may be represented as right-matrix
products. In setting columns ofF to zero, and performing
the IDFT we are taking a linear combination of the columns
of F , which in turn are a linear combination of those ofB.
Hence, the overall process above can be modeled as a right-
multiplying matrix transformatioñB = BT . Note also that
in thresholding at frequencyc we preserve the symmetry of
F , and so althoughF may contain complex elements, the
resulting transform will be real.

3.3.3 Wavelet Analysis

Wavelets [7, 12, 21] are mathematical functions that cut up
data into different frequency components, and then study
each component with a resolution matched to its scale.
They provide a powerful means for isolating characteris-
tics of signals via a combined time-frequency representa-
tion and are often considered superior to traditional Fourier
methods especially in situations where the signal contains
transients, such as discontinuities and sharp spikes.

In [1], Barford et al. have developed a wavelet-based
algorithm for detecting anomalies in the link traffic data.
It shares the same principle as the FFT based approaches
— exposing anomalies by filtering low frequency compo-
nents. More specifically, it uses wavelets to decompose the
original signal into low-, mid-, and high-frequency compo-
nents and then detects anomalies by close examination of
the mid- and high-frequency components.

Below we computẽB as the high-frequency components
of link traffic B. We can also computẽB as the mid-
frequency components ofB in essentially the same way.

1. Use wavelets to decomposeB into different frequency
levels:W = WAVEDEC(B), by applying a multi-level
1-D wavelet decomposition on each row ofB. The re-
sult is a wavelet decomposition vector, which we save
as one row in matrixW . The wavelet we use is the
Daubechies wavelet [6] of order 6.

2. Then remove low- and mid-frequency components in
W by setting all coefficients at frequency levels higher
thanwc to 0. Herewc is a cut-off frequency level. For

the results presented in Section 6, we use10-minute ag-
gregated link traffic data of one week duration, andwc

is set at3. That is, we only keep coefficients at fre-
quency levels1, 2, and3, which is consistent with [1].

3. Reconstruct the signal:̃B = WAVEREC(B). The re-
sult is the high-frequencycomponents in the traffic data.

It is easy to verify that the process of WAVEDEC and
WAVEREC only involves linear combinations of columns
of B. As a result, thẽB derived through the wavelet based
anomography can also be modeled as right multiplying ma-
trix transformation.

3.3.4 Temporal PCA

In Section 3.2.1, we presented a method of applying PCA
to find dominant patterns among different link-load time
series. A similar method can be used in identifying domi-
nant patterns across time.

Consider the link load matrixB = [b1 b2...bt]. We can
think of each row as at-dimensional vector. What we are
looking for is a new coordinate system,v1, v2, ... ,vt,
such that the projection of them links (onv1, v2, ..., vt)
has energy concentrated on the first several axes. This is
exactly what PCA provides. The only difference is that
we now apply PCA onBT as opposed toB (as used in
spatial PCA). Then we follow the same procedure to de-
fine an anomalous subspace and to extract anomalies that
have projections in the anomalous subspace. In this way,
we obtain a left multiplying transformation matrixT , i.e.,
B̃T = TBT . Taking transpose on both side of the equa-
tion, we haveB̃ = (B̃T )T = (TBT )T = BT T whereT T

is a right multiplying transformation matrix that extracts
anomalies fromB.

3.4 Inference Algorithms

Once we obtain the matrix of link anomalies̃B, the next
step is to reconstruct OD flow anomaliesX̃ by solving a se-
ries of ill-posed linear inverse problemsb̃j = Ax̃j . For ex-
ample, Lakhinaet al [19] proposed to find the single largest
anomaly in each time intervalj by applying a greedy al-
gorithm. We present below three common inference al-
gorithms for solving these problems. All three algorithms
deal with the underconstrained linear system by searching
for a solution that minimizes some notions of vector norm,
three examples of which are

• The ℓ2 norm of a vectorv is defined as‖v‖2 =
(
∑

i v2
i

)
1

2 , wherevi is thei-th element of vectorv.

• Theℓ1 norm of a vectorv is defined as‖v‖1 =
∑

i |vi|,
i.e., the sum of the absolute value of each element ofv.

• Theℓ0 norm of a vectorv is defined as‖v‖0 =
∑

i v0
i ,

i.e., the number of non-zero elements ofv.

