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Abstract dard service such as Telnet, but on an undistinguished port
rather than the well-known port associated with the service
Backdoors are often installed by attackers who have comproor perhaps on a well-known port associated wittifferent
mised a system to ease their subsequent return to the sggrvice. In this paper we examine the problem of detecting
tem. We consider the problem of identifying a large class dfackdoors, particularly interactive ones, by inspectirg n
backdoors, namely those providing interactive access on nayork traffic using an intrusion detection system (IDS), véher
standard ports, by passively monitoring a site’s Interneéas we presume that there is a large volume of legitimate traf-
link. We develop a general algorithm for detecting inteka&ct fic which must be distinguished from the illegitimate traffic
traffic based on packet size and timing characteristics,aandro our knowledge, this problem has not been previously ad-
set of protocol-specific algorithms that look for signatlés-  dressed in the literature.
tinctive to particular protocols. We evaluate the algarithon Our general approach is to develop a set of algorithms
large Internet access traces and find that they perform quiigr detecting different types of interactive traffic. Theale
well. In addition, some of the algorithms are amenable te prgjorithms can then be applied to a traffic stream and when-
filtering using a stateless packet filter, which yields a majoever they detect interactive traffic using a non-standandeee
performance increase at little or no loss of accuracy. Howort, we have found some form of backdoor.
ever, the success of the algorithms is tempered by the dis-The rest of the paper is organized as follows§ &) we dis-
covery that large sites have many users who routinely accegigss the design considerations and examine the tradeoffs of
what are in fact benign backdoors, such as servers running gifferent approaches. I3, we develop a general algorithm
non-standard ports not to hide, but for mundane adminigtrat for detecting interactive traffic based on its timing chéeac
reasons. Hence, backdoor detection also requires a sartificistics, and in§ 4 we present a number of protocol-specific
policy component for separating allowable backdoor accegggorithms. In§ 5, we evaluate the algorithms using traces of
from surreptitious access. Internet traffic. We summarize §6.

1 Introduction 2 Design Space

A backdoor is a mechanism surreptitiously introduced into 8 pasic principle for backdoor detection is to find distiet
computer system to facilitate unauthorized access to the S¥eatyres indicative of the activity of interest, be it gealén-
tem. While backdoors can be installed for accessing a variefyyactive access, or use of a specific protocol such as SSH. Th

of services, of particular interest for network security @nes  mqre powerful a feature is for distinguishing between geeui
that provide interactive access. These are often insta¥ed jnsiances of the activity and false alarms, the better.

attackers who have compromised a system to ease their subzangidates for such features include the specific contents

sequent return to the system. of the data stream, the size and transmission rate of the pack

From a network monitoring perspective, such backdoorgs in the stream, and their timing structure. This last is po
frequently run over protocols such as Telnet [PR83a], RIogiienijally very powerful for detecting interactive traffistud-

[Ka91], or SSH[YKSRL99]. An example of a non-interactivejeg of Internet traffic have found that the interarrivals séu

backdoor would be an unauthorized SMTP server [P082], Sgystrokes have a striking distribution [DIJCME92, PF95],

to facilitate relaying email spam; and one somewhat in bgjamely a Pareto with infinite variance. There is also theiposs
tween would be an FTP [PR85] backdoor used to provide ag;jiry that a combination of features will prove to have gega
cess to illicit content such as pirated software, or a Napstg;siinctive power than any one feature by itself.

server [NA99] run in violation of a site’s policy. We now turn to a discussion of various tradeoffs that arise
Backdoors are, by design, difficult to detect. A commORhen considering how to develop detection algorithms.
scheme for masking their presence is to run a server for a stan
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from the ability of attackers to exploit ambiguities in afti@ e Many command shells allow the user to define aliases

stream. From a monitoring perspective, heuristics mighkwo and editing characters, which can easily defeat this ap-

well for “open” (non-evasive) attackers, but completelyifa proach unless the monitor performs alias and editing ex-

the face of an actively evasive attacker. pansion of the commands (such as also required for “bot-
While ideally any detection algorithms we develop would  tleneck” analysis [LWWWG98]). Note that this problem

of course be resistant to evasive attackers, ensuring such r  can arise either inadvertently, because the attacker as a

bustness can sometimes be exceedingly difficult, and we pro- matter of course uses aliases or redefines the editing se-

ceed here on the assumption that there is utility in “raisihey guences, or deliberately, when the attacker is attempting
bar” even when a detection algorithm can be defeated by a to evade detection. The former case may be amenable to
sufficiently aggressive attacker. We further note that ib&n heuristic analysis; the latter likely is not.

tacker fully controldoth the remote and the local host, and in

particular if they are patient and/or able to deploy arbjtra The intruder can easily evade the monitor by encrypting
software, then all sorts of devious covert channels become their content either through some application-level en-
possiblé [G193], and backdoor detection becomes essentially ~ cryption method, or directly using encrypted protocols
hopeless. We do not attempt to address the problem of detect- Such as SSH.

ing covert channels. o .

Thus, we propose the algorithms in this paper not as solu- In contrast, timing-based algt_)nthms can be _co_mpl_etely un-
tions, but merely as waystations in the ongoing “arms raCEperturbed by the use of encryption. However, timing |nf(_)rma
between attackers and intrusion detection. One form of arni9n can become distorted due to clock skew, propagation de-
race we anticipate is particularly likely is between thealev 1@YS, 10ss, and packetization variations. Making timiragséd
opers of Napster [NA99] (and Gnutella [GNOO]) and our cor@lgorithm robust against such noise is challenging.
responding detection algorithm. Napster has a historyte$si
attempting to control its use, and of users attempting to cip 4 Filtering
cumvent these restrictions [We00], and our algorithm gives
sites a new tool for detecting surreptitious use of Napster. An important factor for the success of real-time backdoer de

tection is filtering. The more traffic that can be discarded on
_ ) o a per-packet basis due to patterns in the TCP/IP headers, the
2.2 Passive vs. active monitoring better, as this can greatly reduce the processing load on the

