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Abstract- Efficiently sharing spectrum among multiple users is
critical to wireless network performance. In this paper, we propose
a novel spectrum sharing protocol called Collision-Resistant Mul-
tiple Access (CRMA) to achieve high efficiency. In CRMA, each
transmitter views the OFDM physical layer as multiple orthogonal
but sharable channels, and independently selects a few channels for
transmission. The transmissions that share the same channel nat-
urally add up in the air. The receiver extracts the received signals
from all the channels and efficiently decodes the transmissions by
solving a simple linear system. We implement our approach in the
Qualnet simulator and show that it yields significant improvement
over existing spectrum sharing schemes. We also demonstrate the
feasibility of our approach using implementation and experiments
on GNU Radios.
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1. INTRODUCTION

Motivation: The design of spectrum sharing and multiple access
is critical to wireless network performance. Traditional approaches
share spectrum by slicing it across time or frequency, and allocate
each slice to at most one user at any time. When multiple transmis-
sions overlap on the same frequency, a collision occurs and no use-
ful data is delivered. To reduce collisions, various techniques are
proposed. For example, in the time domain, this can be achieved
by using centralized scheduling (e.g., PCF [25]), carrier sense (e.g.,
IEEE 802.11 DCF [25]), or hybrids (e.g., [36]); in the frequency do-
main, static or dynamic channel assignment and channel hopping
can be employed. We can further combine time and frequency di-
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vision multiplexing (i.e., allowing a node to use a given frequency
at a given time).

However, all the efforts aiming to resolve collisions can lead
to considerable overhead. It is well-known that slicing spectrum
across frequency alone (FDMA) is inefficient because nodes may
occupy frequency without generating traffic [34]. On the other
hand, slicing spectrum across time has to meet the challenging re-
quirement that no more than one user can access the same spec-
trum at any time. The latter either requires global coordination and
centralized scheduling, which is hard to implement in a distributed
network, or resorts to carrier sense, which has several well-known
issues, such as hidden terminals [5, 12, 14], exposed terminals [12],
and significant overhead. The overhead is especially significant for
small frames, high data rates [37], or long-distance networks in or-
der to sense a far-away transmitter and avoid collisions [24, 26, 32].
For example, the carrier sense overhead is 75.2% for TCP ACKs
in an 802.11a network with 54 Mbps and similar for VoIP pack-
ets. The overhead increases to 82.7% in an 802.11n network at 600
Mbps, and the carrier sense time further increases by 167% in order
to carrier sense a transmitter that is 3000 meters away (instead of
300 meters away) [18].

Our approach: Motivated by the limitations of the existing spec-
trum sharing approaches, we propose a new direction of spectrum
sharing, called Collision-Resistant Multiple Access (CRMA). In
CRMA, every transmitter views the OFDM physical layer as multi-
ple orthogonal but sharable channels, and randomly selects a sub-
set of the channels for transmission. ' When multiple transmissions
overlap on a channel, these signals will naturally add up in the wire-
less medium. The receiver j can construct a simple linear system

A, g, (i) = R(, )-

x(4) denotes the transmitter ¢’s signals, R(j, f) denotes the re-
ceiver j’s received signal on channel f, and the matrix A(3, j, f) =
c(t, f) x h(i, 3, f), where h(i, 7, f) is the channel distortion from
transmitter 4 to receiver j on channel f and c(z, f) is a code chosen
by the transmitter to scale the signal. The code c(i, f) can be either
binary (i.e., 1 when the signal x() is present on channel f and 0
otherwise) or non-binary. The receiver then decodes x based on
A and R by solving the linear system. By using coding, transmit-
ters no longer need to avoid collisions. Upon successful decoding,
it can continuously send without incurring carrier sense overhead.
Figure 1 shows an example of two senders transmitting signals on
two channels. A receiver can extract the original signals by solving
a simple linear system of two equations.

