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ABSTRACT
Anomaly detection is a first and important step needed to respond
to unexpected problems and to assure high performance and se-
curity in IP networks. We introduce a framework and a power-
ful class of algorithms fornetwork anomography,the problem of
inferring network-level anomalies from widely available data ag-
gregates. The framework contains novel algorithms, as wellas a
recently published approach based on Principal Component Analy-
sis (PCA). Moreover, owing to its clear separation of inference and
anomaly detection, the framework opens the door to the creation
of whole families of new algorithms. We introduce several such
algorithms here, based on ARIMA modeling, the Fourier trans-
form, Wavelets, and Principal Component Analysis. We introduce
a newdynamic anomographyalgorithm, which effectively tracks
routing and traffic change, so as to alert with high fidelity onin-
trinsic changes in network-level traffic, yet not on internal routing
changes. An additional benefit of dynamic anomography is that it
is robust to missing data, an important operational reality. To the
best of our knowledge, this is the first anomography algorithm that
can handle routing changes and missing data. To evaluate these al-
gorithms, we used several months of traffic data collected from the
Abilene network and from a large Tier-1 ISP network. To compare
performance, we use the methodology put forward earlier forthe
Abilene data set. The findings are encouraging. Among the newal-
gorithms introduced here, we see: high accuracy in detection (few
false negatives and few false positives), and high robustness (lit-
tle performance degradation in the presence of measurementnoise,
missing data and routing changes).

1. INTRODUCTION
The first step in fixing a problem is knowing it exists. This is

no less true in networking than anywhere else – we need to know
about a problem before we can repair it. Networking vendors typ-
ically build alarms into network equipment to facilitate fast, accu-
rate detection and diagnosis of problems. However, in practice,
there are many problems for which explicit alarms are eitherabsent
(for new or uncommon problems), or intrinsically hard to produce.
In these cases we must infer the problem from other data sources.
For instance, many types of network problems cause abnormalpat-
terns to appear in the network traffic. Such trafficanomaliesmay
be caused by problems ranging from security threats such as Dis-
tributed Denial of Service (DDoS) attacks and network worms, to
unusual traffic events such as flash crowds, to vendor implemen-
tation bugs, to network misconfigurations. We refer to the prob-
lem of inferring anomalies from indirect measurement asnetwork
anomography(combining “anomalous” with “tomography,” a gen-
eral approach to such inference problems).

Network tomography [37] bears some resemblance, in that both
involve the solution of a linear inverse problem. Examples include
inference of individual link performance characteristicsfrom path
performance characteristics, and inference of traffic matrices from
individual link load measurements. For example, the trafficmatrix

estimation problem arises because the obvious source of data for
direct measurement (flow-level data) can be hard to obtain network-
wide [6, 16, 27, 29, 34, 37, 39, 40]. On the other hand, Simple Net-
work Management Protocol (SNMP) data on individual link loads
is available almost ubiquitously. Fortunately, the link loads and
traffic matrices are simply related by a linear equation

b = Ax (1)

The vectorb contains the link measurements, andA is the rout-
ing matrix (defined formally below). We wish to inferx, which
contains the unknown traffic matrix elements written as a vector.
Tomographic inference techniques seek to invert this relationship
to findx.

The anomography problem is different and somewhat more com-
plex. First, note that anomaly detection is performed on a series of
measurements over a period of time, rather than from a singlesnap-
shot. In addition to changes in the traffic, the solution mustbuild
in the ability to deal with changes in routing. Second, note that
the anomalies that we wish to infer may have dramatically differ-
ent properties from a traffic matrix, and so different methods than
those used for network tomography may be called for. Indeed,we
find that simple extensions to network tomography methods per-
form fair poorly here. Techniques that transform the measurements
prior to attempting to solve the inverse problem are preferable.

As a simple example, imagine trying to detect an anomalous traf-
fic pattern caused by a flash crowd or DDoS attack on a web site.
This type of event will cause increases in traffic flows headedto-
wards a particular set of destinations. It may be hard to rapidly
identify which of the tens of thousands of ingress links on a large
network might be primarily responsible, as large surges at anet-
work egress link may arise from small surges on several ingress
links (ingress links can be large, multiplexing diverse andvariable
traffic). We must infer the change in the pattern of traffic to the
particular site from the complete set of link data, considered to-
gether, rather than as individual time series. This illustrates an im-
portant feature of anomography – that it extends anomaly detec-
tion to network-level problems (automatically building incorrela-
tion across the network) where link-level anomaly detection might
be inadequate or unreliable.

Many approaches to anomography are possible. In pioneering
work, Lakhinaet al. introduced a novel approach based on Princi-
pal Component Analysis (PCA) [23]. Our paper makes three ma-
jor contributions to understanding and solving anomography prob-
lems:

1. We present a simple and powerful framework that encom-
passes a wide class of methods for network anomography.
We will see that the method of [23] is a member of this
class. The framework clearly decouples the inference and
anomaly detection steps, and so immediately opens the door
to the development of new algorithms where one makes dif-
ferent choices for each step. Accordingly, we introduce sev-
eral such new algorithms here, based on ARIMA modeling,
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the Fourier transform, Wavelets, and Principal Component
Analysis. Moreover, the framework is not restricted to the
analysis of link traffic data, and in particular also appliesto
the dual problem of inferring performance anomalies from
end-to-end performance measurements.

2. We introduce a new algorithm fordynamic anomography,
which identifies network level traffic anomalies and works in
the presence of routing changes. That is, dynamic anomog-
raphy tracks routing and traffic change – signaling traffic
anomalies, but not internal network routing changes (which
may dramatically change internal traffic patterns but may
leave the traffic matrix, describing how traffic enters and ex-
its the network, stable). In IP networks, routing changes oc-
cur as part of the normal “self-healing” behavior of the net-
work, and so isolating these from traffic anomalies is advan-
tageous. An additional benefit of dynamic anomography is
that it is robust to missing link load measurements, an impor-
tant operational reality (see Section 4 for why missing data
may result in changes in the routing matrix). To the best of
our knowledge, this is the first anomography algorithm that
can handle routing changes and missing data.

3. Using data sets collected from a large Tier-1 ISP and from
Internet2’s Abilene network, we report on the results of an
extensive and thorough evaluation of a set of anomography
methods. To understand the fidelity of the methods and to
compare different methods, we apply the methodology in-
troduced in [23]. Under this methodology, we find that in
general the newtemporal anomographymethods introduced
here exhibit consistently high fidelity. In particular, we find
that the most successful method (of those examined) is a
variation of dynamic anomography, combining Box-Jenkins
modeling (ARIMA) withℓ1 norm minimization. Further eval-
uation suggests that this algorithm can cope well with mea-
surement noise, and degrade gracefully in the presence of
missing or corrupted data.

The paper is organized as follows. Section 2 summarizes back-
ground and related work. In Section 3 we describe our framework,
and the anomography algorithms examined in this paper, in the
context of fixed routing. In Section 4 we extend the Box-Jenkins
anomography to the case where routing may change over time. In
Section 5 we describe our evaluation methodology, and Section 6
presents the results. Section 7 provides final remarks.

2. BACKGROUND

2.1 Network Tomography
Network tomography describes several problems: inferringtopol-

ogy, or link performance of a network from end-to-end measure-
ments, or inferring Origin-Destination (OD) traffic demands from
link traffic measurements. These problems can be written as linear
inverse problems where one seeks to find unknownsx from mea-
surementsb given a linear relationship (1), whereA is the routing
matrix. For a network withn links, andm OD flows, we define
the routing matrix to be then × m matrix A = [aij ] whereaij

indicates the fraction of traffic from flowj to appear on linki.
Typically SNMP provides link measurements of traffic volumes

(bytes and packets), typically at 5 minute intervals (this data is de-
scribed in more detail in, for example [39]). We shall assumedata
of this type is the input to our algorithms, and we wish to infer
anomalous traffic matrix elements, but note that anomography is
not limited to this problem, and could equally be applied to infer-
ring anomalous link performance from end-to-end measurements.

An additional source of data used here comes from the routingpro-
tocols used to build the forwarding tables within each router. We
use routing data (e.g., gathered from a route monitor as in [33])
along with a route simulator (as in [12]) to predict the results of
these distributed computations, and determine the networkrouting.

The problem of inferring the OD traffic-matrix has been much
studied recently (for examples see [6, 16, 27, 29, 34, 37, 39,40]).
The problem’s key characteristic is that it is massively undercon-
strained: there will be approximatelyN2 OD flows to estimate and
only O(N) link measurements. Hence tomography methods seek
to introduce additional information, often in the form of some kind
of traffic model (for instance a Poisson model in [37, 34], a Gaus-
sian model in [6], or a gravity model in [39, 40]). Anomography
problems are also highly underconstrained, but the models used
to describe traffic are inappropriate for anomalies — by definition
these events are generated by completely different processes from
normal network traffic. Furthermore, in anomography we combine
detection with inference, whereas in standard network tomography
problems we seek only to infer a set of traffic matrix elements.
Hence there are important differences between this paper and net-
work tomography.