monitor. As we will see in subsequent sections, filtering can

One Fradeoff .iS vyhether' we only a”_OW th.e .monitor.toiperfomkometimes be highly effective in winnowing down a large-traf
passive monitoring, or if it can actively inject traffic inte . ctraam to just a few packets of interest,

netW(_)rk. Passive monitoring has the advantage that it can-yowever, there is clearly a tradeoff between reduced sys-
not disturb the normal operation of the network. On the Othﬂ m load and lost information. First, if a monitor detects-su

hand, an active monitor could augment its backdoor demctlz}i‘

by trving t ('t ted backd i order t cious activity in a filtered stream, often the filtering hras
y trying to connect fo suspected backdoors In order 1o prolg,y e sufficient accompanying context that it becomes quite

the sec;v_er Ilstenlngk;)p the_ pqrtlto _det(?frn;]lne Its Skerv'ceNH%difﬁcult to determine if the activity is indeed an attack. In
ever, doing so could In principie tip off the attacker as ®© t addition, the existence of filtering criteria makes it enfie

presen_ce of the momto.r and the discovery O_f the backdoor. the attackers to evade detection by manipulating theificraf

In this paper we confine ourselves to monitors that only usg, that it no longer matches the filtering criteria. For ex@np
passive monitoring. an evasion against filtering based on packet size (see below)
is to use a Telnet client modified to send a large number of
do-nothing Telnet options along with each keystroke or line
of input.
A natural approach for detecting connections to command !N addition, reliance on filtering can significantly magnify
shell servers is to monitor the keystrokes looking for commothe problem of “chaff,” i.e., attackers generating bogasfitr

shell commands. Such a content-based approach has sevlt@l matches the filtering criteria in order to overwhelm the
drawbacks, however: monitor’s analysis load, and/or to generate a huge number of

false positives, in order to mask a true attack.
Three possible filtering criteria for backdoor detectioa: ar

2.3 Content vs. timing

e Scanning each byte in each incoming packet is very
expensive, especially if we must first reassemble TCP
streams to defeat the sort of evasions characterized in
[Pa98]. The intruder can then overload the monitor by
generating a large amount of legitimate traffic.

e Packet size. Keystroke packets are quite small. Even
when entire lines of input are transferred using “line
mode” [B0o90], packet payloads will tend to be much
smaller than used for bulk-transfer protocols. Therefore,

1See [Ra00] for a discussion of experiences with running NFS email by fi_Itering pQCk_eFS to only capt_ure small packets, the
by tunneling IP packets over messages delivered by SMTP. monitor can significantly reduce its packet capture load.




« Directionality. In general, an interactive connectionsuch3 A General Algorithm for Detecting

as Telnet is initiated by the client rather than the server, Interactive Backdoors

unless the attacker sets up some sorabtback mecha-

glnsr;e:r—gllsr erzsggzlilt;/p(?:sgbdiéovzItELt(:a%nunned(;“?Pjvg f;g% this _f,ection we present a general algorithm for Qetecting

monitoring an Internet access Iinkland are onl.y interestéqtera}cnve. backdoors based on keystroke chara(_:te.r.|§thxs.
. . . ..~ dlgorithm incorporates three types of characteristicseddi
in detecting backdoors at the local site, we can limit OUL hality. packet sizes. and packet interarrival imes. AM®
monitoring to just inbound connections, which can sig;. Y. P ' packs X .
nificantly reduce the packet capture load (for examplefmd we need to exclude excesswel_y short flows (common_ in
by filtering out outbound Web surfing connections) 9ur traces due to_ the use of scanning by automated monitor-

’ ing software), which do not provide enough traffic to analyze

Note that there is also a “cold start” problem when thesoundly. The criterion we use is to skip analysis of any flows
monitor starts running and needs to analyze an existingpmprised of fewer than 8 packets or lasting less than 2 sec-
traffic stream. In this case, it generally cannot determinends, where a flow is one direction of a bidirectional TCP
whether the traffic was initiated inbound or outboundconnection.

and accordingly cannot filter it out.

o Packet contents. When we are interested in identifying 3-1  Exploiting connection directionality

specific interactive protocols, itis sometimes possible tgs noted above, an interactive connection is most likelf-ini

filter incoming packets_ based on pattern_s specific to thaeted by the client, unless the server has some callback mech-
protocol. An example is SSH, discussed .1 below.

anism. Therefore, when looking for keystrokes we need only

consider traffic sent by the initiator of a connection. Hoarev

2.5 Accuracy if the monitor doesn't see the establishment of the conaecti
that is, the connection isgartial connection, there is no way

As with intrusion detection in general, we face the probto tell who is the actual initiator. In this case, we must con-

lem of fal se positives (non-backdoor connections erroneouslysider both flows.

flagged as backdoors) aff@se negatives (backdoor connec-  |f we are monitoring an access link and are only interested

tions the monitor fails to detect). The former can make thg detecting backdoors within the local site, we can further

detection algorithm unusable, because it becomes impessilexploit the connection directionality and ignore all outhd

(or at least too tedious) to examine all of the alerts magwallflows, even if the connection is partial.

and attackers can exploit the latter to evade the monitor.

We would of course like to have both the false positive rate . Lo

and the false negative rate be as low as possible. But particd2 EXploiting packet length characteristics

larly for those of our algorithms that are based on overafttr

fic characteristics rather than sharp signatures, we fratyue

will have to choose tradeoffs between the two. Keystroke packets are likely to be very small, even if sent in

line mode, because most commands are short. To verify this

assumption, we analyzed several Internet traffic traces avit

total of 2.1 million Telnet and Rlogin client data packets. O

Another important design parameter is the responsiverfesstBese; 79% carried a single byte, 97% carried 3 bytes or less,
the detection algorithm. That is, after a backdoor conpacti @1d 99.7% carried 20 bytes or less.
starts, how long does it take for the monitor to detect thécbac For a trace of SSH 1.x and 2.x connections (very heavily
door? Clearly, it is desirable to detect backdoors as quiakl Skewed towards 1.x), we found that 28% of the 150 K client
possible, to enable taking additional actions such asdaugpr data packets had length 20 or less. (Note that those SSH con-
related traffic or shutting down the connection. However, ifiections with predominantly big packets are likely to be file
many cases waiting longer allows the monitor to gather motéansfers.)
information and consequently can detect backdoors more ac-Consequently, we use 20 bytes as our cutoff for “small”
curately, resulting in a tradeoff of responsiveness veasas-  packets.
racy.