3.4.1 Pseudoinverse Solution

A standard solution tõb = Ax̃ is the pseudoinverse solu-
tion x̃ = A+b̃, whereA+ is the pseudoinverse (or Moore-
Penrose inverse) of matrixA. It is known that̃x = A+b̃ is



the solution to the problem̃b = Ax̃ that minimizes theℓ2

norm of the anomaly vector, i.e. it solves:

minimize‖x̃‖2 subject to‖b̃− Ax̃‖2 is minimal. (8)

3.4.2 Sparsity Maximization

In practice, we expect only a few anomalies at any one
time, sox̃ typically has only a small number of large val-
ues. Hence it is natural to proceed by maximizing thespar-
sity of x̃, i.e., solving the followingℓ0 norm minimization
problem:

minimize‖x̃‖0 subject tob̃ = Ax̃. (9)

The ℓ0 norm is not convex and is notoriously difficult to
minimize, so in practice one needs to either approximate
the ℓ0 norm with a convex function or use heuristics, for
example the greedy algorithm of Lakhinaet al [19].

ℓ1 norm minimization One common approach to ap-
proximateℓ0 norm minimization is to convexify (9) by re-
placing theℓ0 norm with anℓ1 norm, so that we seek a
solution to

minimize‖x̃‖1 subject tob̃ = Ax̃ (10)

As shown in [8, 9],ℓ1 norm minimization results in the
sparsest solution for many large under-determined linear
systems.

In the presence of measurement noise, the constraints
b̃ = Ax̃ may not always be satisfiable. In this case, we
can add a penalty term‖b̃− Ax̃‖1 to the objective and re-
formulate (10) as:

minimize λ‖x̃‖1 + ‖b̃− Ax̃‖1 (11)

whereλ ∈ [0, 1] controls the degree to which the con-
straintsb̃ = Ax̃ are satisfied. As shown in Section 6, the
algorithm is not very sensitive to the choice ofλ. In the rest
of this paper, unless noted otherwise, we useλ = 0.001,
which gives satisfactory results.

We can cast (11) into the following equivalent Linear
Programming (LP) problem, for which solutions are avail-
able even whenA is very large, owing to modern interior-
point linear programming methods.

minimize λ
∑

i ui +
∑

j vj

subject to b̃ = Ax̃ + z

u ≥ x̃, u ≥ −x̃

v ≥ z, v ≥ −z

(12)

Greedy algorithm Another common heuristic solution
for ℓ0 norm minimization is to apply the greedy algorithm.
For example, the greedy heuristic has been successfully ap-
plied to wavelet decomposition, where it goes by the name
of Orthogonal Matching Pursuit(OMP) [24]. In the same
spirit here, we develop a greedy solution to maximize the
sparsity ofx̃. The algorithm starts with an empty setI

of non-zero positions for̃x and then iteratively adds new
non-zero positions toI. During each iteration, for each po-
sition p 6∈ I, the algorithm tests how much it can reduce
the residual̃b− Ax̃ by includingp as a non-zero position.
More specifically, letJ = I∪{p}. The algorithm estimates
the values for the non-zero elements ofx̃ (denoted as̃xJ )
by solving the following least squares problem

minimize‖b̃− AJ x̃J‖2 (13)

whereAJ = A[., J ] is a submatrix ofA formed by the
column vectors ofA corresponding to positions inJ . The
residual is then computed aseJ = ‖b̃ − AJ x̃J‖2. The al-
gorithm then greedily chooses the positionp that gives the
smallesteJ and adds it toI. The algorithm stops whenever
either the residual energy falls below some tolerance to in-
accuracyemax or the number of non-zero positions exceeds
some thresholdℓ0

max.

4 Dynamic Network Anomography
Up to this point, we have assumed that the routing matrices
are constant. However, we wish to allow for dynamic rout-
ing changes, and so we must allowAj to vary over time.
In IP networks, routing changes occur as part of the nor-
mal “self-healing” behavior of the network, and so it is
advantageous to isolate these from traffic anomalies and
only signal traffic anomalies. In addition, if some mea-
surements are missing (say at timej), we may still form a
consistent problem by setting the appropriate rows ofAj to
zero. Thus, for realistic SNMP measurements where miss-
ing data are often an issue, we still wish to varyAj even
for static routing. Routing measurements may be obtained
using a route monitor, to provide accurate, up-to-date mea-
surements of routing (at least at the time scale of SNMP
measurements, e.g. minutes).

Where the tomography step can be done separately at
each time interval (for instance see [34, 35]), it is sim-
ple to adapt early-inverse methods todynamic network
anomographyby inverting (2) at each time step. Given the
straight forward approach for early-inverse methods, We
seek here to generalize late-inverse methods to dynamic
network anomography.