It is also important to note that routing matrices change over
time. In much previous work, routing matrices are taken to becon-
stant (an exception being [29], where the traffic is assumed to be
somewhat constant, while the routing varies), but it is important
(see [35]) to allow for the fact that routing is not constant,and nei-
ther is the traffic. In order to allow for variable routing, weindex
not just the traffic measurements over time, but also the routing ma-
trix. Given these, we may write the relationship between thelink
traffic, and OD traffic matrix as

bj = Ajxj , (2)

whereAj is ann × m routing matrix,xj is a length-n vector of
unknown OD flow traffic volumes, andbj is a length-m vector of
link loads1, at time intervalj.

2.2 Related work
Lakhinaet al.carried out the pioneering work in the area of in-

ference of anomalies at network level, [23, 22, 24], and adapted
Principal Components Analysis (PCA) to this setting. Donoho [9,
10] introduced a powerful mathematical treatment for tomography-
like problems, wherein one seeks solutions that maximize sparsity
(intuitively, solutions with fewest explanations). Thesepapers in-
spired our development of the new methods introduced here, and
our development of a framework in which a very wide class of
methods all fit.

Anomaly detection is a burgeoning field. A great deal of research
in network anomaly detection relies on some type of inference step,
taking a set of alarms [15, 17, 20, 31, 36] as input. While anomog-
raphy includes methods of this type, our results indicate that it is
better to delay alarm generation until after the inference step. In
that way, a single constructive alarm may be generated, rather than
a storm of redundant alarms. Moreover, in delaying the alarmgen-
eration until after the inference step, we can in some cases greatly
improve the sensitivity of detection, as was demonstrated in [23].

We approach the network anomaly detection problem from the
point of detecting unknown anomalous behavior, rather thanlook-
ing for particular signatures in the data, the focus of much work in
the security community. A large component of the work on ma-
chine learning, signal processing and time-series analysis is de-

1Note that the link load vectorbj also includes the aggregated traf-
fic at different ingress/egress points; the corresponding rows inAj

encode the OD flows that enter/exit the network at these points.
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voted to detecting outliers or anomalies in time-series. This lit-
erature has been applied to networks in a number of cases; for
examples see [1, 5, 17, 21, 36, 38]. These methods range in so-
phistication from [5], which suggests the use of the standard Holt-
Winters forecasting technique for network anomaly detection, to
[1], which uses a sophisticated wavelet based method with great
potential. These methods focus on single time series ratherthan
the multi-dimensional time series that arise in anomography.

Most earlier work ignores noise or provides weak tests of ro-
bustness to noise (which can destroy utility). A strength ofthe
work presented here is that we provide tests of effectiveness of the
methods in the presence of noise, always a factor in practice.

3. NETWORK ANOMOGRAPHY
In this section,we shall assume that the routing matricesAj are

time-invariant and are denoted byA. (We will extend our work
to time-varyingAj in Section 4.) Under this assumption, we can
combine allt linear systems (2) into a single equation using matrix
notation:

B = AX, (3)

whereB = [b1 b2 · · ·bt] is the matrix formed by havingbj as its
column vectors, and similarlyX = [x1 x2 · · ·xt].

3.1 A General Framework for Anomography
We identify two basic solution strategies to network anomog-

raphy: (i) early inverse, and (ii) late inverse. Early-inverse ap-
proaches may appear more intuitive. The early-inverse approach
tackles the problem in two steps. The first is thenetwork tomogra-
phy step, where OD flow data at each intervalj are inferred from
the link load measurements by solving the ill-posed linear inverse
problem (2). Given the estimated OD flow dataxj at different time
pointsj, in the second step,anomaly detectioncan then be applied
to thexj . For this step, there are many widely used spatial and
temporal analysis techniques, which we will describe laterin this
section.

Early-inverse methods, although conceptually simple, have an
obvious drawback — errors in the first step, which are unavoid-
able due to the ill-posed nature of the inference problem, can con-
taminate the second step, sabotaging overall performance.Another
disadvantage is that early-inverse methods apply a potentially com-
putationally expensive anomaly detection step to high-dimensional
data: on a network ofN nodes, one must perform this step on all
N2 OD pairs. As we will see, late-inverse performs anomaly de-
tection on onlyO(N) dimensional data. We focus on late-inverse
methods in this paper for these reasons, though we shall provide
some comparisons between early- and late-inverse methods.

The idea of the late-inverse method is to defer “lossy” inference
to the last step. Specifically, late inverse approaches extract the
anomalous traffic from the link load observation, then form and
solve a new set of inference problems:

B̃ = AX̃, (4)

where B̃ = [b̃1 b̃2 · · · b̃t] is the matrix of anomalous traffic in
the observables, and̃X = [x̃1 x̃2 · · · x̃t] is the matrix of OD flow
anomalies to be diagnosed, overt time intervals.

While the new inference problems (4) share the same linear-
inverse structure as in network tomography (3), the characteristics
of the unknowns are very different, and so is the solution strategy,
which we will explore in Section 3.4.

We now introduce a simple framework for late-inverse anomog-
raphy methods. In this framework,̃B is formed by multiplyingB
with a transformation matrixT . Depending on whether we use a

left or right multiplying transformation matrix, we can further di-
vide the framework into the following two classes:

• spatial anomography, where a left multiplying transforma-
tion matrixT is used to formB̃, i.e., B̃ = TB;

• temporal anomography, where a right multiplying transfor-
mation matrixT is used to formB̃, i.e., B̃ = BT .

As mentioned in Section 7, future work that might combine thebest
of spatial and temporal techniques would be of interest.

Our framework encompasses a number of analysis techniques
for extracting anomalous traffic̃B from link load observationsB,
as we next illustrate.

3.2 Spatial Anomography
Data elements in high dimensional data sets, such as the link

load observations, usually have dependencies. The intrinsic depen-
dency structure among the data elements can thus be exploited for
filtering anomalous behavior by discovering data points that violate
the normal dependency structure. In our context, the process of de-
tecting such data points can be performed by left-multiplication by
a transformation matrixT such thatB̃ = TB. An example of
such an approach is a recent study by Lakhinaet al. [23], where
Principal Component Analysis (PCA) is used in finding dominant
patterns. We describe this method, and in particular its instantiation
as a left-multiplication operation in the following section.

3.2.1 Spatial PCA
In [23], Lakhinaet al.proposed a subspace analysis of link traffic

for anomaly detection, which can be summarized as follows.
1. Identify a coordinate transformation ofB such that the link

traffic data under the new coordinate systems have the greatest
degree of variance along the first axis, the second greatest de-
gree of variance along the second axis, and so forth. These axes
are called the principal axes or principal components.
Recall thatB = [b1 b2 · · ·bt] is the collection of link traffic
data atm links over t time intervals, where each rowi (1 ≤
i ≤ m) denotes the time series of thei-th link and each column
j (1 ≤ j ≤ t) represents an instance of all the link loads at
time intervalj. The principal components,v1, v2, ..., vm can
be computed iteratively as follows:

v1 = argmax
‖v‖=1

‚

‚

‚
BT

v

‚

‚

‚
, vk = argmax

‖v‖=1

‚

‚

‚

‚

‚

 

BT −
k−1
X

i=1

BT
viv

T
i

!

v

‚

‚

‚

‚

‚

The coordinate transformation matrix can thus be obtained by
arranging the principal components as rows of a matrixP =
[v1 v2...vm]T .

2. Divide the link traffic space into thenormal subspaceand the
anomalous subspace. Lakhinaet al.[23] developed a threshold-
based separation method by examining the projection of the
time series of link traffic data on each principal axis in order. As
soon as a projection is found that contains a 3σ deviation from
the mean, that principal axis and all subsequent axes are as-
signed to the anomalous subspace. All previous principal axis
are assigned to the normal subspace.
We usePa = [vr vr+1...vm]T to denote the matrix of the
principal axes in the anomalous subspace, wherevr is the first
axis that fails to pass the threshold test.

3. The anomalous traffic can now by extracted from link load ob-
servation by first projecting the data into the anomalous sub-
space and then transforming it back, by takingB̃ = (P T

a Pa)B,
and so we obtain the transformation matrixT = P T

a Pa.
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We call the above methodspatial PCAbecause it exploits the
correlation between traffic on different links (across space). Later
in Section 3.3.4, we will describetemporal PCA, which exploits
temporal correlation by applying PCA to identify dominant pat-
terns across time.

3.3 Temporal Anomography
The anomalous link traffic can also be separated by performing

temporal analysis on the time series for each link. Considera set
of link traffic data over timet: B = [b1 b2...bt]. The process of
extracting anomalies by exploiting the temporal structurewithin the
data points can be modeled as a linear transformation of the time
series:B̃ = [b̃1 b̃2...b̃t] = BT , where the transformation matrix
T can be either explicit or implicit. In this paper, we consider four
types of temporal analysis: ARIMA, Fourier, Wavelet, and PCA
(for identifying dominant patterns across time). Althoughit may
not be obvious at first glance, all these methods indeed fit in our
framework of linear matrix transformation, as we will see next.