CRMA shares the same spirit as CDMA in that both use coding to
share spectrum, but differs significantly from CDMA in the follow-

'"Transmitting on non-consecutive frequency bands is feasible as
demonstrated by the implementations in previous works [31, 43].
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Figure 1: An example of two senders sharing two channels. The
signals received on the two channels at node j are R(j,1) =
h(1,7,1) x 21+ h(2,7,1) x 2 and R(j,2) = h(1,4,2) x 1+
h(2,7,2) x x2, respectively, where 1 and x2 are transmitted
signals and h(i, j, f) are the channel coefficients. We can de-
code 1 and 22 based on R and h.

ing ways. There are two classes of CDMA: synchronous CDMA
and asynchronous CDMA. CRMA differs from synchronous CDMA
in that it does not require that all transmissions start at the same
time, and differs from asynchronous CDMA in that the latter suf-
fers from Multiple Access Interference (MAI) whereas we explic-
itly incorporate the other transmissions involved in collisions when
constructing the linear system for decoding so that we can cancel
out the interference and achieve high reception rate.

Our use of random coding is related to network coding, where
the receiver receives random linear combinations of the original
frames and decodes the frames by solving a linear system. Differ-
ent from existing network coding literature, we exploit the flexibil-
ity of random linear coding to develop an efficient spectrum sharing
protocol. This protocol is general and its benefits are especially sig-
nificant for environments where carrier sense is inefficient, such as
hidden terminals, exposed terminals, networks with long-distance
communication, high data rates, or short frames.

We implement our approach in the Qualnet simulator [28] and
compare it with several existing spectrum sharing protocols, in-
cluding CSMA, random access, and Wi-Fi. Our results show that
CRMA significantly out-performs the other schemes. We further
demonstrate the feasibility of our approach using experiments on
GNU Radios.

In summary, this paper proposes a new direction of spectrum
sharing. It makes three major contributions: (1) a novel encoding
and decoding algorithm that enables simultaneous transmissions of
interfering signals on the same frequency band, (2) a new spectrum
sharing protocol that builds on top of the new coding scheme, and
(3) experimental evaluation of the protocol to show this is a promis-
ing approach.

Paper outline: The remainder of the paper is organized as follows.
In Section 2, we give a brief background on wireless communi-
cation. We present our approach in Section 3. In Section 4, we
compare the efficiency of our approach with the existing schemes
using Qualnet simulation. We demonstrate the feasibility of our ap-
proach using testbed experiments in Section 5. We review related
work in Section 6, and we conclude in Section 7.

2. BACKGROUND

To transmit a frame, a transmitter uses modulation to convert
bits into a series of discrete complex numbers. For example, BPSK
modulation uses /™ to represent a “0” bit and uses e?° to represent
a “1”. Let = denote transmitted symbols, and y denote received
symbols. They have the following relationship:

Y[n] = h[n]X[n] + w(n], (1

where the channel coefficient h[n] = afn]e %™ is a complex
number that consists of the channel attenuation «[n] and phase shift

6[n], and wn| is additive white Gaussian channel noise. A tradi-
tional receiver decodes X [n] by estimating h[n] using the training
sequence, which is a known sequence of symbols and included in
every frame.

When multiple signals transmit simultaneously, their signals add
up as follows:

Yin] = Yi[n] + wln], ©)

where Y;[n] = h; X;[n] denotes the signal after channel distortion.
In this paper, we consider an OFDM physical layer, which is
widely used today, such as in IEEE 802.11a/g/n, WiMax, and LTE.
In OFDM, each channel consists of multiple orthogonal subcarri-
ers, each of which is used to carry data independently. When a data
symbol z(7) in CRMA is transmitted onto K channels, it is repli-
cated to one subcarrier in each of the K channels. Each subcarrier
has a channel distortion h (i, 7, f, s), which denotes the channel dis-
tortion from transmitter ¢ to receiver j on channel f at subcarrier
s. Since each symbol is mapped to exactly one subcarrier in each
channel, s is unique for a given channel f and a given symbol in
the frame (e.g., the first symbol in a frame is always mapped to
10-th subcarrier on channel 1). Therefore to simplify the notations
without introducing ambiguity, we drop s in the rest of the paper.