4.1 Dynamic Temporal Anomography
When the routing matrix is non-constant, there is no reason
to believe that the measurementsB should follow a simple
model such as an ARIMA model. Even where the traffic
itself follows such a model, a simple routing change may
change a link load measurement by 100%, for instance by
routing traffic completely away from a particular link. If
we were to apply the ARIMA model to the measurements
B, we would see such a change in routing as a level-shift
anomaly. However, its cause is not an unknown change in
X (to be discovered), but rather a known change in the rout-
ing matricesAj . Likewise, it no longer makes sense to try
to exploit spatial correlations which arose from a particular
routing, to the case of another routing.



However, it is no less reasonable to approximate the traf-
fic matrixX by an ARIMA model (thanB when the rout-
ing is constant), even when routing may change. Under
such a modeling assumption, we can writeX̃ = XT . We
know also that the measurements are given by (2). A rea-
sonable approach to the solution is therefore to seek a so-
lution X̃ which is consistent with these equations, but also
minimizes one of the norms (described above) at each time
step. We choose to minimize theℓ1 norm‖x̃j‖1 here be-
cause (i) it allows us to naturally incorporate link load con-
straints at multiple time intervals, and (ii) it is more accu-
rate than both the pseudoinverse and the greedy algorithms
for static anomography (as we will show in Section 6).

Unfortunately, for transform based methods (the Fourier,
wavelet and PCA methods) the number of constraints be-
comes very large (ast grows). On the other hand, the set of
constraints for the ARIMA model can be written in a form
such that it does not grow witht. Hence, in the follow-
ing we concentrate on generalizing the ARIMA approach.
We present the algorithm for ARIMA(p, d, q) models with
d ≥ 1 (Section 4.2). We have also extended the algorithm
to handle ARIMA models withd = 0, though we omit this
treatment here for brevity (as it is a straightforward exten-
sion). Due to space limits, we will leave out the discussion
on model selection and parameter estimation, two impor-
tant issues for applying ARIMA-based anomography. In-
terested readers can find this in our technical report [33].

4.2 Algorithm for ARIMA Models (d ≥ 1)
We are going to seek solutions that are consistent with
the measurementsbj = Ajxj , for j = 1, . . . , t, and an
ARIMA model that givesX̃ = XT whereT is the same
transformation matrix implicitly defined by (6) and (7). Im-
portantly, we do not wish to have to estimateX (or we may
as well use an early-inverse method). The advantage of the
ARIMA model, is we do not need to knowX , but only
linear combinations ofX .

Let L be the backshift operator, whose effect on a pro-
cessz can be summarized as(Lz)k = zk−1. Let the AR
polynomialΦ(L) be

Φ(L) =

d+p
∑

i=0

γiL
i def

=

(

1 −

p
∑

i=1

φiL
i

)

(1 − L)d.

Letyk−i = γixk−i. We now identifye = x̃ in the ARIMA
model described in (5) (or rather its multivariate extension).
By definition the sum

∑d+p
i=0 yk−i = zk −

∑p
i=1 φizk−i,

and so, ford ≥ 1, the ARIMA model (5) can be rewritten

d+p
∑

i=0

yk−i = x̃k −

q
∑

j=1

θjx̃k−j . (14)

Defineck−i = γibk−i, then asyk−i = γixk−i, the mea-
surement equation (2) implies

Ak−iyk−i = ck−i, i = 0, 1, · · · , d + p. (15)

We can computẽx1, x̃2, · · · , x̃t iteratively by solving
a series ofℓ1 norm minimization problemsPk (k =
1, 2, · · · , t):

Pk : minimize‖x̃k‖1 subject to (14) and (15). (16)

As an example, consider the simplest ARIMA model,
ARIMA (0, 1, 0). In this case,p = q = 0, so we have

Φ(L) =

1
∑

i=0

γiL
i = (1 − L),

so γ0 = 1 and γ1 = −1, and (14) becomes̃xk =
∑1

i=0 yk−i, thus problemPk is simply

minimize ‖x̃k‖1

subject to







x̃k = yk + yk−1

Akyk = bk

Ak−1yk−1 = −bk−1

(17)

As in Section 3.4.2, we can accommodate measurement
noise by incorporating penalty terms into the objective to
penalize against violation of constraints (14) and (15). We
can then solve the resultingℓ1 norm minimization problem
by reformulating it as an equivalent LP problem. We omit
such details in the interest of brevity.

We have also developed two techniques to significantly
reduce the size of the above minimization problemsPk by
exploiting the fact that changes in routing matrices tend to
be infrequent (i.e., not in every time interval) and local (i.e.,
only in a small subset of rows). Interested readers please
refer to our technical report [33] for details.