3.3.1 ARIMA Modeling

Univariate time series. The Box-Jenkins methodology, or Au-
toRegressive Integrated Moving Average (ARIMA) modeling tech-
nique [2, 3, 4], is a class of linear time-series forecastingtechniques
that capture the linear dependency of the future values on the past.
It is able to model a wide spectrum of time-series behavior, and
has been extensively used for anomaly detection in univariate time-
series.

An ARIMA model includes three order parameters: the autore-
gressive parameter (p), the number of differencing passes (d), and
the moving average parameter (q). In the notation introduced by
Box and Jenkins, models are summarized as ARIMA(p, d, q). A
model described as ARIMA(0, 1, 2) means that it containsp = 0
(zero) autoregressive parameters andq = 2 moving-average pa-
rameters which were computed for the time series after it wasdif-
ferenced once (d = 1).

A general ARIMA model of order(p, d, q) can be expressed as:

zk −

p
X

i=1

φi · zk−i = ek −

q
X

j=1

θj · ek−i, (5)

wherezk is obtained by differencing the original time seriesd times
(whend ≥ 1) or by subtracting the mean from the original time
series (whend = 0), ek is the forecast error at timek, φi (i =
1, ..., p) andθj (j = 1, ..., q) are the autoregression and moving-
average coefficients, respectively.

Many commonly used smoothing models are special instances of
ARIMA models. For example, the Exponentially Weighted Mov-
ing Average (EWMA), is equivalent to ARIMA(0, 1, 1); linear ex-
ponential smoothing, also known as non-seasonal Holt-Winters, is
equivalent to ARIMA(0, 2, 2). These techniques have been used
for detecting anomalies in time-series, for instance Hood and Ji [17]
use an ARIMA(0, 0, 2) model. See [32] for detailed equations
for various smoothing models and their equivalence with ARIMA
models.

There are well known techniques for estimating the parameters
p, d, q, φi and θj for a given time series [2, 3, 4], and given the
parameters, the model is simply applied to getẑk a prediction of
zk (using for instance the Durbin-Levinson algorithm [4]). The
prediction errors are thenek+1 = zk+1 − ẑk+1, which then form
our anomalous traffic (the traffic which does not fit the model). In
practice the parameters used in the ARIMA model are sometimes
chosen to meet particular goals intended by the implementor(see
[5] for some discussion of these choices), rather than beingesti-

mated from the data set, because the parameters of a data set may
change over time. However, we prefer to use adaptive techniques
to overcome this problem.

If we consider the time series to be vectors of lengtht, then the
above results can be written in matrix form. Taking the measure-
mentsb = (b1, . . . , bt)

T , we can obtain the errorse = (e1, . . . , et)
T ,

via right-multiplication by a transformation matrix̃bT = eT =
bT T . Specifically, letI denote thet × t identity matrix,▽ denote
the “back shift” matrix, and11 denote thet × t unit matrix, i.e.,

I =

2

6

6

6

4
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0 1 0...0 0

· · ·
0 0 0...1 0
0 0 0...0 1

3

7

7

7

5
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6

4
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· · ·
0 0 0...0 1
0 0 0...0 0

3

7

7

7

5

, 11 =

2

6
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6

4

1 1 1...1 1
1 1 1...1 1

· · ·
1 1 1...1 1
1 1 1...1 1

3

7

7

7

5

.

The differencing result,z = [z1z2...zt]
T , can then be represented

by

z
T =

8

<

:

b
T (I −▽)d, for d ≥ 1,

b
T −

1

t
b

T 11 = b
T

„

I −
1

t
11

«

, for d = 0,
(6)

Equation (5) can be written in matrix notation as

z
T −

p
X

i=1

φiz
T▽i = e

T −

q
X

j=1

θje
T▽j ,

or equivalently,

e
T = z

T

 

I −

p
X

i=1

φi▽
i

! 

I −

q
X

j=1

θj▽
j

!−1

.

Extending ARIMA based models to multivariate time series is
straightforward. As noted earlier, we construct the matrixB with
the measurements at each time periodbi as its columns. Via the
transformations just described, we obtain

E = Z

 

I −

p
X

i=1

φi▽
i

! 

I −

q
X

j=1

θj▽
j

!−1

. (7)

ARIMA based anomography. ReplacingZ by the matrix form
of (6), we see thatE = BT is indeed a transformation given by
right-multiplyingB with a matrixT . In fact, anylinear filtration of
the elements of a time series can be modeled by a right multiplying
matrix transformation. If the transformation is time-invariant, then
the matrix in question will be Toeplitz (the values along diagonals
will be constant).

To get back to anomaly detection, we simply identify the forecast
errors as anomalous link traffic,̃B = E. That is, traffic behavior
that cannot be well captured by the model is considered anomalous.

3.3.2 Fourier Analysis
Fourier analysis [26] is the process of decomposing a complex

periodic waveform into a set of sinusoids with different amplitudes,
frequencies and phases. The sum of these sinusoids can exactly
match the original waveform. This lossless transform presents a
new perspective of the signal under study (in the frequency do-
main), which has proved useful in very many applications.

For a discrete-time signalx0, x1, . . . , xN−1, the Discrete Fourier
Transform (DFT) is defined by

fn =
1

N

N−1
X

k=0

xke−jk2πn/N , for 0 ≤ n ≤ N − 1,
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wherefn is a complex number that captures the amplitude and
phase of the signal at then-th harmonic frequency (with base fre-
quency1/N ). Note that for a real signal{fn} is symmetric, i.e.,
fn = fN−1−n. Lowern corresponds to a lower frequency compo-
nent, withf0 being the DC component, or the average of the input
series, andfn with n close toN/2 corresponding to high frequen-
cies.

The Inverse Discrete Fourier Transform (IDFT) is used to recon-
struct the signal in the time domain by

xn =

N−1
X

k=0

fkejk2πn/N , for 0 ≤ n ≤ N − 1.

An efficient way to implement the DFT and IDFT is through an
algorithm called the Fast Fourier Transform (FFT). The computa-
tional complexity of the FFT isO(N log(N)).

FFT based anomography. The idea of using the FFT to extract
anomalous link traffic,B̃ is to filter out the low frequency com-
ponents in the link traffic time series. In general, low frequency
components capture the daily and weekly traffic patterns, while
high frequency components represent the sudden changes in traf-
fic behavior. Working in the frequency domain provides us with
the opportunity to distinguish these two kinds of behaviors.

We summarize FFT based anomography as follows.
1. Transform link trafficB into the frequency domain:F = FFT(B):

apply the FFT on each row ofB. (Recall that a row corresponds
to the time series of traffic data on one link.) The result is the
corresponding frequency domain series, in each row ofF .

2. Remove low frequency components: i.e. setFi = 0, for i ∈
[1, c] ∪ [N − c, N ], whereFi is thei-th column ofF andc is
a cut-off frequency. (For example, for the results presented in
Section 6, we use 10-minute aggregated link traffic data of one
week duration, andc = ⌈ 10

60
N⌉, corresponding to a frequency

of one cycle per hour.)

3. Transform back into the time domain: i.e. we takeB̃ = IFFT(F ).
The result is the high frequency components in the traffic data,
which we will use as anomalous link traffic,̃B.

The DFT and IDFT may be represented as right-matrix products.
In setting columns ofF to zero, and performing the IDFT we are
taking a linear combination of the columns ofF , which in turn are a
linear combination of those ofB. Hence, the overall process above
can be modeled as a right-multiplying matrix transformation B̃ =
BT . Note also that in thresholding at frequencyc we preserve the
symmetry ofF , and so althoughF may contain complex elements,
the resulting transform will be real.

3.3.3 Wavelet Analysis
Wavelets [8, 14, 26] are mathematical functions that cut up data

into different frequency components, and then study each compo-
nent with a resolution matched to its scale. They provide a pow-
erful means for isolating characteristics of signals via a combined
time-frequency representation and are often considered superior to
traditional Fourier methods especially in situations where the signal
contains transients, such as discontinuities and sharp spikes.

In [1], Barford et al. have developed a wavelet-based algorithm
for detecting anomalies in the link traffic data. It shares the same
principle as the FFT based approaches — exposing anomalies by
filtering low frequency components. More specifically, it uses wavelets
to decompose the original signal into low-, mid-, and high-frequency
components and then detects anomalies by close examinationof the
mid- and high-frequency components.

Below we computẽB as the high-frequency components of link

traffic B. We can also computẽB as the mid-frequency compo-
nents ofB in essentially the same way.
1. Use wavelets to decomposeB into different frequency levels:

W = WAVEDEC(B), by applying a multi-level1-D wavelet
decomposition on each row ofB. The result is a wavelet de-
composition vector, which we save as one row in matrixW .
The wavelet we use is the Daubechies wavelet [7] of order 6.

2. Then remove low- and mid-frequency components inW by set-
ting all coefficients at frequency levels higher thanwc to 0.
Herewc is a cut-off frequency level. For the results presented
in Section 6, we use10-minute aggregated link traffic data of
one week duration, andwc is set at3. That is, we only keep
coefficients at frequency levels1, 2, and3, which is consistent
with [1].