3. OUR APPROACH

In CRMA, a sender selects K channels and sends copies of its
frame onto all the selected channels. A receiver receives the sum of
all the signals transmitted on each channel and constructs a linear
system that reflects the relationship between the original signal x,
received signal R, code ¢, and channel coefficients h. It can then
decode x based on the knowledge of R, ¢, and h. In order to realize
this protocol, several important research issues must be addressed:

e How to select a code?
e How to establish the code between a sender and receiver?
e How to encode and decode transmissions?

e How to limit the number of transmissions involved in a col-
lision to allow successful decoding?

e How to enhance spectrum utilization?
e How to handle decoding failures?
e How to deal with misaligned collisions?

Below we address each of these issues. In our description, we
define a flow as a pair of communicating nodes. In Section 3.1 —
Section 3.6, we assume OFDM symbols from different transmis-
sions are synchronous so that one signal’s FFT window contains
complete symbols from other signals. We relax this assumption in
Section 3.7.

3.1 Whatis a Code?

In this paper, we use a binary code, where the code ¢(i, f) = 1
when transmitter 4 uses channel f and c(7, f) = 0 otherwise. In
general, the code can be non-binary, and the transmitter can scale
its signal according to the code, e.g., c(3, f) is the scaling factor
that transmitter ¢ uses on channel f. Non-binary codes can be used
to increase the chance of linear independence in matrix A. For sim-
plicity, we use binary codes and show how to select binary codes
that maximize decodable collisions.

Let us ignore the channels on which there are no transmissions
(i.e., the matrix A(4, f) = (4, f)xh(s, j, f) does not have columns
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with all zeros.). In order for a collision to be decodable, the matrix
A should be full rank. This requires (1) the total number of trans-
missions involved in collision should not exceed the total number
of channels being used, and (2) the rows of matrix A should be lin-
early independent. We will address (1) in Section 3.4. Condition
(2) can be satisfied when (i) different flows that select the same
channel see different channel coefficients on the channel or (ii) dif-
ferent flows select different sets of channels.

To see how (i) can hold, we note that an OFDM channel con-
sists of multiple subcarriers. Channel coefficients vary significantly
across subcarriers [2, 11, 29]. Moreover, several previous works
(e.g., [17,27,45]) show the channel coefficients across subcarriers
(within a channel) can be used as a unique signature to distinguish
one link from another. Other work uses channel coefficients across
subcarriers to bootstrap keys for secure communication [19]. The
property that all these works leverage is that different node pairs
have different channel coefficients across the same set of subcar-
riers. Therefore, as long as the number of flows is no more than
the number of their shared channels, the matrix A is likely to be
linearly independent.

To further increase the chance of linear independence in the ma-
trix A, we let each flow select the least-used channels. In this se-
lection, each node monitors the total number of flows on each data
channel (as described in Section 3.3), and selects the channels that
have the smallest number of flows. We perform an analysis with
20 flows competing over 10 channels without carrier sense. We
vary the number of active flows, denoted as N, from 1 to 10. We
also vary the number of channels that each flow uses, denoted as
K, from 1 to 6. Figure 2 plots the decoding probability (i.e., the
probability that the linear system has a unique solution). As we
can see, when each flow selects 3 channels, the decoding probabil-
ity is 94% even when the number of transmissions is equal to the
number of channels (N = K = 10). When there are fewer trans-
missions, the decoding rate is very close to 100%. In comparison,
the traditional scheme uses one channel per flow, and its decoding
probability is much lower without carrier sense. This confirms our
intuition that using multiple channels per flow as in CRMA is more
robust and can achieve a higher decoding ratio than the existing
schemes, which use only one channel at a time and have to ensure
that no transmissions overlap on any channel. We also analyze ran-
dom channel selection, and the relative performance is similar and
omitted in the interest of brevity.