5 Evaluation Methodology

5.1 Data Sets
We apply our techniques to real network measurement data
gathered from two large backbone networks – Internet2’s
Abilene network and a Tier-1 ISP network. Both networks
span the continental USA. The Abilene backbone is rela-
tively small, with 12 core routers, 15 backbone links and
144 OD flow elements in its traffic matrix. The Tier-1 ISP
network is much larger, consisting of hundreds of routers,
thousands of links and tens of thousands of different OD
flows. To reduce computation complexity without loss of
utility, we use the technique in [34] to lump edge routers
with topologically equivalent connectivity. This reduces
the total number of OD flows to about 6000.

The primary data inputs for our anomaly diagnosis are
the time series of link loads (bytes across interfaces) for
every network, gathered through SNMP. We use flow level
data, where available, for validation. As is often the case,
the flow data is incomplete. The flow data are collected
at the edge of the network where data packets are sampled
and aggregated by the IP source and destination address,
and the TCP port number. Adjusted for sampling rate and
combined with BGP and ISIS/OSPF routing information,



these sampled IP flow statistics are then aggregated into a
real traffic matrix [11], where each element is an OD flow
with the origin and destination being the ingress and egress
point of the flow to/from the network. Consistent with [19],
we aggregate these measurements into bins of 10 minutes
to avoid any synchronization issues that could have arisen
in the data collection.

Ideally, to evaluate the methods, one would like com-
plete flow level data, SNMP link load measurements, and
continuous tracking of routing information, providing a
consistent, comprehensive view of the network in opera-
tion. Unfortunately, we do not have the complete set of
flow level data across the edge of the network (due to prob-
lems in vendor implementations or in data collection), and
our routing information is only “quasi-” real time (we rely
on snapshots available from table dumps carried out every
8 hours). As a result, inconsistencies sometimes arise be-
tween these measurements. To overcome these problems
and provide a consistent means for evaluating the algo-
rithms, we adopt the method in [34] and reconstruct the
link traffic data by simulating the network routing on the
OD flow traffic matrix generated from the available set of
flow level data. Note that we use derived link load measure-
ments for validation purposes only. In practice, our meth-
ods are applicable to direct measurement of traffic data as
obtained from SNMP.

5.2 Performance Metrics

We conduct our evaluation in two steps. First, we com-
pare the different solution techniques for the inverse prob-
lem b̃j = Ax̃j (as described in Section 3.4). The in-
verse problem is common to all the late-inverse anomog-
raphy methods discussed in Section 3, so for simplicity
we choose to use the simplest temporal forecasting model,
ARIMA (0, 1, 0), for evaluation. This model predicts the
next observation to have the same value as the current one.
Thus, the inverse problem on the prediction error can be
constructed by simply taking the difference between con-
secutive link load observations:Ax̃t = b̃t = bt − bt−1.
The performance of the inversion technique is measured by
comparing the inferred solution,x̃t, to the direct difference
of the OD flow,xt−xt−1; the closer the values are, the bet-
ter the result. In the context of anomaly detection, it is often
the case that the large elements (large volume changes) are
of chief interest to network management. Hence, we de-
fined a metric – detection rate – to compare the top ranked
N elements (sorted by size) in solutioñxt to the topN
prediction errorsxt − xt−1 for t spanning a period of one
week. As we will see in Section 6, the top anomalies in our
data are easily resolved by magnitude (close ties are rare).
The detection rateis the ratio of the overlap between the
two sets. Note that the detection rate avoids some prob-
lems with comparing false-alarm versus detection proba-
bilities, as it combines both into one measure. A high de-
tection rate indicates good performance. Detection rate is
used to compare inference techniques in Section 6.1, to as-

sess sensitivity toλ, robustness to noise in Section 6.2, and
the effectiveness of the methods for time-varying routing in
Section 6.3.

In Section 6.4.2 we step away from the simple anomaly
detection algorithm applied to test the inference compo-
nent, and compare the complete set of anomography meth-
ods described in Section 3. As before we use detection
rate to measure whether the anomaly detection method
produces similar results when applied to the OD pairs di-
rectly, or applied to the link load data, along with an inver-
sion method — we use the Sparsity-L1 method (the best
performing of the methods tested using the methodology
above). In other words, we benchmark the anomography
method against the anomalies seen in direct analysis of the
OD flows.

Since different methods may find different sets of bench-
mark anomalies, we need an objective measure for assess-
ing the performance of the methods. Ideally, we would
like to compare the set of anomalies identified by each of
the methods to the set of “true” network anomalies. How-
ever, isolating and verifying all genuine anomalies in an
operational network is, although important, a very difficult
task. It involves correlating traffic changes with other data
sources (e.g., BGP/OSPF routing events, network alarms,
and operator logs), an activity that often involves case-
by-case analysis. Instead, we perform pair-wise compar-
isons, based on the top ranked anomalies identified by each
of the anomography methods, an approach also taken in
Lakhinaet al. [19].