3. Reconstruct the signal:̃B = WAVEREC(B). The result is the
high-frequency components in the traffic data.

It is easy to verify that the process of WAVEDEC and WAVEREC
only involves linear combinations of columns ofB. As a result,
theB̃ derived through the wavelet based anomography can also be
modeled as right multiplying matrix transformation.

3.3.4 Temporal PCA
In Section 3.2.1, we presented a method of applying PCA to find

dominant patterns among different link-load time series. Asimilar
method can be used in identifying dominant patterns across time.

Consider the link load matrixB = [b1 b2...bt]. We can think
of each row as at-dimensional vector. What we are looking for is
a new coordinate system,v1, v2, ... ,vt, such that the projection of
them links (onv1, v2, ...,vt) has energy concentrated on the first
several axes. This is exactly what PCA provides. The only differ-
ence is that we now apply PCA onBT as opposed toB (as used
in spatial PCA). Then we follow the same procedure to define an
anomalous subspace and to extract anomalies that have projections
in the anomalous subspace. In this way, we obtain a left multiply-
ing transformation matrixT , i.e., B̃T = TBT . Taking transpose
on both side of the equation, we havẽB = (B̃T )T = (TBT )T =
BT T whereT T is a right multiplying transformation matrix that
extracts anomalies fromB.

3.4 Inference algorithms
Once we obtain the matrix of link anomalies̃B, the next step is

to reconstruct OD flow anomalies̃X by solving a series of ill-posed
linear inverse problems̃bj = Ax̃j . For example, Lakhinaet al[23]
proposed to find the single largest anomaly in each time interval j
by applying a greedy algorithm. We present below three common
inference algorithms for solving these problems. All threealgo-
rithms deal with the underconstrained linear system by searching
for a solution that minimizes some notions of vector norm, three
examples of which are

• Theℓ2 norm of a vectorv is defined as‖v‖2 =
`
P

i v2
i

´ 1

2 ,
wherevi is thei-th element of vectorv.

• Theℓ1 norm of a vectorv is defined as‖v‖1 =
P

i |vi|, i.e.,
the sum of the absolute value of each element ofv.

• Theℓ0 norm of a vectorv is defined as‖v‖0 =
P

i v0
i , i.e.,

the number of non-zero elements ofv.

3.4.1 Pseudoinverse solution
A standard solution tõb = Ax̃ is the pseudoinverse solution

x̃ = A+b̃, whereA+ is the pseudoinverse (or Moore-Penrose in-
verse) of matrixA. It is known thatx̃ = A+b̃ is the solution to
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the problemb̃ = Ax̃ that minimizes theℓ2 norm of the anomaly
vector, i.e. it solves:

minimize‖x̃‖2 subject to‖b̃ − Ax̃‖2 is minimal. (8)

3.4.2 Sparsity maximization
In practice, we expect only a few anomalies at any one time, so

x̃ typically has only a small number of large values. Hence it is
natural to proceed by maximizing thesparsityof x̃, i.e., solving the
following ℓ0 norm minimization problem:

minimize‖x̃‖0 subject tob̃ = Ax̃. (9)

Theℓ0 norm is not convex and is notoriously difficult to minimize,
so in practice one needs to either approximate theℓ0 norm with a
convex function or use heuristics, for example the greedy algorithm
of Lakhinaet al [23].

3.4.2.1 ℓ1 norm minimization.
One common approach to approximateℓ0 norm minimization is

to convexify (9) by replacing theℓ0 norm with anℓ1 norm, so that
we seek a solution to

minimize‖x̃‖1 subject tob̃ = Ax̃ (10)

As shown in [9, 10],ℓ1 norm minimization results in the sparsest
solution for many large under-determined linear systems.

In the presence of measurement noise, the constraintsb̃ = Ax̃

may not always be satisfiable. In this case, we can add a penalty
term‖b̃ − Ax̃‖1 to the objective and reformulate (10) as:

minimize λ‖x̃‖1 + ‖b̃ − Ax̃‖1 (11)

whereλ ∈ [0, 1] controls the degree to which the constraintsb̃ =
Ax̃ are satisfied. As shown in Section 6, the algorithm is not very
sensitive to the choice ofλ. In the rest of this paper, unless noted
otherwise, we useλ = 0.001, which gives satisfactory results.

We can cast (11) into the following equivalent Linear Program-
ming (LP) problem, for which solutions are available even whenA
is very large, owing to modern interior-point linear programming
methods.

minimize λ
P

i ui +
P

j vj

subject to b̃ = Ax̃ + z

u ≥ x̃, u ≥ −x̃

v ≥ z, v ≥ −z

(12)

Note that it is common to use‖b̃−Ax̃‖2
2 (instead of‖b̃−Ax̃‖1)

as the penalty term in (11). This alternative formulation can be
efficiently solved using methods like Iterative ReweightedLeast
Squares [19] and has been successfully applied in [11] to recover
sparse overcomplete representations in the presence of noise. We
elect to use (11) because we find it much easier to generalize (11)
to detect changes when the routing matrixA is time varying (see
Section 4 for details).

3.4.2.2 Greedy algorithm.
Another common heuristic solution forℓ0 norm minimization is

to apply the greedy algorithm. For example, the greedy heuristic
has been successfully applied to wavelet decomposition, where it
goes by the name ofOrthogonal Matching Pursuit(OMP) [30]. In
the same spirit here, we develop a greedy solution to maximize the
sparsity ofx̃. The algorithm starts with an empty setI of non-zero
positions forx̃ and then iteratively adds new non-zero positions to
I . During each iteration, for each positionp 6∈ I , the algorithm
tests how much it can reduce the residualb̃−Ax̃ by includingp as

a non-zero position. More specifically, letJ = I ∪ {p}. The algo-
rithm estimates the values for the non-zero elements ofx̃ (denoted
asx̃J ) by solving the following least squares problem

minimize‖b̃ − AJ x̃J‖2 (13)

whereAJ = A[., J ] is a submatrix ofA formed by the column
vectors ofA corresponding to positions inJ . The residual is then
computed aseJ = ‖b̃ − AJ x̃J‖2. The algorithm then greedily
chooses the positionp that gives the smallesteJ and adds it toI .
The algorithm stops whenever either the residual energy falls be-
low some tolerance to inaccuracyemax or the number of non-zero
positions exceeds some thresholdℓ0max.

4. DYNAMIC NETWORK ANOMOGRAPHY
Up to this point, we have assumed that the routing matrices are

constant. However, we wish to allow for dynamic routing changes,
and so we must allowAj to vary over time. In IP networks, rout-
ing changes occur as part of the normal “self-healing” behavior of
the network, and so it is advantageous to isolate these from traffic
anomalies and only signal traffic anomalies. In addition, ifsome
measurements are missing (say at timej), we may still form a con-
sistent problem by setting the appropriate rows ofAj to zero. Thus,
for realistic SNMP measurements where missing data are often an
issue, we still wish to varyAj even for static routing. Routing
measurements may be obtained using a route monitor, to provide
accurate, up-to-date measurements of routing (at least at the time
scale of SNMP measurements, e.g. minutes).

Where the tomography step can be done separately at each time
interval (for instance see [39, 40]), it is simple to adapt early-
inverse methods todynamic network anomographyby inverting (2)
at each time step. Given the straight forward approach for early-
inverse methods, We seek here to generalize late-inverse methods
to dynamic network anomography.

4.1 Dynamic temporal anomography
When the routing matrix is non-constant, there is no reason to be-

lieve that the measurementsB should follow a simple model such
as an ARIMA model. Even where the traffic itself follows such
a model, a simple routing change may change a link load mea-
surement by 100%, for instance by routing traffic completelyaway
from a particular link. If we were to apply the ARIMA model to
the measurementsB, we would see such a change in routing as a
level-shift anomaly. However, its cause is not an unknown change
in X (to be discovered), but rather a known change in the routing
matricesAj . Likewise, it no longer makes sense to try to exploit
spatial correlations which arose from a particular routing, to the
case of another routing.

However, it is no less reasonable to approximate the traffic ma-
trix X by an ARIMA model (thanB when the routing is constant),
even when routing may change. Under such a modeling assump-
tion, we can writeX̃ = XT . We know also that the measurements
are given by (2). A reasonable approach to the solution is there-
fore to seek a solutioñX which is consistent with these equations,
but also minimizes one of the norms (described above) at eachtime
step. We choose to minimize theℓ1 norm‖x̃j‖1 here because (i) it
allows us to naturally incorporate link load constraints atmultiple
time intervals, and (ii) it is more accurate than both the pseudoin-
verse and the greedy algorithms for static anomography (as we will
show in Section 6).

Unfortunately, for transform based methods (the Fourier, wavelet
and PCA methods) the number of constraints becomes very large
(as t grows). On the other hand, the set of constraints for the
ARIMA model can be written in a form such that it does not grow
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with t. Hence, in the following we concentrate on generalizing
the ARIMA approach. We first present the basic algorithm for
ARIMA (p, d, q) models withd ≥ 1 (Section 4.2). To improve
its efficiency, we develop two simple techniques that significantly
reduce the problem size (Section 4.3). We have also extendedthe
algorithm to handle ARIMA models withd = 0 (Section 4.4). We
will also discuss model selection and parameter estimation, two
important issues for applying ARIMA-based anomography (Sec-
tion 4.5).