3.2 Code Establishment

We develop two approaches for code establishment. The first ap-
proach exchanges code on the same channel as used by data trans-

missions. It does not require a separate control channel but incurs
more processing for a receiver to detect a flow destined to it. The
second approach exchanges the code on a separate control channel
so that a receiver does not require additional in-band processing on
the data channels. For ease of explanation, we describe our ap-
proach for binary codes, but the approach can be easily extended to
non-binary codes. We evaluate the feasibility of in-band notifica-
tion using a GNU Radio implementation, and report its accuracy in
Section 5.2. We implement the control channel based code selec-
tion in Qualnet, and the performance in Section 4 is based on this
code selection.

In-band netification: A source s selects K channels and sends
copies of its data on all the selected channels. Since the frame can
be involved in a collision, simply including the source and desti-
nation in the frame as usual does not work. Instead we use PN
sequences to encode the source and destination addresses so that
the receiver can detect them even under collisions. Specifically, a
receiver first correlates the received signal with P, a known PN se-
quence corresponding to its own address. The correlation is close
to zero except when the incoming signal containing P is perfectly
aligned with P. A spike in the correlation indicates the frame con-
tains the receiver’s address. Only then does the receiver attempt
to run another correlation between a received signal and the PN
sequences corresponding to possible source addresses. Since the
source sends copies of its data on all the selected K channels, the
receiver expects to see spike in correlation on K channels, which
reveals the set of channels the source uses for communication.

To further improve resilience (e.g., not all K channels see cor-
relation spikes), the sender could use consistent hashing to map
(senderID,receiverID) to a set of K channels. Specifically,
consider there are M total channels and each flow uses K chan-
nels. Then there are C% possible channel selections for a binary
code, and we can number these selections from 1 to C%. When a
flow starts, the source simply hashes (SenderI D, ReceiverlI D)
to an integer between 1 and C'}. As soon as the receiver finds out
the sender address on at least one of the K channels using correla-
tion, it computes the same hash function independently to identify
all the K channels used by the source. We plan to implement and
evaluate this consistent hash based enhancement in the future.

Control channel based code selection: Alternatively, we can use
a control channel to negotiate the code. Code negotiation is per-
formed either (i) periodically or (ii) whenever the loss rate on the
data channels exceeds a threshold. A number of approaches have
been proposed in the literature to establish a control channel (e.g.,
[3, 23, 44]). We can apply them to our context so that we can focus
on how to use a control channel for code negotiation. We assume
that users know which channel is used as the control channel and
which channels are used as data channels.

Different users use CSMA/CA to share the control channel. To
enhance the reliability of control messages, we use a high transmis-
sion power to increase the communication range and a conserva-
tive clear channel assessment (CCA) threshold to reduce collisions.
Since the control traffic is infrequent, the overhead of CSMA and
the performance loss from potential exposed terminals due to the
conservative CCA threshold is insignificant.

A sender S that wishes to start communication with receiver R
sends a request for code on the control channel. R responds by
sending the selected set of K data channels to use. We further
leverage link-layer ACKs and retransmissions to provide reliability
as in IEEE 802.11 (i.e., a sender will retransmit its request for a
code if it does not receive a reply within a timeout).

Upon receiving the code, the sender and receiver broadcast the
selected code multiple times to inform their neighbors of their code.



Within this broadcast message, the sender and receiver also include
the codes selected by other nearby ongoing flows that they over-
hear. In this way, even when the message containing the code is
lost, it will be re-broadcast later by other nodes, thereby enhancing
the delivery probability of the selected code.