Another consideration related to responsiven_ess CONCerY$ »  Characterizing the frequency of small packets
the system resources consumed by the detection algorithm.
If we want to detect backdoors quickly, then we must tak&ince most keystroke packets are quite small, we can exclude
care not to require more resources than the monitor canelevehose connections that don’t have enough small packetse Mor
to detection over a short time period. On the other hand, fpecifically, we can devise a metric to measure the frequency
off-line analysis is sufficient, then we can use more ressurcof small packets in a connection, which we then use to deter-
intensive algorithms. mine whether we should exclude the connection.

3.2.1 The size of keystroke packets

2.6 Responsiveness



The simplest metric is the ratio of the number of smalpayload length of the packets to only capture small pack-
packets over the total number of packets, for a suitable dedts.tcpdump [JLM91] doesn'’t actually have an easy way to
inition of “small packet,” which per the previous section wespecify a particular range of payload sizes, but the folfmvi
define as 20 bytes or less of payload. Unfortunately, this mewill filter out all packets with more than 20 bytes of payload:
ric doesn’'t work well in practice. Although, as stated in the
previous section, over 99.7% of keystrokes are very small, 4 (packet length -
such statistics are based on a large number of connections. # ip header length -

For a specific connection, we find that the ratio can be as low tcp header length) <= 20.
as 30-40%. Consequently, in order to prevent frequent false 4 That is, data length <= 20.
negatives, we have to choose a conservative threshold as low (ip[2:2] - ((ip[0]&0X0f<<2) -
as 20-30%. But with such a low threshold, the metrics have (tcp[12]>>2)) <= 20

little discriminating power and can introduce too many dals

positives. where the bit-shifting is required to extract the IP and TCP

To avoid such problems, we devised a meltjaefined in . .
header lengths, which can be variable length due to the pres-
terms ofS, the number of small packetd], the total number .
£ence of IP or TCP options.

of packets, and, the number of gaps between small packets:

A gap occurs any time two small packets are separated by atintroducing filtering does not affect the evaluationoofor
least one large packet. We then evaluate: a flow, sincea is only computed for packets that are con-

secutive in the TCP sequence spage3(3). However, we
S—-G-1 must take care when evaluatiig since now that we only
- N see small packets, we can't accurately tell the total nuraber
packetsN transmitted by a given flow. To solve this prob-
The intuition behindl" is that consecutive small paCketS arQem, whenever we see a gap in the sequence number, we
Strong indicators that a connection has interactive t[aMﬁC estimate the number of missing |arge packets in the gap as
the small packets are all spread throughout a connectien, thrgap/l ARGE_PKT_SIZE|, where LARGEPKT_SIZE is a
we will haveG = S — 1, soI' = 0. If they are all grouped guess at the most common size for full-sized packets. This
together, thertz = 0 andI" will reflect the relative proportion sjze varies with path characteristics such as the Maximum

r

of small packets in the trace. Transmission Unit, and also depends on the particular TCP

In our final algorithm, we set the thresholdIfo= 0.2. implementation, but as a rough approximation we simply use
LARGE_PKT_SIZE = 500.

3.3 Exploiting timing characteristics The other consideration for real-time detection concerns

how quickly the algorithm can determine it has found a back-
As mentioned above, keystroke interarrival times come idoor. For off-line analysis, it suffices to check whether a-co
a striking Pareto distribution, exhibiting a very broadgan nection has backdoor characteristics when the conneetion t
[PF95]. We can then exploit the tendency of machineminates (or when the trace ends), and as we have defined
driven, non-interactive traffic to send packets back-tokba anda above, they are in terms of statistics computed over a
with a very short interval between them, to discriminate-nonconnection’s total lifetime.
interactive traffic from interactive. We do so by examining The simplest way to adapt the algorithm to run in real time
each pair of back-to-back small packet arrivals and compu to reevaluatd® anda on each incoming packet. Alterna-
ing the ratioa of how many of these interarrival times fall tively, we can have a timer for each connection and test the
within the range 10 msec through 2 sec. (We need to take caignnection whenever the timer goes off. Unfortunately; nei
not to include retransmitted packets in this computatidhg  ther approach works well in practice. The major problem is
upper bound of 2 sec is fairly arbitrary; using 100 sec doés nghat when we classify a connection as a non-backdoor connec-
appreciably change the performance. tion, we can’t just ignore the connection later on, becatise i
We then define a metria to quantify how often the in- hard to tell whether the connection is indeed a non-backdoor
terarrival between two consecutive small packets fallhiis t connection, or instead actually a backdoor connection with
range. In our final algorithm, we set the thresholdite- 0.2.  preamble that has non-backdoor characteristics (sucheas th
It might appear that the criteria 6f= 0.2 anda = 0.2 are  Telnet option negotiations that precede a Telnet logirogigl
too lax, and singularly, they are; but jointly, they provgltly  Consequently, we have to keep re-testing each non-backdoor

effective, as we show i 5.7. connection, which is clearly very expensive.
We address this problem by exponentially backing off the
3.4 Making the algorithm run in real-time reevaluation timer. We initially choose a small timeoutuseal

for the timer (30 seconds). Subsequently, whenever a cennec
In this section we discuss two considerations in using the dion appears to be a non-backdoor, we increase the timeout
gorithm in real-time. First, we observe that we can reducealue by a factor of 1.5, which spreads the computationa loa
the packet capture load a great deal by filtering on the dataer the lifetime of the connection.