Specifically, for each of the anomography methods, we
apply the underlying anomaly detection method directly to
the OD flow data. We think of the top rankedM anoma-
lies, denoted by the setB(j)

M for anomaly detection method
j as a benchmark. For each of the anomography methods
i, we examine the set ofN largest anomaliesA(i)

N inferred
from link load data. To help understand the fidelity of the
anomography methods we consider the overlap between
the benchmark and the anomography method,A

(i)
N ∩ B

(j)
M ,

across the benchmarks and the anomography methods. We
allow a small amount of slack (within one ten-minute time
shift) in the comparison between events, in order that phase
differences between methods not unduly impact the results.

We are interested in understanding both false positives
and false negatives:

(i) False Positives. TakingB(j)
M as the benchmark, the

false positives produced by anomography methodi are
A

(i)
N − B

(j)
M . The magnitudes of the anomalies inA(i)

N

andB(j)
M may vary. Yet, intuitively if one of theN = 30

top anomalies inA(i)
N is not among the topM = 50

from the benchmark, then this anomaly inA(i)
N is likely

a false positive. This leads to the following heuristic for
detecting false positives. We choose (reasonable) pa-
rametersN andM , with N < M , and count the false
positives as the size ofA(i)

N − B
(j)
M .



(ii) False Negatives. Our reasoning is similar. Taking
B

(j)
M as the benchmark, the false negatives produced by

anomography methodi areB(j)
M − A

(i)
N . Intuitively if

one of theM = 30 top anomalies in the benchmark is
not among the topN = 50 anomalies inA(i)

N then this

anomaly inB(j)
M is missed by the anomography method

i, and is a false negative. This leads to the following
heuristic for detecting false negatives. We choose (rea-
sonable) parametersN andM , with N > M , and count
the false negatives as the size ofB

(j)
M −A

(i)
N .

For our reports in the next section, we choose the smaller
of M and N to be 30, since this roughly represents the
number of traffic anomalies that network engineers might
have the resources to analyze deeply on a weekly basis. We
would like to show comparative results where the larger pa-
rameter varies, but cannot within a reasonable amount of
space, and so show results for one fixed value50. It is im-
portant to note that the results we obtained for other values
of M andN change none of our qualitative conclusions.

6 Results

We obtained six months (03/01/04-09/04/04) of measure-
ments for the Abilene network and one month (10/06/04-
11/02/04) for the Tier-1 ISP network. We partitioned the
data into sets spanning one week each, and evaluated the
methods on each data set. Due to space limits, we present
only one set of representative results – Tier-1 ISP (10/6/04-
10/12/04). In our technical report [33], we also report re-
sults in other weeks for the Tier-1 ISP network as well as
for the Abilene network. These results are qualitatively
similar to those reported here.

6.1 Comparison of Inference Techniques

We first compare different solution techniques for the in-
ference problem̃b = Ax̃. More specifically, we con-
sider three late inverse algorithms:Pseudoinverse (Section
3.4.1),Sparsity-Greedy (Section 3.4.2), andSparsity-L1
(Section 3.4.2), and one early inverse technique:Early
Inverse-Tomogravity. We choose to use the tomograv-
ity method [35] as the early inverse technique since it has
demonstrated high accuracy and robustness for estimating
traffic matrix for real operational networks [14, 35].

Figure 1 plots the sizes of the top 50 anomalies (the fore-
cast errors) of the OD flows (the solid lines) and the corre-
sponding values diagnosed by the different inference tech-
niques (the points) for 10/6/04 to 10/12/04, for the Tier-1
ISP network. The y-axis provides the size of the anoma-
lies normalized by the average total traffic volume on the
network. The x-axis is the rank by the size of anomalies di-
rectly computed from the OD flows. We observe that there
are very few large changes – among more than 6 million
elements (∼ 6000 OD flows at 1007 data points), there is
one instance where the size of anomaly is more than 1% of
total traffic and there are 18 cases where the disturbances
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Figure 1: Anomalies by Size
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Figure 2: Detection Rate by Various Inference Techniques

constitute more than 0.5% of total traffic. This agrees with
our intuition on the sparsity of network anomalies.