3.3 Encoding and Decoding Transmissions

For ease of explanation, we focus on decoding one symbol. To
decode the symbol, a receiver j extracts the incoming signals from
all channels, where R(j, f) denotes the signal at receiver j on chan-
nel f. The receiver then constructs the following linear system. For
any [ € [1..M], where M is the total number of data channels, we
have

Vi, f Z h(i, j, fe(i, fz(i) = R(j, f) 3)

where h(i, j, f) is the channel coefficient from sender i to receiver
j on channel f, c(i, f) is the code sender 7 uses on channel f, and
x(1) is the signal that transmitter ¢ sends. The left-hand side is
the sum of all received signals, and the right-hand side is the fi-
nal received signal at receiver j on the channel f. Our decoding
algorithm extracts z () based on R(j, f). In order to achieve this
goal, we should address the following important questions: (i) how
to detect frame arrival and departure, (ii) how to find out which
transmitter’s signals are present on a given data channel in order to
construct the above linear system, (iii) how to estimate the chan-
nels, and (vi) how to efficiently solve the linear system. Below we
address each of these questions in turn.

Detecting frame arrival and departure: We use a preamble and
a postamble to detect a frame arrival and departure. Each frame
starts with a preamble, which contains a known sequence of sym-
bols. Each frame ends with a postamble, which is another known
sequence of symbols. We focus on detecting a frame arrival using
a preamble, since detecting departure using a postamble is similar.
We first describe how to detect frame arrival using a clean pream-
ble, which does not collide with other signals. We then extend to
the case when the preamble collides with other signals.

When a receiver receives a clean preamble, it stores the received
preamble. It runs correlation between the stored preamble and the
new incoming signals. To maximize the detection accuracy, we use
PN sequences as the preamble. The correlation is close to zero
except when the training sequence is perfectly aligned with the be-
ginning of a frame transmitted by the same sender [8]. We observe
a spike in the correlation whenever a new frame arrives. Note that
spikes at true collision positions might sometimes be low due to
the frequency offset between the sender and the receiver. In such a
case, the receiver needs to compensate for the frequency offset to
get a good correlation spike [8]. After compensating for the fre-
quency offset, we can accurately detect frame arrival even when
SNR is -6 dB, as shown in Section 5.2.

Correlation-based detection is highly robust. As shown in [35], a
transmitter can use signal correlation to detect the presence of a sig-
nature in the received signal even if it is in transmission mode. The
detection accuracy is high even under -32 dB. Therefore a node can
count the number of on-going transmissions based on the arrivals
of preambles and postambles even while it is transmitting.

Detecting transmitters involved in collisions: A receiver needs
to know if there is a frame destined to it to invoke the decoding al-
gorithm. As described in Section 3.2, a receiver can run correlation
with the PN sequence corresponding to its address, and a spike in
the correlation indicates that a frame contains its address. Similarly,
it can use correlation to identify the addresses of the transmitters in
order to construct a linear system for decoding. More specifically,

since it is very rare to have multiple nodes start a frame transmis-
sion at the same time, the number of spikes in the correlation be-
tween the received signal and training preambles from other nodes
indicates the number of signals involved in the collision. To further
identify the set of transmitters involved in a collision, we use cor-
relation to identify the source address encoded in the PN sequence,
which are transmitted after the preamble and before the postamble.
In this way, the receiver knows the set of transmissions involved in
collisions and can use the channel coefficients corresponding to the
flows to construct a linear system for decoding.

One potential concern with the correlation based detection is the
time complexity. Given N flows (i.e., source destination pairs) in
the network, a naive algorithm will correlate the incoming signal on
each channel with each of the N flow IDs, which takes O(IN) per
channel. We can speed up the correlation by encoding the flow ID

using b sequences, each representing one of the NV & PN sequences.
For example, when b = 2, 100 flow IDs can be encoded using two
PN sequences and each of them takes 10 different values, where
the first PN sequence represents the most significant digit and the
second one represents the least significant digit. So we just need to
correlate with 10 sequences instead of 100. When b = 4, we can
encode 100 flow IDs using 4 PN sequences, each takes 4 different
values, and we can correlate with only 4 PN sequences to identify
the flow ID. Increasing b reduces the number of PN sequences to
be correlated and hence the correlation time, but this increases the
preamble length. Therefore it is desirable to select the smallest b
that the system can afford in order to limit the preamble length.