4 Special-Purpose Detection Algo- [ Backdoor type]| Optimal algorithm|[ Efficient algorithm]

rithms SSH ssh-sig ssh-len ssh-sig-filter
Rlogin rlogin-sig rlogin-sig-filter
In this section we explore algorithms that look for signatur | Telnet telnet-sig telnet-sig-filter
reflecting the use of particular protocols. If we then find FTP ftp-sig ftp-sig-filter
servers for those protocols running on ports other tham thei Root prompt || root-sig root-sig-filter
standard ones, such instances may indicate the presence pfiNapster napster-sig napster-sig-filter
backdoor. Gnutella gnutella-sig gnutella-sig-filter

Compared to the general-purpose detection algorithm,
special-purpose algorithms can better benefit from pratocolable 1: Summary of the special-purpose backdoor detection
specific information, and hence are likely to be more aceuraglgorithms.
or more efficient. On the other hand, relying on protocol-
specific information can make the algorithm susceptible to

evasion, if the attacker can perturb the signature. of the form “SSH-protoversion-softwareversion comments”
There are two major applications for special-purpose dgg|iowed by carriage-return and newline (ASCII 13 and 10,
t_ect|0n algorithms. First, they can be used as baseline algl%spectively) [YKSRL99]. The maximum length of the string
rithms to evaluate the performance of the general-purpbse & 255 characters, including the carriage-return/newlies-
gorithm described i 3, allowing us to understand how muchgjo strings contain only printable characters, not inicigd
performance we lose by making the algorithm more genergbaee ore”
(and hence more difficult to evade). Second, the special- cyrrently, the SSH protocol version is either “1.x” or “2.x"
purpose algorithms themselves can be used either i”diVid"Fherefore, it suffices fossh-sigto look for text “SSH-1." or
ally or in combination with the general-purpose algoritton t«ggH._2 » at the beginning of the first data packet sent in each
detect backdoors. direction of a connection.

In the rest of this section, we introduce 15 algorithms for \we can replacessh-sigwith the following tcpdump filter
detecting various interactive protocols and the like. Base (denoted assh-sig-filter) for very efficient detection:
different design purposes, we can divide these algoritimtes i

the following two classes: # 1st 4 bytes are 'SSH-'" and

. . . ) ) # bytes 5 and 6 are '1.’ or 2.
e Optimal algorithms are designed to identify backdoors tep[(tep[12]>>2):4] = 0x5353482D and

as accurately as possible, without worrying about effi- (topl[((tep[12]>>2)+4):2] = Ox312E or
ciency. Such algorithms are intended for use as baseline tep[((tep[12]>>2)+4):2] = Ox322E)
algorithms and for off-line analysis.
¢ Efficient algorithms incorporate protocol-specific filter-_. Our second detection algorithmsh-len uses an implicit
: ) . : : signature, the packet length, to detect SSH sessions. éccor
ing mechanisms into the optimal algorithms to reducé h ificati il (in the ab
their expense, at the cost of a degree of accuracy. Tk'}r('?g to the SSH Spec ication, SSH 1.x will (in the absence
T . . .-~ of TCP repacketization) generate packet payload sizeseof th
tradeoff here varies a great deal—sometimes it is even . X .
i . i . orm 8k + 4, that is, 4 more than a multiple of 8. SSH 2.x will
possible to use a simple packet filter to achieve accu-

. . enerate payload sizes of length at least 16, and also a multi
racy in the same league as for much more expensive al-

; . : ple of the cipher block size, which is a multiple of 8 for all of
g?fircl:tigrr:lsequoel%: t%) Sgle()\flt\;)rzeig;ii:w?g Cglg(;lgclisoilgonthms the ciphers of which we are aware. Therefore, for SSH, either

most packets will have leng8k + 4, or most will have length
Table 1 summarizes the algorithms discussed in the rest®f- One deviation occurs with the initial version exchange,

this section. which does not conform with these rules.

In light of this patternssh-lendetects SSH as follows:

41 SSH 1. First test for an interactive connection using the timing
based algorithmg§(3). If it is interactive, go to the next

Secure Shell (SSH) encrypts transmitted content with gtron )
step, otherwise stop.

cryptography. It is increasingly used for both interactrel
bulk transfer traffic. While all in all its deployment repres® 2 | the proportion of packets with leng¥% + 4 or the
a major advance for Internet security, it presents sigmifica number of packets with lengthi: exceeds a threshold,

difficulties for content-based intrusion detection prebisde- classify the connection as SSH.
cause it renders the monitor blind to the specifics of each con
nection. It is thus particularly attractive for backdooeus We need to be careful when choosing the threshold, because

Our first algorithm for detecting SSKdsh-sig uses the SSH packet retransmission and fragmentation can sometimes dis
version string as the signature for SSH. When an SSH conndost such characteristics. In our current implementatioa,
tion has been established, both sides send an identifying st set the threshold to 75%.



4.2 Rlogin IAC WILL option-code
IAC WON'T option-code
IAC DOoption-code

IAC DON'T option-code

Upon connection establishment, an Rlogin client sends four
NUL-terminated strings to the server in the following fotma
[Ka91]:
The code values fowILL, WON'T, DQ DON'T, and IAC
are 251, 252, 253, 254, and 255 respectively. Note that some
options have parameters, and so can be longer than the above
three bytes.
telnet-sigtests the first two bytes of each incoming packet
The server then returns a zero byte (NUL) to indicate thd® see if they match the beginning of any of the above. If a
it has received these strings and is now in data transfer mod@nnection doesn’t involve any option negotiation, we clas
Algorithm rlogin-sig attempts to detect Rlogin sessions usingify it as a non-Telnet connection. Otherwise, we test the fo
this negotiation as a signature. It first applies the folmyvi lowing additional conditions:

analysis to a connection: o Atleast 75% of the bytes are 7-bit-ASCII.

<NUL>
client-user-name<NUL>
server-user-name<NUL>
terminal -type/speed<NUL>

e For the flow towards the initiator of a connection, check

if the first byte is a NUL e Atleast 50% of the lines are not longer than 80 bytes.
e For the flow sent by the initiator, keep testing each bytd nese aid in weeding out binary traffic that happens to match
until one of the following events happens: the option patterns above. _ _ .
. We can combine the following packet filter witlnet-sig
- A gap in sequence number occurs; to form a more efficient algorithntelnet-sig-filter:

- four NUL's have been seen;

- an empty string or a non-7-bit-ASCII byte is
seen; or

# 1st byte is <IAC> (0xff),
# 2nd byte is <251> - <254>

) ) (tep[(tcp[12]>>2):2] > Oxfffa) and
- the number of bytes we examined reaches a maxi-  (tcp[(tcp[12]>>2):2] < Oxffff)

mum bound (128 in the current algorithm).