We see that Pseudoinverse significantly underestimates
the size of the anomalies. Intuitively, Pseudoinverse finds
the least square solution which distributes the “energy” of
the anomaly evenly to all candidate flows that may have
contributed to the anomaly, under the link load constraint.
This is directly opposed to the sparsity maximization phi-
losophy. Among the sparsity maximization techniques,
Sparsity-L1 performs the best. Sparsity-L1 always finds
solutions close to the real anomalies. Sparsity-Greedy, in
general, is more effective than Pseudoinverse, although it
sometimes overestimates the size of anomalies. As a repre-
sentative of the early inverse technique, Tomogravity also
performs well. With few exceptions, tomogravity finds so-
lutions that track the real OD flow anomalies. Intuitively,
when a proportionality condition holds, i.e., when the size
of the anomalies are proportional to the sizes of the OD
flows, then early inverse methods work well. However,
where the proportionality condition does not hold, the error
can be significant.

Figure 2 presents the detection rate for the different in-
ference techniques. We observe that for the Tier-1 ISP net-
work, Sparsity-L1 and Tomogravity, which have about 0.8
detection rate, significantly outperform other methods.

Due to space limits, we will consider only Sparsity-L1
and Tomogravity in the rest of the evaluation, as these
method demonstrate the greatest performance and flexibil-
ity in dealing with problems such as missing data and rout-
ing changes.
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6.2 Robustness
λ in Sparsity-L1. Sparsity-L1 involves a parameterλ in
its formulation (Eq. 11). Figure 3 investigates the sensi-
tivity to the parameter choice. Specifically, Figure 3 plots
the detection rate of Sparsity-L1 forλ = 0.1, 0.01, 0.001,
0.0001 and0.00001. All λ in this range achieve good per-
formance. This is reassuring, since it suggests that little
training or parameter tuning is needed to match the method
to a different network or traffic pattern.

Measurement Noise. Thus far, we have assumed per-
fect link load information for anomaly detection. However,
in real networks, SNMP byte counts are collected from all
routers across the network. Inevitably, measurement issues
such as lack of time synchronization may introduce noise.
Below we evaluate the impact of measurement noise by
multiplying white noise termsN(1, σ) with each element
of the link load, and then using the result as input to our
inference algorithms.

Figure 4 compares how well the methods perform with
no noise, to how well they do with noise levelsσ = 0.5%
and σ = 1%. Note that measurement errors near 1%
throughout the network are quite significant, since the size
of the largest anomalies are themselves near 1% of the to-
tal traffic (Figure 1). It is a challenging task to accurately
diagnose anomalies given the comparable level of noise.
Nevertheless, we find that both Sparsity-L1 and Tomograv-
ity are quite robust to measurement noise. For the Tier-1
ISP network, the detection rate remains above 0.8 for big
anomalies (smallN ) and above 0.7 for the top 50 anoma-
lies. These results demonstrate the strength of our algo-
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rithms in dealing with imperfect measurements.

6.3 Time Varying Routing Matrices
Missing Data. Missing measurement data, arising from
problems such as packet loss during data collection, is com-
mon in real networks. Indeed, this can be tricky to deal
with, since the loss of link load data has the effect of pro-
ducing time varying routing matrices in the anomography
formulation. Fortunately, as discussed in Section 4, our ex-
tended Sparsity-L1 algorithm can handle this situation.

Figure 5 shows the performance of the inference algo-
rithms with up to 5% of the data missing – missing val-
ues are selected uniformly at random. We see that both
Sparsity-L1 and Tomogravity suffer only minor (almost
negligible) performance impact, in terms of detection rate.
The low sensitivity to missing data is an important feature
of these methods, which is critical for real implementation.

Routing Changes. In an operational network, the rout-
ing matrix is unlikely to remain unchanged over a few
days. Hardware failures, engineering operations, mainte-
nance and upgrades all may cause traffic to be rerouted on
alternative paths. Here we evaluate the impact of routing
changes on the performance of our algorithms. We intro-
duce routing changes by simulating faults on internal links.

Figure 6 presents results where we have randomly
failed/repaired up to 3 links at each time instance. We ob-
serve that Sparsity-L1 is very robust to such a disturbance
in the routing structure, while Tomogravity suffers signifi-
cant performance impact. It appears that Tomogravity suf-
fers here because errors in the (early) inference step, being



computed from different routing matrices, add to become
comparable to the anomalies themselves. This demon-
strates another advantage of the late-inverse over the early-
inverse approach.