4.2 Algorithm for ARIMA models with d ≥ 1

We are going to seek solutions that are consistent with the mea-
surementsbj = Ajxj , for j = 1, . . . , t, and an ARIMA model
that givesX̃ = XT whereT is the same transformation matrix im-
plicitly defined by (6) and (7). Importantly, we do not wish tohave
to estimateX (or we may as well use an early-inverse method).
The advantage of the ARIMA model, is we do not need to know
X, but only linear combinations ofX.

Let L be the backshift operator, whose effect on a processz can
be summarized as(Lz)k = zk−1. Let the AR polynomialΦ(L) be

Φ(L) =

d+p
X

i=0

γiL
i def

=

 

1 −

p
X

i=1

φiL
i

!

(1 − L)d.

Let yk−i = γixk−i. We now identifye = x̃ in the ARIMA model
described in (5) (or rather its multivariate extension). Bydefinition
the sum

Pd+p
i=0 yk−i = zk −

Pp
i=1 φizk−i, and so, ford ≥ 1, the

ARIMA model (5) can be rewritten

d+p
X

i=0

yk−i = x̃k −

q
X

j=1

θjx̃k−j . (14)

Defineck−i = γibk−i, then asyk−i = γixk−i, the measurement
equation (2) implies

Ak−iyk−i = ck−i, i = 0, 1, · · · , d + p. (15)

We can computẽx1, x̃2, · · · , x̃t iteratively by solving a series of
ℓ1 norm minimization problemsPk (k = 1, 2, · · · , t):

Pk : minimize‖x̃k‖1 subject to (14) and (15). (16)

As an illustrative example, consider the simplest ARIMA model,
ARIMA (0, 1, 0). In this case,p = q = 0, so we can write

Φ(L) =
1
X

i=0

γiL
i = (1 − L),

soγ0 = 1 andγ1 = −1, and (14) becomes̃xk =
P1

i=0 yk−i, thus
problemPk is simply

minimize ‖x̃k‖1

subject to

8

<

:

x̃k = yk + yk−1

Akyk = bk

Ak−1yk−1 = −bk−1

(17)

We apply zero-padding to handle the initial condition whenk ≤
q or k ≤ d + p. Specifically, for the MA part of the model, we set
x̃k−j to 0 wheneverk ≤ j. For the AR part of the model, we apply
zero-padding on the differenced series{(1−L)dxi}, which can be
achieved by redefining the AR polynomialΦ(L) =

P

i γiL
i as

Φ(L)
def
=

8

<

:

(1 −
Pp

i=1 φiL
i)(1 − L)d ∀k > d + p

(1 −
Pk−d

i=1 φiL
i)(1 − L)d ∀k ∈ (d, d + p]

0 ∀k ≤ d

As in Section 3.4.2.1, we can accommodate measurement noise
by incorporating penalty terms into the objective to penalize against
violation of constraints (14) and (15). We can then solve theresult-
ing ℓ1 norm minimization problem by reformulating it as an equiv-
alent LP problem. We omit such details in the interest of brevity.

4.3 Reducing the problem size
One potential problem with the above algorithm is its high com-

putational cost. Even though the computational cost is fixedrelative
to t, it is still highly dependent on the number of traffic matrix ele-
mentsn, and the order parameters(p, d, q), and so theℓ1 minimiza-
tion problemPk can be very large even whenAk−i stays constant.
In contrast, the static anomography algorithm had quite good com-
putation properties for constantAj . Below we develop two simple
techniques to significantly reduce the size ofPk. These techniques
are motivated by the following observations: (i) the routing matri-
ces are often quite stable and tend not to change in every timeinter-
val; and (ii) when the changes occur, they tend to be local changes
and most rows of the routing matrix will remain the same. Our
techniques seek to merge constraints if the corresponding link load
is unaffected by the change of the routing matrix. In particular, for
time invariantAj , our techniques reduce the dynamic anomogra-
phy to the static anomography algorithm.

Eliminating duplicate Ak−i. Our first technique reduces the
problem size by merging constraints for intervals with the same
routing matrix. Specifically, if there existi1 < i2 such thatAk−i1 =
Ak−i2 , we can use a single unknown vectory′

k−i1
to represent

yk−i1 + yk−i2 in (14) and then replace the two sets of constraints
on yk−i1 and yk−i2 in (15) with a single set of constraints on
y′

k−i1
:

Ak−i1y
′
k−i1 = c

′
k−i1

def
= ck−i1 + ck−i2

We can repeat this process until allAk−i are distinct.

Eliminating rows common to all Ak−i. Our second technique
exploits the fact that there is often a large subset of rows common
to all Ak−i. Before describing the technique, we first introduce
some notations. LetS be a set of integers. Given a matrixM , let
MS be the submatrix ofM that consists of all rows with indices
in S. Similarly, given a vectorv, let vS be the subvector ofv that
consists of elements with indices inS.

Using the above notations, letC be the set of row indices such
that allAC

k−i are equal (denoted byAC). Let C be the set of row
indices not inC. We can then decompose (15) into

AC
yk−i = c

C
k−i, i = 0, 1, · · · , d + p (18)

AC
k−iyk−i = c

C
k−i, i = 0, 1, · · · , d + p (19)

Summing up all the constraints in (18) overi, we obtain

AC
d+p
X

i=0

yk−i =

d+p
X

i=0

c
C
k−i (20)

Combining (20) and (14), we get a single set of constraints on
x̃k:

d+p
X

i=0

c
C
k−i = AC

x̃k − AC
q
X

j=1

θj x̃k−j (21)

We can then replace (18) with (21), reducingPk to

minimize‖x̃k‖1 subject to (14), (19), and (21). (22)

In the special case whenAj is time invariant, we haveC = ∅.
So the constraints onyk−i (19) become empty, causingyk−i to
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become free variables in (22). In this case, we can further simplify
(22) by eliminatingyk−i and the corresponding constraint (14),
resulting in

minimize‖x̃k‖1 subject to (21). (23)

It is easy to verify that (23) is equivalent to our original algorithm
for time invariantAj , which first computes̃B by applying ARIMA
modeling onB and then estimates̃xk by minimizing‖x̃k‖1 subject
to b̃k = Ax̃k. This is appealing in that we now have one unified
algorithm for ARIMA-based anomography.

4.4 Algorithms for ARIMA models with d = 0

We now extend the algorithm to deal with ARIMA(p, d, q) mod-
els with d = 0. The main difference from ARIMA models with
d ≥ 1 is that we need to subtract the mean of process{xt} (de-
noted byµ) from xt in the analysis. That is, we have

(xk − µ) −

p
X

i=1

φi(xk−i − µ) = x̃k −

q
X

j=1

θj x̃k−j (24)

Clearly, ifµ is a constant vector known in advance, we can estimate
x̃1, x̃2, · · · , x̃t iteratively by minimizing‖x̃k‖1 subject to (24) and
Ak−ixk−i = bk−i (i = 0, 1, · · · , p). If µ is unknown, we can
impose the following constraints onµ

µ =
1

t

t
X

i=1

xi (25)

bi = Aixi, i = 0, 1, · · · , t (26)

We can then estimate eachx̃k by solving

minimize‖x̃k‖1 subject to (24), (25) and (26). (27)

Note that the aboveℓ1 norm minimization problem involves con-
straints at allt time intervals. Although we can apply the tech-
niques in Section 4.3 to reduce the problem size, the simplified
problem can still be more expensive to solve than the case for
ARIMA models with d ≥ 1. A second limitation is that the al-
gorithm can only be used for offline analysis, becauseµ depends
on future time intervals.

There are many possible ways to alleviate the above limitations.
For example, one can redefineµ as the mean ofxi within a small
fixed time window observed in the past. Alternatively, one can de-
fineµ on a sliding window,i.e., defineµk = 1

w

Pw
i=1 xk−i, where

w is the width of the sliding window. Note that the use of a slid-
ing window effectively makesd ≥ 1, because the AR polynomial
Φ(L) is now

Φ(L) =

 

1 −

p
X

i=1

φiL
i

! 

1 −
1

w

w
X

j=1

Lj

!

,

which has a unit rootL = 1. We will not further explore these
possibilities in this paper, because we find that we needd ≥ 1 on
all our datasets as determined by our model selection procedure
(described in Section 4.5.3).

4.5 Model selection and parameter estimation
In this section, we address two important issues on applying

ARIMA type models: model selection (i.e., determiningp, d, q)
and parameter estimation (i.e., determining coefficientsφi, θj). We
do so by answering the following three questions.

4.5.1 What data to use?

The first question is what data to use for model selection and pa-
rameter estimation. This is important because the data determines
the model and the parameters that we can learn.

In the context of network anomography, we would like the model
and parameters to capture the normal behavior ofxi. For this pur-
pose, we propose to select our models and parameters based onthe
traffic aggregated at differentingresspoints. More specifically, let
I be the set of indices corresponding to all the ingress pointsin the
link load vectorsbi. We will use the series of subvectorsbI

i as the
input data for model selection and parameter estimation.