If the above terminates by finding four NUL's, then we4.4 FTP
check to see whether the flow in the other direction begins

with a non-NUL byte, or whether we found any empty stringé” this section we look at a somewhat different form of inter-
or non-7-bit-ASCII bytes. If neither of these last two hold,active protocol, the user control portion of the FTP file tfen

then the connection is classified as an Rlogin connection. Protocol [PR8S]. FTP is a request/reply protocol in which re
We can combinglogin-sig with the following tcpdump fil- guests are sent in single, usually short, lines of ASCI|, t&xtl

ter, resulting in a more efficient algorithriogin-sig-filter : r_eplies have a similar structure, but can be longer and multi_
line. Some FTP requests are sent in response to user activ-
# last byte is 0 and data len != 0 and ity, and accordingly have interactive-like timing. Other
# data length <= 128 generated mechanically by the FTP client, and arrive gjosel
(tepl(ip[2:2]-((ip[0]&0x0f)<<2))-1] = 0) spaced.

and ((ip[2:2]-((ip[0]&0x0f)<<2)-
(tcp[12]>>2)) 1= 0)

and ((ip[2:2]-((ip[0]&0x0f)<<2)-
(tcp[12]>>2)) <= 128)

Replies sent by FTP servers start with a status code (a num-
ber), followed by any accompanying text. For a day’s worth of
FTP activity between the Lawrence Berkeley National Labo-
ratory and the rest of the Internet (7,229 connections)dibie

Note thatrlogin-sig tests for whether théast byte in the tribution of the code in the first reply returned by the serser
packet is NUL, rather than the first byte. This is necessai§ode220 (‘ready for new user”) seen 6,685 times; cetil
because we find that clients tend to send their first NUL in it§'service not available”) seen 535 times; co226 (“clos-
own packet, and the remainder of the prolog information in #g data connection”) seen 7 times; cod&26 (“connec-

second packet. tion closed”) and200 (“command okay”) each seen once; no
other codes seen.
4.3 Telnet Of these, if we miss a server that retudsl we haven't

actually missed anything significant, since the serviceois n
The Telnet protocol [PR83a] includes a quite general meclavailable. All that really matters is detecti2g@0, though we
anism for negotiating options [PR83b]. Since most Telnetan include421, too, without too much extra effort.
sessions begin with a series of option negotiations, we canFor FTP server replies, the fourth byte is either a blank or a
attempt to detect these, which have a distinct patternngaki hyphen, the latter indicating a multi-line reply. Therefothe
one of the following four 3-byte formats: ftp-sig algorithm looks in the first four bytes for eith20



or421, followed by either a blank or a hyphen, as a signaturservers. Napster users have taken counter-measures to cir-

for an FTP connection. cumvent such blocking [We00], including configuring Nap-
We can also compodtp-sig-filter : ster servers to use non-standard ports for their commu-
nications. Open-source Napster clients are also available
# 1st three bytes are 220, [GN99, ONOOa], which will aid Napster users in modifying
# 4th byte is blank or hyphen the client's behavior to better circumvent detection.
tep[(tep[12]>>2):4] = 0x3232302d or Detecting Napster traffic is thus in many ways similar to
tep[(tep[12]>>2):4] = 0x32323020 detecting other backdoors, even though in this case tHictraf

does not reflect a security access violation, but ratheriaypol

e . . . iolation (authorization rather than authentication).
One difficulty with this approach is that the same sort O}/oa on (authorization rather than authentication)

status codes are used by the popular SMTP mail transfer pr&)-we focused on the problem of detecting the communication
tocol [P082]. Code220 corresponds to “service ready” and irectly between Napster clients (used to transfer theahctu

421 to “service not available,” just as it does for FTP. This'vIPB s). One thought was to develop a generic MP3 detec-

means that our algorithms for detecting FTP backdoors sho tlor, though our preliminary work on this has shown the prob-

. : em to be somewhat difficult, as the format has a short, binary
WorkJ.U.St as W?" fqr SMTP backdoors (which can actually b%eader that does not suggest a simple, distinct patterroko lo
beneficial), which irf 5.5 we explore further.

with a similar filter for421 .

for [Bo0O].
The Napster client communication, however, has a quite
4.5 Root Backdoor distinctive signature [ONOOb]. The communication begins

_ . . with the stringSENDor GET followed immediately by the
From operational experience we have found that one particyz .« of the item (no intervening whitespace). Furthermore,

lar type of backdoor installed by attackers is a Unix rootlshe we have found that th6ENDor GETdirective is sent by the
and the connection to it may not involve any Telnet option neNapster client in its own pack&tso our current version of

gotiation. For these, often the server starts by sendingieeba 5 nster.sig simply looks for either of these strings sent in
with a payload of exactly two bytes#<blank>", which cor-  yeir qwn packet and occurring at the beginning of a con-

responds to one of the forms of a Unix root shell prompt. Thiﬁection. napster-sig-filter does the same, but without the
gives us a simple algorithmpot-sig, which attempts to detect beginning-of-a-connection context:

root backdoors by looking for the two bytes in the first packet
sent by the server side of a connection, and the correspgndin ~ # look for "SEND" or "GET" in a

root-sig-filter: # packet by itself (so payload of
# 4 or 3 bytes, respectively)
# look for '# ' in a packet with ((ip[2:2] - ((ip[0]&0x0f)<<2) -
# exactly 2 bytes of payload (tcp[12]>>2)) = 4 and
tep|(tcp[12]>>2):2] = 0x2320 and tep[(tcp[12]>>2):4] = 0x53454e44) or
(ip[2:2] - ((ip[0]&0x0f)<<2) - ((ip[2:2] - ((ip[0]&0x0f)<<2) -
(tcp[12]>>2)) == (tcp[12]>>2)) = 3 and
. . . L - tep[(tcp[12]>>2):2] = 0x4745 and
which, given its conceptual simplicity, works surprisingl tep[(tep[L2]>>2)+2]=0x54)

well (see§ 5.6 below).