6.4 Comparison of Anomography Methods

6.4.1 Impacts on Inference Accuracy

Thus far, we have compared the performance of Sparsity-
L1 and Early Inverse-Tomogravity, under the simple tem-
poral model (forecasting the next data point using the cur-
rent value). We found that Sparsity-L1 in general out-
performs the Early Inverse approach. We also observed
that Sparsity-L1 is robust to measurement noise, is insen-
sitive to parameter choice, and is able to handle missing
data and route changes. We now evaluate overall perfor-
mance when applying Sparsity-L1 with other temporal and
spatial anomography methods. In particular, we compare
FFT (Section 3.3.2),Wavelet (Section 3.3.3),PCA (Sec-
tion 3.2.1),TPCA (Section 3.3.4), and four ARIMA based
methods,Diff (the simple forecasting model of the last sec-
tion),Holt-Winters, EWMA, and generalARIMA, which
determines the appropriate model using the method in [33].

As noted in Section 5, for each model considered, we
computex̃ directly from the OD flow traffic data and use
it as the benchmark. Next, we computeb̃ with the same
anomography model, and construct theAx̃ = b̃ infer-
ence problem. We compare the solution derived through
Sparsity-L1 with the benchmark. Figure 7 presents the de-
tection rate for these approaches. To avoid overcrowding
the graph, we divide the anomography methods into two
groups. Figure 7 (a) plots the results for the ARIMA fam-
ily of anomography approaches and Figure 7 (b) plots the
results for the rest. We observe that for all the ARIMA
based approaches, Sparsity-L1 finds very good solutions.
With the traffic data aggregated at the 10-minute level, sim-
ple Diff and EWMA can sufficiently extract the anoma-
lous traffic and warrant a solution that maximizes the spar-
sity of the anomalies. Holt-Winters produces better perfor-
mance than Diff and EWMA. This is because the model is
more sophisticated, and thus is able to capture more com-
plex temporal trends exhibited in the traffic data. Further
sophistication, as incorporated in ARIMA, however, can-
not significantly improve performance. In the family of
ARIMA models, Holt-Winters appears to provide the best
complexity-performance trade-off.

From Figure 7 (b), we observe that Sparsity-L1 can also
achieve high detection rate under FFT, Wavelet and TPCA.
However, it doesn’t work well with PCA2. This can be ex-
plained as follows. When we apply spatial PCA on the real
traffic matrixX and the link load matrixB, we obtain two
linear transformatioñX = TxX , andB̃ = TbB = TbAX ,
respectively. However, the two transformation matrices
Tx andTb may differ significantly because the spatial cor-
relation among link loads and that among OD flows are
rather different. Even if we useTx = Tb, we cannot en-
sure thatATxX = TbAX (i.e., AX̃ = B̃ (Note that this
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Figure 7: Sparsity-L1 with Various AnomographyMethods

last comment applies to spatial anomography methods in
general). Thus, the spatial PCA anomography solution is
not expected to completely overlap with thex̃ identified
by directly applying spatial PCA on the OD traffic flows.
In contrast, the temporal anomography methods areself-
consistentin that givenB̃ = BT , if we apply the same
transformationT onX and obtainX̃ = XT , we guarantee
thatB̃ = AX̃ (= AXT ).

6.4.2 Cross Validation for Different Methods

We now turn to comparing the various anomography meth-
ods . To do so, we use a set of benchmarks, as described in
Section 5, each derived from applying anomaly detection
algorithm directly to the OD flows. For each benchmark,
we report on the success of all of the anomography meth-
ods. The hope is that methods emerge that achieve both
low false positives and low false negatives for nearly all of
the benchmarks.

In Table 1 (a) we present the false positives for the Tier-
1 ISP network withM = 50 andN = 30 (see Section
5). We found results for different values ofM andN to
be qualitatively quite similar. To align our results with the
methodology reported in [19], we include the bottom row,
labeled PCA*, where we use a squared prediction error
(SPE) based scheme to determine the set of time intervals at
which big anomalies occur, and the greedy approach (Sec-
tion 3.4.2) to solve the inference problem. Note that the
number of anomalies reported by PCA* may be less than



Top 30 False Positives with Top 50 Benchmark
Inferred Diff ARIMA EWMA H-W FFT WaveletPCA TPCA

Diff 3 6 3 6 6 4 14 14
ARIMA 4 1 4 1 8 3 10 13
EWMA 3 6 3 6 7 5 15 13

Holt-Winters 4 1 4 1 8 3 10 13
FFT 6 6 6 7 2 6 18 19

Wavelet 6 6 6 6 8 1 12 13
TPCA 17 17 17 17 20 13 14 0
PCA 18 18 18 18 20 14 14 1

PCA*(37) 18 17 18 17 23 16 11 8

Table 1: False positives seen in the top30 inferred anoma-
lies compared against the top50 benchmark anomalies.