This has several advantages. First,bI
i is readily available and

does not require any inference. More importantly, ingress traffic is
largely invariant to internal topology and routing changesin the lo-
cal domain under consideration, making our algorithms applicable
even in the presence of topology and routing changes. In addition,
each element ofbI

i aggregates a number of OD flows. So the ef-
fect of anomalies or missing data on individual OD flows is less
significant, making our results more robust.

4.5.2 How to estimateφi andθj given(p, d, q)?
Given (p, d, q) and input vector series{bI

k}, we can estimate
the autoregression and moving-average coefficientsφi andθj by
constructing a state-space model and then applying the standard
Kalman filter adaptation [18, 25]. Our implementation is based
on the armax function in Matlab’s System Identification Tool-
box [25].

To ensure the size of the resulting state-space model is acceptable
by Matlab, we currently estimateφi andθj based on the10 rows
with the highest row sums in matrix[bI

1b
I
2 · · ·b

I
t ]. We have also

experimented with an alternative scheme that partitions all the rows
of [bI

1b
I
2 · · ·b

I
t ] into 10 groups and estimates the parameters from

the 10 aggregated traffic series (one per group). We find that the
estimated coefficients are similar under the two schemes.

4.5.3 How to select the model order(p, d, q)?
We first select the degree of differencing (d). As noted in [28,

Lecture 9], the optimal degree of differencing is often the one at
which the standard deviation of the differenced series is the lowest.
We can apply this rule to determined. More specifically, for each
d ∈ {0, 1, 2, 3, 4}, we compute the differenced series

Zd = [zd,1zd,2 · · · zd,t] = (1 − L)d[bI
1b

I
2 · · ·b

I
t ]

Let E[Zd] = 1
t

Pt
i=1 zd,i andV [Zd] = 1

t

Pt
i=1 ‖zd,i−E[Zd]‖2

2.
We then pick thed that results in the minimum varianceV [Zd]. In
all the datasets we tested in this paper, we find that we needd = 1.

Once we haved, we can automate the choice ofp andq by ap-
plying an information based criterion such as the AIC or AICC
(see [4, pp. 171–174]). Information based criteria are designed to
achieve a good balance between model parsimony and low predic-
tion error. In our Matlab implementation, we use AIC (Akaike’s
Information Criterion) as our model selection criterion. For each
p, q ∈ {0, 1, 2, 3, 4}, we estimateφi andθj (as in Section 4.5.2)
and compute the resulting AIC based on the residuals and the model
complexity. We then choose the pair of(p, q) with the lowest AIC.

5. EVALUATION METHODOLOGY

5.1 Data Sets
We apply our techniques to real network measurement data gath-

ered from two large backbone networks – Internet2’s Abilenenet-
work and a Tier-1 ISP network. Both networks span the continental
USA. However, the networks are very different in terms of number
of nodes, traffic volume and traffic characteristics. The Abilene
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backbone is relatively small, with 12 core routers, 15 backbone
links and 144 OD flow elements in its traffic matrix2. In contrast,
the Tier-1 ISP backbone is relatively large, consisting of hundreds
of routers, thousands of links and tens of thousands of different OD
flows. To reduce computation complexity without loss of utility, we
use the technique in [39] to lump edge routers with topologically
equivalent connectivity. This reduces the total number of OD flows
to about 6000.

Another important distinction between the Abilene and the Tier-
1 ISP networks is in the traffic they carry. Abilene is usuallyquite
lightly loaded. Abilene’s traffic comes mainly from major aca-
demic institutions, a significant portion of which consistsof traf-
fic whose characteristics resemble bulk data transfer and network
measurement traffic. On the other hand, the Tier-1 ISP network is
moderately loaded, carrying primarily commercial traffic.On in-
spection of the traffic behavior, we found that the Abilene traffic
exhibits irregularity and much higher variability than that of the
Tier-1 ISP. These distinctions will impact the performanceof the
anomaly detection techniques explored here; in particular, anoma-
lies stand out more strikingly in Abilene data.

The primary data inputs for our anomaly diagnosis are the time
series of link loads (bytes across interfaces) for every network,
gathered through SNMP. We use flow level data, where available,
for validation. As is often the case, the flow data is incomplete.
The flow data are collected at the edge of the network where data
packets are sampled and aggregated by the IP source and destina-
tion address, and the TCP port number. Adjusted for samplingrate
and combined with BGP and ISIS/OSPF routing information, these
sampled IP flow statistics are then aggregated into a real traffic ma-
trix [13], where each element is an OD flow with the origin and
destination being the ingress and egress point of the flow to/from
the network. Consistent with [23], we aggregate these measure-
ments into bins of 10 minutes to avoid any synchronization issues
that could have arisen in the data collection.

Ideally, to evaluate the methods, one would like complete flow
level data, SNMP link load measurements, and continuous track-
ing of routing information, providing a consistent, comprehensive
view of the network in operation. Unfortunately, we do not have
the complete set of flow level data across the edge of the network
(due to problems in vendor implementations or in data collection),
and our routing information is only “quasi-” real time (we rely on
snapshots available from table dumps carried out every 8 hours).
As a result, inconsistencies sometimes arise between thesemea-
surements. To overcome these problems and provide a consistent
means for evaluating the algorithms, we adopt the method in [39]
and reconstruct the link traffic data by simulating the network rout-
ing on the OD flow traffic matrix generated from the available set
of flow level data. Note that we use derived link load measure-
ments for validation purposes only. In practice, our methods are
applicable to direct measurement of traffic data as obtainedfrom
SNMP.

5.2 Performance Metrics
We conduct our evaluation in two steps. First, we compare the

different solution techniques for the inverse problemb̃j = Ax̃j (as
described in Section 3.4). The inverse problem is common to all
the late-inverse anomography methods discussed in Section3, so
for simplicity we choose to use the simplest temporal forecasting

2The Abilene network studied in [23] was prior to some major net-
work updates in 2003. For comparison purpose, we have included
the same dataset, which has 11 core routers in the topology, hence
121 OD flows in the traffic matrix. We will refer to this datasetas
Abilene*.

model, ARIMA(0, 1, 0), for evaluation. This model predicts the
next observation to have the same value as the current one. Thus,
the inverse problem on the prediction error can be constructed by
simply taking the difference between consecutive link loadobser-
vations: Ax̃t = b̃t = bt − bt−1. The performance of the in-
version technique is measured by comparing the inferred solution,
x̃t, to the direct difference of the OD flow,xt − xt−1; the closer
the values are, the better the result. In the context of anomaly de-
tection, it is often the case that the large elements (large volume
changes) are of chief interest to network management. Hence, we
defined a metric – detection rate – to compare the top rankedN
elements (sorted by size) in solutionx̃t to the topN prediction er-
rorsxt − xt−1 for t spanning a period of one week. As we will
see in Section 6, the top anomalies in our data are easily resolved
by magnitude (close ties are rare). Thedetection rateis the ratio of
the overlap between the two sets. Note that the detection rate avoids
some problems with comparing false-alarm versus detectionprob-
abilities, as it combines both into one measure. A high detection
rate indicates good performance. Detection rate is used to com-
pare inference techniques in Section 6.1, to assess sensitivity to λ,
and robustness to noise in Section 6.2, and the effectiveness of the
methods for time-varying routing in Section 6.3.

In Section 6.4.2 we step away from the simple anomaly detection
algorithm applied to test the inference component, and compare the
complete set of anomography methods described in Section 3.As
before we use detection rate to measure whether the anomaly de-
tection method produces similar results when applied to theOD
pairs directly, or applied to the link load data, along with an in-
version method — we use the Sparsity-L1 method (the best per-
forming of the methods tested using the methodology above).In
other words, we benchmark the anomography method against the
anomalies seen in direct analysis of the OD flows.

Since different methods may find different sets of benchmark
anomalies, we need an objective measure for assessing the perfor-
mance of the methods. Ideally, we would like to compare the set
of anomalies identified by each of the methods to the set of “true”
network anomalies. However, isolating and verifying all genuine
anomalies in an operational network is, although important, a very
difficult task. It involves correlating traffic changes withother data
sources (e.g., BGP/OSPF routing events, network alarms, and oper-
ator logs), an activity that often involves case-by-case analysis. In-
stead, we perform pair-wise comparisons, based on the top ranked
anomalies identified by each of the anomography methods, an ap-
proach also taken in Lakhinaet al. [23].

Specifically, for each of the anomography methods, we apply
the underlying anomaly detection method directly to the OD flow
data. We think of the top rankedM anomalies, denoted by the set
B(j)

M for anomaly detection methodj as a benchmark. For each
of the anomography methodsi, we examine the set ofN largest
anomaliesA(i)

N inferred from link load data. To help understand
the fidelity of the anomography methods we consider the overlap
between the benchmark and the anomography method,A(i)

N ∩B(j)
M ,

across the benchmarks and the anomography methods. We allow
a small amount of slack (within one ten-minute time shift) inthe
comparison between events, in order that phase differencesbe-
tween methods not unduly impact the results.