4.7 Gnutella

Gnutella is a distribution system similar in spirit to Nagrst
Napster is a distributed system by which users can shaggNQ0]. Its distinctive features are that it is fully operusce,
copies of music that has been digitized in MP3 formaj can be used to exchange arbitrary files and not just MP3's
[NA99]. Users run a client that connectsrapster.com (although there are now Napster add-ons for doing this, too)
servers for purposes of publishing the MP3's that the user hangd it has no centralized component—Gnutella clients sim-
made available to the public, and for searching for pasicul ply need to know the name of another Gnutella client and

MP3’s available elsewhere in the distributed database. Tlﬂﬁey can participa‘te in the distribution network. ConSmUe
server redirects the client to other clients that have tlsaeid Gnutellais ||ke|y to prove harder for sites to control thm

MP3 available, and the client then makes a direct connectigfigr.
to the source of the MP3, bypassing the server at this point. | jts current form, however, Gnutella is very easy to de-

Napster has proven controversial because often the Mi&ct. Each Gnutella session begins with the connectingtclie
trading is in violation of copyright laws, and also becausgansmitting:

MP3'’s tend to be large files, so the enthusiasm of a site’s Nap — _

ster users can consume considerable resources [NAOO HaO%]j Clearly, this is very easy for the Napster client to change, tae corre-
. N sponding change to make to our detector is looking for theratesef whites-

Therefore, sites make efforts to control Napster traffi¢, fopace following the directive, which will address mistakingpételGETs for

example by removing connectivity to theapster.com those used by HTTP.

4.6 Napster




GNUTELLA CONNEC¥Aersion><NL><NL> Lawrence Berkeley National Laboratory (LBNL), the
first in the middle of the night, the second in the middle

and receiving in reply: of the afternoon. The traces have had high volume pro-
GNUTELLA OKNL><NL> Louctols (HTTP, SSH, NFS, X11, NNTP, FTP data) filtered
where<NL> is the newline character (ASCII 10). _ Note that we might well apply such filtering for opera-
_ Accordingly,  gnutella-sig looks ~ for  the  string tional use, too, deciding to trade off missing backdoors
GNUTELLAI ank>" at the beginning of a connec- on those ports for the reduced packet capture load.
tion.
The correspondingnutella-sig-filter is: e |bnl.inter.trace (389MB, 3.5M packets, 5.5K
] connections), one day’s worth of Telnet and Rlogin traf-
# look for "GNUTELLA " as first fic collected at LBNL.
# 9 characters of payload
tep[(tcp[12]>>2):4] = 0x474e5554 and .
tep[(4+(tcp[12]>>2)):4] = Ox454c4cal 5.2 Performance of SSH algorithms
and tcp[8+(tep[12]>>2)] = 0x20 We ranssh-sigon tracessh.trace  to evaluate its false neg-

ative ratio. Clearlyssh-sigonly works when the beginning of
a connection is present. Altogether, there are 546 complete
SSH connections issh.trace , none of which is missed

In this section we evaluate the algorithms developgdimnd by ssh-_5|g This demonstrate_s that the false negatwg ratio of
§ h-sigis extremely low, which is to be expected since the

§ 4. The evaluations were done by adding implementations P i . i e
the algorithms to the Bro intrusion detection system [Pa98] presence of the signature S required by the specification.

Our general framework for evaluation is as follows. To as- We. then ran ssh-sig on . Ibnl.mix1.trace '
sess an algorithm’s accuracy, we first run it against kHOV\) nI.m|x2._trace . _and _Ibnl.lnter.trace to
interactive traffic of the particular type it is supposed ¢t evaluate its false p_osmve rat|o._ Am(_)ng the .1.6’938 coneplet
(Telnet, Rlogin, SSH; or, for the general algorithm, a combinon's.SH connections, none IS .m|s-c!a35|f|ed. as SSH by
nation of Telnet and Rlogin, since SSH traffic is sometimegsh'sIg Therefore, the false positive ratio séh-sigis close
bulk-transfer) and analyze how often it fails to flag a connec®
tion in the trace as interactive. This evaluates ftise neg-
ative rate. We then run the algorithm against packet tracé
of a site’s Internet traffic (these have high-volume proteco P
such as HTTP, NFS, and X11 removed, because otherwise

5 Performance evaluation

ssh-sig-filter has exactly the same good performance on
Qe traces we have, which is not surprising, as the only ap-
arent opportunity for error is unusual packetizationtspty
SSH version text across multiple packets. In additiom, t

could not capture the traces reliably) to see which conoesti |Iter|n_g gain 1S tremerjdous,_ because only those packets tha
ontain the SSH version string need to be further processed.

they mark as interactive, and then manually assess whéther . .
y y or ssh.trace , the algorithm needs only inspect 111 KB

connection does indeed appear to be interactive. This-evalu . .
ates thefalse positive rate. of packets rather than the 194 MB present in the entire trace.

The major limitation ofssh-sigand ssh-sig-filter is that

Note, we do not assess the Napster and Gnutella detectors, | K when the beqinni f an SSH tion i
as the traces we use here were captured before those ap&\f;};;ny work:when the beginning ot an connection s

cations existed. However, our informal assessment based ~ SSH b d for both i . fi d bulk

correlating traffic to known Napster and Gnutella ports an(tj |r}ce it g?fn ﬁltjse ordl ot "}terfci'r\]/e :,rell Ican tu

services is that they work very well. ranster, it 1s dimcutt o soundly evajuate the faise nega
ratio of ssh-len which is designed to deteiiteractive SSH

o backdoors. Consequently, we only evaluate the false pesiti
5.1 Trace description ratio here.