Top 50 False Negatives with Top 30 Benchmark
Inferred Diff ARIMA EWMA H-W FFT WaveletPCA TPCA

Diff 0 1 0 1 5 5 12 17
ARIMA 1 0 1 0 6 4 12 18
EWMA 0 1 0 1 5 5 12 17

Holt-Winters 1 0 1 0 6 4 12 18
FFT 3 8 4 8 1 7 18 19

Wavelet 0 2 1 2 5 0 11 13
TPCA 14 14 14 14 19 15 15 3
PCA 10 13 10 13 15 11 13 1

PCA*(37) 17 18 18 18 21 19 16 8

Table 2: False negatives seen in the top50 inferred anoma-
lies compared against the top30 benchmark anomalies.

N . We therefore report the actual number of anomalies in
the table next to the label PCA*.

From the table, we observe from the upper left6 × 6
quadrant that the ARIMA, FFT and Wavelet approaches
tend to have relative low false positives among detected
anomalies. Thus, the top 30 ranked anomalies derived
through these approaches indeed appear to be anomalous
traffic events that are worth investigating.

The PCA based approaches, however, exhibit a higher
false positives when benchmarked against other ap-
proaches. This appears to be partially due to PCA iden-
tifying anomalies of a different type than those identified
by the methods. Consider, for example, a sudden increase
of traffic for an OD flow that persists for a couple of hours.
PCA methods may identify every instance within the two-
hour period as anomalous. ARIMA based approaches de-
tect abrupt traffic changes. Hence ARIMA based methods
likely extract only the “edges” – the first and last instance
– of the two-hour period. Another factor contributing to
PCA’s false positives may be its lack of self-consistency:
anomalies present in the OD pairs but not detected by the
method in the link loads. In addition, unlike ARIMA, FFT,
or wavelet based tomography, both spatial PCA and tem-
poral PCA cannot fully utilize temporal ordering informa-
tion in the measured time series data. For example, any
reordering of the time series,b1, b2, ...,bt, does not affect
the outcome of the algorithm.

Table 2 presents the number of false negatives forM =
30 andN = 50, where we are interested in the number of
large anomalies that are not identified by each approach.

We observe that the ARIMA methods, FFT and Wavelet
anomography approaches have superb performance – the
number of false negatives are very low. This indicates that
very few important traffic anomalies can pass undetected
by these approaches. The PCA based approaches, however,
identify about half of the anomalies.

7 Conclusions

In this paper, we introducednetwork anomography, the
problem of inferring network-level anomalies from widely
available data aggregates. Our major advances are:

1. We introduced a powerful framework for anomography
that cleanly separates the anomaly detection component
from the inference component. The framework opens
up a wide field for innovation and for the development
of families of new algorithms. The novel method of
Lakhinaet al.based on PCA falls within the framework.

2. Within the framework, we put forward a number of
novel algorithms, taking advantage of the range of
choices for anomaly detection and inference compo-
nents and choosing between temporal versus spatial ap-
proaches.

3. We developed a newdynamic anomographyalgorithm,
which tracks both routing and traffic measurements, and
so enables alerting with high fidelity on traffic matrix
anomalies, without alerting on internal routing changes
that leave the traffic matrix relatively stable. As rout-
ing changes are often due to normal internal self-healing
behavior separating these changes from intrinsic traffic
anomalies is advantageous. An additional benefit of dy-
namic anomography is that is robust to missing data, an
important operational reality.

4. Using extensive data from Internet2’s Abilene net-
work and a Tier-1 ISP, we evaluated these anomogra-
phy methods. The findings are encouraging. Specifi-
cally, the results indicate that the new set oftemporal
anomography methods introduced here have better fi-
delity, particularly when usingl1 minimization for the
inference step. Dynamic anomography using ARIMA
based methods andl1 norm minimization shows uni-
formly high fidelity (low false positive and false nega-
tives) and high robustness (to routing changes and miss-
ing or corrupted data).

While we believe our work represents a significant ad-
vance in the state of the art, we recognize that the the ul-
timate test of performance is significant operational expe-
rience: utility is bringing to light in the field new anoma-
lies that were “flying under the radar” of other techniques,
while producing very few false alarms. Our larger goal in
future work is to explore the feasibility and performance
of automated traffic management systems, which incorpo-
rate anomaly detection, root cause diagnosis and traffic and
route control for operational networks.



Notes
1Note that the link load vectorbj includes the aggregated traf-

fic at different ingress/egress points; the corresponding rows inAj

encode the OD flows that enter/exit the network at these points.
2We have verified that Pseudoinverse and Sparsity-Greedy

work even worse than Sparsity-L1 for PCA.
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