We are interested in understanding both false positives andfalse
negatives:

(i) False Positives. TakingB(j)
M as the benchmark, the false pos-

itives produced by anomography methodi areA(i)
N − B(j)

M .

The magnitudes of the anomalies inA(i)
N andB(j)

M may vary.
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Figure 1: Anomalies by size

Yet, intuitively if one of theN = 30 top anomalies inA(i)
N

is not among the topM = 50 from the benchmark, then this
anomaly inA(i)

N is likely a false positive. This leads to the
following heuristic for detecting false positives. We choose
(reasonable) parametersN andM , with N < M , and count
the false positives as the size ofA(i)

N − B(j)
M .

(ii) False Negatives. Our reasoning is similar. TakingB(j)
M as the

benchmark, the false negatives produced by anomography
methodi areB(j)

M − A(i)
N . Intuitively if one of theM = 30

top anomalies in the benchmark is not among the topN =

50 anomalies inA(i)
N then this anomaly inB(j)

M is missed
by the anomography methodi, and is a false negative. This
leads to the following heuristic for detecting false negatives.
We choose (reasonable) parametersN andM , with N > M ,
and count the false negatives as the size ofB(j)

M −A(i)
N .

For our reports in the next section, we choose the smaller ofM
andN to be 30, since this roughly represents the number of traffic
anomalies that network engineers might have the resources to ana-
lyze deeply on a weekly basis. We would like to show comparative
results where the larger parameter varies, but cannot within a rea-
sonable amount of space, and so show results for one fixed value
50. It is important to note that the results we obtained for other
values ofM andN change none of our qualitative conclusions.

6. RESULTS

We obtained six months (03/01/04-09/04/04) of measurements
for the Abilene network and one month (10/06/04-11/02/04) for
the Tier-1 ISP network. We partitioned the data into sets spanning
one week each, and evaluated the methods on each data set. Dueto
space limits, we present only a small set of representative results.

6.1 Comparison of Inference Techniques
We first compare different solution techniques for the inference

problemb̃ = Ax̃. More specifically, we consider three late inverse
algorithms:Pseudoinverse (Section 3.4.1),Sparsity-Greedy (Sec-
tion 3.4.2.2), andSparsity-L1 (Section 3.4.2.1), and one early in-
verse technique:Early Inverse-Tomogravity. We choose to use
the tomogravity method [40] as the early inverse technique since it
has demonstrated high accuracy and robustness for estimating traf-
fic matrix for real operational networks [16, 40].

Figure 1 (a) plots the sizes of the top 50 anomalies (the fore-
cast errors) of the OD flows (the solid lines) and the corresponding
values diagnosed by the different inference techniques (the points)
for 10/6/04 to 10/12/04, for the Tier-1 ISP network. The y-axis
provides the size of the anomalies normalized by the averagetotal
traffic volume on the network. The x-axis is the rank by the size
of anomalies directly computed from the OD flows. We observe
that there are very few large changes – among more than 6 million
elements (∼ 6000 OD flows at 1007 data points), there is one in-
stance where the size of anomaly is more than 1% of total traffic
and there are 18 cases where the disturbances constitute more than
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0.5% of total traffic. This agrees with our intuition on the sparsity
of network anomalies.

We see that Pseudoinverse significantly underestimates thesize
of the anomalies. Intuitively, Pseudoinverse finds the least square
solution which distributes the “energy” of the anomaly evenly to
all candidate flows that may have contributed to the anomaly,un-
der the link load constraint. This is directly opposed to thesparsity
maximization philosophy. Among the sparsity maximizationtech-
niques, Sparsity-L1 performs the best. Sparsity-L1 alwaysfinds
solutions close to the real anomalies. Sparsity-Greedy, ingeneral,
is more effective than Pseudoinverse, although it sometimes over-
estimates the size of anomalies. As a representative of the early
inverse technique, Tomogravity also performs well. With few ex-
ceptions, tomogravity finds solutions that track the real ODflow
anomalies. Intuitively, when a proportionality conditionholds, i.e.,
when the size of the anomalies are proportional to the sizes of the
OD flows, then early inverse methods work well. However, where
the proportionality condition does not hold, the error can be signif-
icant.

Figure 1 (b) presents the result of another week: 10/20/04 to
10/26/04. Comparing to Figure 1 (a), this data set contains almost
no significant anomalies. It is desirable here to avoid overestimat-
ing the size of anomalies, creating false alarms. We observethat in
this case, Sparsity-L1 and Early Inverse-Tomogravity can still pro-
vide good solutions that are close to real anomalies, while Sparsity-
Greedy often overestimates the size of anomalies, and Pseudoin-
verse again performs poorly in comparison to the other techniques.

Figure 1 (c) and (d) depict two data sets of the Abilene network.
We first notice that the relative size of anomalies (changes in traf-
fic volume) are much larger than that of the Tier-1 ISP network.
As noted earlier, the traffic on the Abilene network is relatively
light and dominated by irregular traffic resembling bulk data trans-
fers. This should make anomaly detection easier – it would behard
to miss any anomalous traffic behavior of the scale seen in these
data sets (with individual anomalies constituting as much as 70%
of total traffic). Regarding the performance of the different infer-
ence techniques here, both sparsity maximization methods produce
very good results, with (in large part) overlapping solutions. This
makes sense since the small size of the network leads to a simple
inversion problem with few competing solutions. The early inverse
technique, Tomogravity, does not perform well since the propor-
tionality condition noted above is unlikely to hold for suchirregular
traffic patterns.

In the rest of the paper, we will only present the results for the
data sets in Figure 1 (a) and (c), since they contain more interesting
traffic anomalies.

Figure 2 presents the detection rate for the different inference
techniques on the two data sets. We observe that for the Tier-
1 ISP network, Sparsity-L1 and Tomogravity, which have about
0.8 detection rate, significantly outperform other methods. For the
Abilene network, all methods except Pseudoinverse, achieve a high
(close to 1) detection rate. Again, this is due to Abilene’s small
network size and large anomalies in traffic volumes.

Due to space limits, we will consider only Sparsity-L1 and To-
mogravity in the rest of the evaluation, as these method demonstrate
the greatest performance and flexibility in dealing with problems
such as missing data and routing changes.

6.2 Robustness

6.2.1 λ in Sparsity-L1
Sparsity-L1 involves a parameterλ in its formulation (Eq. 11).

Figure 3 investigates the sensitivity to the parameter choice. Specif-

ically, Figure 3 plots the detection rate of Sparsity-L1 forλ = 0.1,
0.01, 0.001, 0.0001 and0.00001. All λ in this range achieve good
performance for both the Tier-1 ISP and the Abilene network.This
is reassuring, since it suggests that little training or parameter tun-
ing is needed to match the method to a different network or traffic
pattern.

6.2.2 Measurement Noise
Thus far, we have assumed perfect link load information for

anomaly detection. However, in real networks, SNMP byte counts
are collected from all routers across the network. Inevitably, mea-
surement issues such as lack of time synchronization may introduce
noise. In this subsection, we evaluate the impact of measurement
noise by multiplying white noise termsN(1, σ) with each element
of the link load, and then using the result as input to our inference
algorithms.

Figure 4 compares how well the methods perform with no noise,
to how well they do with noise levelsσ = 0.5% andσ = 1%.
Note that measurement errors near 1% throughout the networkare
quite significant, since the size of the largest anomalies are them-
selves near 1% of the total traffic (Figure 1). It is a challenging
task to accurately diagnose anomalies given the comparablelevel
of noise. Nevertheless, we find that both Sparsity-L1 and Tomo-
gravity are quite robust to measurement noise. For the Tier-1 ISP
network, the detection rate remains above 0.8 for big anomalies
(smallN ) and above 0.7 for the top 50 anomalies. For the Abilene
network, there is hardly any degradation on the detection rate with
this level of noise (small in comparison with the anomalies). These
results demonstrate the strength of our algorithms in dealing with
imperfect measurements.

6.3 Time Varying Routing Matrices

6.3.1 Missing Data
Missing measurement data, arising from problems such as packet

loss during data collection, is common in real networks. Indeed,
this can be tricky to be deal with, since the loss of link load data
has the effect of producing time varying routing matrices inthe
anomography formulation. Fortunately, as discussed in Section 4,
our extended Sparsity-L1 algorithm is able to handle this situation.

In Figure 5, we report on the performance of the inference algo-
rithms with up to 5% of the data missing – missing values are se-
lected uniformly at random. We observe that both Sparsity-L1 and
Tomogravity suffer only minor (almost negligible) performance im-
pact, in terms of detection rate. The low sensitivity to missing data
is an important feature of these methods, since it is critical for real
implementation.