We used four traces to evaluate the performance of the aIgo—Agam’_ we rar§sh-len0n the three ”?‘093 without ssh con-
fithms: nections: Ibnl.mix1.trace , Ibnl.mix2.trace and

Ibnl.inter.trace . Among the 16,938 non-SSH con-
o ssh.race  (194MB, 380K packets, 905 connections),”eCt'O”S’ only 5 are classified as SSHdsh-len yielding a

a half-hour snapshot of all the SSH connections seen la{g"Y low false positive rate. o
at night on the Internet access link (DMZ) of the Univer- Compared wittssh-sigandssh-sig-filter, ssh-lendoes not
sity of California at Berkeley (UCB). require the presence of the beginning of a connection. How-

ever, it is less robust for SSH 1.x over highly lossy links,
e |bnl.mix1.trace (54MB, 134K packets, 4.6K con- where two SSH blocks of lengt% + 4 could be coalesced
nections) andlbnl.mix2.trace (421MB, 863K due to packet retransmission, resulting in a single packet o
packets, 14.7K connections). Each trace contains ok, + k2 + 1) bytes. Consequently, we only ussh-len
hour of aggregate traffic collected at the DMZ of thewhen the beginning of a connection is missing.



5.3 Performance of Rlogin algorithms 5.5 Performance of FTP algorithms

Altogether there are 175 complete Rlogin connections in thiés noted in§ 4.4, our FTP detection algorithm will also detect

traces, none of which is missed Hggin-sig. SMTP, so here we note this limitation and then treat the two
We begin with evaluating the false positive ratiortafgin-  protocols together.

sig. In the four traces, altogether there are 17,306 non-rlogin We have altogether 5,629 FTP/SMTP sessions in which the

connections, none of which is mis-classified as an Rlogin coserver sent at least 4 bytes of data. Of these, 29 are missed

nection. This meanslogin-sig also has an extremely low by ftp-sig. Further inspection shows that these connections

false positive ratio. are almost all partial connections for which the initialld@
After adding filtering intorlogin-sig, we found that the (which is far and away the most likely place for our signature

false negative ratio remains the same (0/175). MeanwhiltQ trigger) is missing. This demonstrates tfipisig has a low

the increase in the false positive ratio is marginal: altoge false negative ratio.

there are 4 out of 17,306 non-Rlogin connections that are mis Among 20,135 non-FTP/SMTP connections, only one is

classified as Rlogin connections Hggin-sig-filter . classified as FTP/SMTP. Further inspection shows thatshis i
The filtering gain oflogin-sig-filter is significant. Among actually an FTP server running via WinSock—so there is no

the 1 GB data we have in the four traces, only 16 MB dattglse positive after all!

needs to be processed bygin-sig. After adding filtering,ftp-sig-filter enjoys the same accu-
The major limitation ofrlogin-sig andrlogin-sig-filter is ~ racy, as well as a terrific filtering gain: only 1.2 MB out of

similar to ssh-sig—they only work when the beginning of a over 1 GB data need be processedtpysig-filter .
connection is seen by the monitor. Again, the limitation forftp-sig and ftp-sig-filter is that,

except for rare exceptions, they only work when the begimnin

) of a connection is seen by the monitor.
5.4 Performance of Telnet algorithms

Again, we first evaluate the false negative ratio of alganith 5.6 Root shell algorithms
telnet-sig Unfortunately, it turns out that many Telnet con- .
nections in our traces are very short. For such short conné%§ far as we can tell, our traces do not include any root.shells
tions, telnet-sig fails because the connections do not includ&® dwe car_mcf).tl sourgjly evaluhate the perfp rm;anceoc;f—gg
option negotiations. On the other hand, if a connectionas than rqot—S|g— ! ter. _UI see the next.sec_:Uon for preliminary
short, even if it is indeed a backdoor, it is not likely to caus experiences indicating that theyp(t-sig-filter, in particular)
significant damage. are quite powerful.

To make the evaluation meaningful, we only consider those )
connections satisfying: 5.7 Performance of the general detection algo-

. . rithm
e the client sends at least two lines of data;

To assess the false negative ratio of the algorithm, we ran it
e the server sends at least one line of data; and on tracelbnl.inter.trace , which consists only of Tel-
net and Rlogin connections. Among the 150 complete Rlogin
connections, 26 are missed by the algorithm. Further inspec
tion shows that 23 are excessively short (less than 2 seconds

After eliminating connections not satisfying these reeguir . durati | g tod d the other 3
ments, 1,526 Telnet connections remain, 18 of which aff 9uration, oronty one command execute ), and the other

missed bytelnet-sig Further inspection shows that 17 out ofdre user login failures. Among all 1,450 Telnet connections

the 18 involve the same public library catalog server, Whict?at ?jrelnot_tixceisr:vel); sho::; 2f2|are m'S?_Ed byt_th_e ‘;;tr}lng-
performs passwordless logins without any option negatiati aseda %(I)” tdml. ¢ ere Olie'th € talse nsi_ga 'Vf] ra Iotlhe ¢ th
We further find that of the 12,708 non-Telnet connections jgomparable taeinet-sig urther inspection snows that the

the traces, none is mis-classified as Telnet connectionis. Tlﬁlﬂogghg;ﬁizgoﬂ!s15;:;2?:;2;2??2 %;:::jeESI?he
demonstrates th&Inet-sighas a very low false positive ratio. 9 y

After adding filtering intotelnet-sig to form algorithm timing-based algorithm. . .
e . . : To evaluate the false positive ratio of the algo-
telnet-sig-filter, the false positive and false negative ratios are

unaffected for the traces we have studied. The filtering,gai thm, we ran the algorithm offonl.mix1.trace and
R S ' 9,920} ) mix2.trace with all the Telnet/Rlogin/FTP/SSH/
however, is significanttelnet-sig-filter has to process less

than 1.5 MB out of over 1 GB of packet data, SMTP connections filtered out. Among over 12,000 con-

The major limitation oftelnet-sig and telnet-sig-filter is nections, the timing-based algorithm reported 57 baclaloor
- J . T g g Further inspection shows that 45 are IMAP [Cr94] and POP
similar to ssh-sigandrlogin-sig—they only work when the

: o . .LMR%] mail servers used interactively, and therefore ae n
connection as seen by the monitor includes option negotia-

tions, which tends to only occur at the beginning of a connecl:tl fact false positives.

tion. 3The algorithm has also detected interactive SMTP sessiamsinally a

e the duration of the connection is at least 1 second.