6.3.2 Routing Changes
In an operational network, the routing matrix is unlikely tore-

main unchanged over a few days. Hardware failures, engineering
operations, maintenance and upgrades all may cause traffic to be
rerouted on alternative paths. In this subsection, we evaluate the
impact of routing changes on the performance of our algorithms.
We introduce routing changes by simulating faults on internal links.
Figure 6 presents results where we have randomly failed/repaired
up to 3 links at each time instance. We observe that Sparsity-
L1 is very robust to such a disturbance in the routing structure,
while Tomogravity suffers significant performance impact.It ap-
pears that Tomogravity suffers here because errors in the (early) in-
ference step, being computed from different routing matrices, add
to become comparable to the anomalies themselves. This demon-
strates another advantage of the late-inverse over the early-inverse
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Figure 2: Detection rate by various inference techniques
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Figure 3: Sensitivity to Parameter Choice: λ

approach.

6.4 Comparison of Anomography Methods

6.4.1 Impacts on Inference Accuracy
Thus far, we have compared the performance of Sparsity-L1 and

Early Inverse-Tomogravity, under the simple temporal model (fore-
casting the next data point using the current value). We found
that Sparsity-L1 in general outperforms the Early Inverse approach.
The difference in performance is more pronounced for the Abi-
lene network, where Tomogravity’s underlying gravity modeling
approach is challenged and the traffic pattern is highly variable.
We also observed that Sparsity-L1 is robust to measurement noise,
is insensitive to parameter choice, and is able to handle missing data
and route changes. We now evaluate overall performance whenap-
plying Sparsity-L1 with other temporal and spatial anomography
methods. In particular, we compareFFT (Section 3.3.2),Wavelet
(Section 3.3.3),PCA (Section 3.2.1),TPCA (Section 3.3.4), and
four ARIMA based methods,Diff (the simple forecasting model
of the last section),Holt-Winters, EWMA, and generalARIMA,
which determines the appropriate model using the method in Sec-
tion 4.5.

As noted in Section 5, for each model considered, we computex̃

directly from the OD flow traffic data and use it as the benchmark.
Next, we computẽb with the same anomography model, and con-
struct theAx̃ = b̃ inference problem. We compare the solution
derived through Sparsity-L1 with the benchmark. Figure 7 presents
the detection rate for these approaches. To avoid overcrowding the
graph, we divide the anomography methods into two groups. Fig-
ure 7 (a), (b) plot the results for the ARIMA family of anomography
approaches and Figure 7 (c), (d) plot the results for the rest. We ob-
serve that for all the ARIMA based approaches, Sparsity-L1 finds
very good solutions. With the traffic data aggregated at the 10-
minute level, simple Diff and EWMA can sufficiently extract the
anomalous traffic and warrant a solution that maximizes the spar-
sity of the anomalies. Holt-Winters produces better performance
than Diff and EWMA. This is because the model is more sophis-
ticated, and thus is able to capture more complex temporal trends
exhibited in the traffic data. Further sophistication, as incorporated
in ARIMA, however, cannot significantly improve performance. In
the family of ARIMA models, Holt-Winters appears to providethe
best complexity-performance trade-off.

From Figure 7 (c) and (d), we observe that Sparsity-L1 can also
achieve high detection rate under FFT, Wavelet and TPCA. How-
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Figure 5: Impact of Missing Data

ever, it doesn’t work well with PCA3. This can be explained as
follows. When we apply spatial PCA on the real traffic matrixX
and the link load matrixB, we obtain two linear transformation
X̃ = TxX, andB̃ = TbB = TbAX, respectively. However, the
two transformation matricesTx andTb may differ significantly be-
cause the spatial correlation among link loads and that among OD
flows are rather different. Even if we useTx = Tb, we cannot en-
sure thatATxX = TbAX (i.e.,AX̃ = B̃ (Note that this last com-
ment applies to spatial anomography methods in general). Thus,
the spatial PCA anomography solution is not expected to com-
pletely overlap with thẽx identified by directly applying spatial
PCA on the OD traffic flows. In contrast, the temporal anomog-
raphy methods areself-consistentin that givenB̃ = BT , if we
apply the same transformationT on X and obtainX̃ = XT , we
guarantee that̃B = AX̃ (= AXT ).

6.4.2 Cross Validation for Different Methods
We now turn to comparing the various anomography methods .

To do so, we use a set of benchmarks, as described in Section 5,
each derived from applying anomaly detection algorithm directly

3We have verified that Pseudoinverse and Sparsity-Greedy work
even worse than Sparsity-L1 for PCA.

to the OD flows. For each benchmark, we report on the success of
all of the anomography methods. The hope is that methods emerge
that achieve both low false positives and low false negatives for
nearly all of the benchmarks.

In Table 1 (a) we present the false positives for the Tier-1 ISP net-
work with M = 50 andN = 30 (see Section 5). We found results
for different values ofM andN to be qualitatively quite similar. To
align our results with the methodology reported in [23], we include
the bottom row, labeled PCA*, where we use a squared prediction
error (SPE) based scheme to determine the set of time intervals
at which big anomalies occur, and the greedy approach (Section
3.4.2.2) to solve the inference problem. Note that the number of
anomalies reported by PCA* may be less thanN . We therefore
report the actual number of anomalies in the table next to thelabel
PCA*.

From the table, we observe from the upper left6×6 quadrant that
the ARIMA, FFT and Wavelet approaches tend to have relative low
false positives among detected anomalies. Thus, the top 30 ranked
anomalies derived through these approaches indeed appear to be
anomalous traffic events that are worth investigating.

The PCA based approaches, however, exhibit a higher false pos-
itives when benchmarked against other approaches. This appears
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Figure 6: Impact of Route Change

to be partially due to PCA identifying anomalies of a different type
than those identified by the methods. Consider, for example,a sud-
den increase of traffic for an OD flow that persists for a coupleof
hours. PCA methods may identify every instance within the two-
hour period as anomalous. ARIMA based approaches detect abrupt
traffic changes. Hence ARIMA based methods likely extract only
the “edges” – the first and last instance – of the two-hour period.
Another factor contributing to PCA’s false positives may beits lack
of self-consistency: anomalies present in the OD pairs but not de-
tected by the method in the link loads. In addition, unlike ARIMA,
FFT, or wavelet based tomography, both spatial PCA and tempo-
ral PCA cannot fully utilize temporal ordering informationin the
measured time series data. For example, any reordering of the time
series,b1, b2, ...,bt, does not affect the outcome of the algorithm.

Similar observations can be made from Table 1(b) and Table
1(c), where we present the same analysis, but for the Abilenenet-
work. In Table 1(b), we observe that PCA finds very few anoma-
lies identified by other methods. Note that Table 1(c) uses the same
dataset as that in [23], and the result is also consistent with that in
[23].

Table 2 presents the number of false negatives forM = 30 and
N = 50, where we are interested in the number of large anoma-
lies that are not identified by each approach. We observe thatthe
ARIMA methods, FFT and Wavelet anomography approaches have
superb performance – the number of false negatives are very low
for both the Tier-1 ISP network and the Abilene network. This
indicates that very few important traffic anomalies can passunde-
tected by these approaches. The PCA based approaches, however,
identify about half of the anomalies in the Tier-1 ISP network and
almost none in Abilene. The high rate of false negatives for PCA
in the Abilene network (Table 2 (b)) may be due to the high irreg-
ularity of the traffic pattern in this dataset – with anomalous traffic
dominating the diurnal traffic variations. In such case, thenormal
subspace in PCA can be contaminated by the anomalous traffic,
impacting the effectiveness of the method.

7. CONCLUSIONS
In this paper, we introducednetwork anomography, the problem

of inferring network-level anomalies from widely available data ag-
gregates. Our major advances are:

1. We introduced a powerful framework for anomography that
cleanly separates the anomaly detection component from the

inference component. The framework opens up a wide field
for innovation and for the development of families of new
algorithms. The novel method of Lakhinaet al. based on
PCA falls within the framework.

2. Within the framework, we put forward a number of novel al-
gorithms, taking advantage of the range of choices for anomaly
detection and inference components and choosing between
temporal versus spatial approaches.

3. We developed a newdynamic anomographyalgorithm, which
tracks both routing and traffic measurements, and so enables
alerting with high fidelity on traffic matrix anomalies, with-
out alerting on internal routing changes that leave the traf-
fic matrix relatively stable. As routing changes are often
due to normal internal self-healing behavior separating these
changes from intrinsic traffic anomalies is advantageous. An
additional benefit of dynamic anomography is that is robust
to missing data, an important operational reality.

4. Using extensive data from Internet2’s Abilene network and a
Tier-1 ISP, we evaluated these anomography methods. The
findings are encouraging. Specifically, the results indicate
that the new set oftemporalanomography methods intro-
duced here have better fidelity, particularly when usingl1

minimization for the inference step. Dynamic anomogra-
phy using ARIMA based methods andl1 norm minimization
shows uniformly high fidelity (low false positive and false
negatives) and high robustness (to routing changes and miss-
ing or corrupted data).

While we believe our work represents a significant advance in
the state of the art, we recognize that the the ultimate test of perfor-
mance is significant operational experience: utility is bringing to
light in the field new anomalies that were ”flying under the radar”
of other techniques, while producing very few false alarms.Our
larger goal in future work is to explore the feasibility and perfor-
mance of automated traffic management systems, which incorpo-
rate anomaly detection, root cause diagnosis and traffic androute
control for operational networks.
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