5.8 Experience with production use cause the filter version of the algorithm detects:blank>”

Wi | v b ional deol fthe b anywhere in a connection, providing it is sent as a prompt
e only recently begun operational deployment of the backp iy f \yith no newline)root-sig-filter is quite powerful at

door detection algorithms for production use on the LBNLdetecting both some transitions to root via the Usibcom-

DMZ One of the most surprising (and, in rfa_trospect, ObVjousmand, and sessions for which the prompt seen after the login
findings has been the large number of legitimate backdoors rolog is indeed #<blank>"

U C'::; rDeK(/IaZmple, Whe'n azagyégg i%rr;mu;tes of.flttra'fflc fro;r:;hg Part of the appeal abot-sig-filter is that it generates very

: (comp_nsmg ' ot data after fitering out tN€ ¢, candidate connections, so even though its false hiorate
high volume fraffic), the protocol-specific algorithms repo neral traffic is fairly high, the connections it flags aré no
334 backdoors on non-standard port_s. of these, 326 are F%Erdensome to check, and it is an exceptionally cheap algo-
servers on non-standard ports, 7 are interactive gameshandrithm in terms of computation

remaining one is a library card catalog server. In conttast, . .
L : : We do not yet run the general algorithm operationally. As
timing-based algorithm reports 220 backdoors. From visuaj. . : .
. . ] . . iscussed above, it detects large numbers of interactive se
inspections of 75 of these, we found: 17 are interactive AOL. - ! : .

i . . : vices, requiring time-consuming effort contacting the man
sessions, 19 are interactive games, 14 are chat sessiams, 3 a . . . .

ers for the various machines to determine that in fact the

card catalog servers, 7 are FTP sessions, and we were ungbie " )
to identify the other 15. PhEkdoors are legitimate. But the potential of the approach

: . ' . seems clear already.
Running on the live traffic stream, the SSH detection algo- y

rithms have turned up SSH servers running on port 80 (nomi-
nally HTTP—the server ran on that port to provide tunnelin

through firewalls); port 110 (nominally POP); port 32 (use$ Summary
to run an older version of SSH than the one on port 22, dth
to compatibility problems); ports 44320-44327 (a NAT serve
with SSH access to the collection of hosts behind it via a nu

ber of different ports); as well as a host of variants of 2222 ent from most machine-driven traffic (smaller packet sizes,

922, 2222, . ’)Z . ' . longer idle periods), it is possible to search efficiently fo

For production use Itis l,!nsafe to filter out the h|gh-yolum(esuch traffic. We have presented a general algorithm for doing
protoco!s. Running the signature-based tcpdump filters U, and also protocol-specific algorithms that look for aign
full traffic S”e?ms does not present any p_erformance F?r()[i%ljres particular to different protocols, both of which we-im
lems when using a kernel-based packet filter, as the f||ter§emented in the Bro intrusion detection system

are highly selective. For the other protocol-specific dete(P One unexpected benefit of developing the protocol-specific

tors, it appears we can also run them on good-sized fullaraff] Igorithms was to realize how it is frequently possible te fin

streams, as running all of them against a 10 GB trace on§/er rint a particular application protocol by unique ormga
takes about 20 CPU minutes on a 400 MHz Pentium II. P P pp P y uniq

We run all of the brotocol-specific detectors dailv a ainslfmique text it includes. This lead to the developement of suc
P P Y aganStosstul algorithms for Napster and Gnutella, which can be

traces of LBNL traffic other than the high-volume ports. (We . . . .
: L : . important to detect given that their use sometimes violates

will shortly be configuring our monitor to run them in real- . ", : .

. . N site’s policy, and that their users often attempt to evadeade

time.) We currently run with a set of five filters to remove

g ] . tion.
legitimate backdoors: the NAT front-end mentioned above; The algorithms are frequently amenable to prefiltering in

two hosts that run a document upload service that triggers, . ! ’ :
fip-sig  (the protocol is not FTP or SMTP, but has a simi-WSh'Ch a stateless packet filter discards nearly all of thiéicra

lar structure); a host that runs a service on TCP port 497 thsoﬁrgam before it is even considered by the algorithm. Such fil

involves an exchange that looks like Telnet option negotiat (ornd Yields major performance increases in terms ofreduc |
(but isn’t); and a popular FTP server that sometimes serves P 9,

files with binary data that looks like embedded Telnet ofgtion :3(2/)'( 'Iz :glf?r:gd ggzigif"fu%frigvn?gi(nﬁzat trr?:y (laor:(;\rlzl ZE}:::L IS
The Napster and Gnutella detectors have become importan P P ty 9 g

tools in enforcing LBNL's appropriate use policy, and, fa e with the protocol-specific algorithms, which is likely toejdl

: better accuracy.
ample, have detected a remote Napster server running on por{/\/hile the algorithms work very well, a major stumbling

21 (FTP) i t att t to hid i t a fire- . . . L
( ) inan apparent attempt to hide or circumvent a Ireblock we failed to anticipate is the large number of legitiena

wall. “backdoors” that tinel Th t back
The root backdoor filteroot-sig-filter, has uncovered root ackdoorsihat users routin€ly access. These are notbac
&oors in the surreptitious sense, but only in the more génera

backdoors running on UCB traffic. However, these have n sense of standard protocols being run on non-standard ports
been in the form originally intended (in which the connec: P Ing ru P

tion begins directly with #<blank>"), which we know from Wﬁ. r;]avgnrecently.tb?gl;n tﬁstlr?g dthe ?Igonthrtnsf opf(_a ra'gonally,
experience are a rare, albeit striking, signature. Instbad which will necessitate bo € development of refined secu-

rity policies addressing the many legitimate backdoors, an
non-interactive protocol. honing our algorithms as a mechanistic way to eliminate cer-

e problem of finding a backdoor connection in a flood of
otherwise legitimate network traffic initially appears déng.
ut because interactive traffic has characteristics quifterd

10



tain classes of benign backdoors. But even given these hiika91] B. Kantor, “BSD Rlogin,” RFC 1282, Network In-
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