Obtaining channel estimates: First, we consider how a receiver
estimates the channel using preambles. Then we examine how a re-
ceiver continuously updates the channel estimation using the frame
data (i.e., anything but a preamble). The latter is especially impor-
tant when the frame is so large that the channel may change during
the transmission time of a frame.

A receiver can use the standard approach to estimate the channel
if it receives a clean preamble. So we now focus on the case when
the received preamble collides with other transmissions. If multi-
ple preambles collide, we can apply the technique used in MIMO,
where different transmitters send preambles coded with different
PN sequences so that a receiver first extracts a clean preamble from
each transmitter using its corresponding PN sequence and applies
the standard channel estimation on the clean preamble. Since the
probability of preamble collision is low, we have not implemented
this approach.

Next we consider when a preamble collides with data from other
transmissions. We first construct a linear system where all the
channel coefficients are known from the previous estimates and
the only unknowns in the linear system are those transmissions’
data involved in the collision. Since the decoded data symbols
will take discrete values (e.g., either +1 or -1 in BPSK), we can
decode the data as the ones that give the closest match to the re-
ceived signal. Then we construct a new linear system by plug-
ging the decoded values back into the linear system, treating the
channel coefficients as unknown, and solving the new linear sys-
tem. The new solutions give new channel estimates. We then use
an exponentially weighted moving average (EWMA) to combine
the new channel coefficients with the previous estimates. That is,
h(i, 4, f) = w- K" (i, j, f) + (1 — w)h(i, j, f). The weight w
is a tunable parameter, and is set to 0.2 in our testbed evaluation.

We can apply a similar approach to keep track of the channel
changes during decoding of frame data. Specifically, we first use
the previous channel estimation to construct a linear system and
solve for the unknown data. Then we plug the decoded data sym-
bols back to the system, and solve for the channel coefficients by



treating these coefficients as unknown. We can update the channel
estimation every N, data symbols, where N controls the computa-
tion time and freshness of the channel estimates. A large N gives
faster computation time since (as described below) we only need
to build a lookup table once for N data symbols, but a large N,
can cause channel estimates to become stale and degrade perfor-
mance. Our experiments in Section 5.2 evaluate the decoding rate
and computation time for different values of Ns.

Solving the linear system: The linear system has the form of
A-z=R

where x belongs to a set of valid symbols (e.g., +1 or -1 in BPSK).
A simple way is to solve the linear system is to enumerate all values
of x and find the combination of x that minimizes the fitting error,
i.e., find x such that ||A - x — R)||2 is minimized. To speed up the
computation, for a given A, we build a lookup table, which com-
putes A - x for all possible combinations of =. Then for a given R,
we simply perform a table lookup to find the = that minimizes the
fitting error. The same lookup table can be used until A changes,
which occurs when the set of transmissions involved in a collision
changes or the channel condition changes considerably. Section 5.2
further quantifies the computation overhead.

3.4 Limiting Overlapping Transmissions

To allow correct decoding, we should limit the number of trans-
missions involved in a collision to be within the number of channels
being used. We develop two approaches to address this challenge:
a sender-side approach and a receiver-side approach. We imple-
ment and evaluate the sender-side approach in Section 4 and plan
to quantify the effectiveness of the receiver-side approach as part
of the future work.

Sender-side approach: A sender usually immediately transmits
whenever it has data to send (i.e., CW = 0). However, if it
does not receive an ACK after it transmits a data frame, this in-
dicates a potential collision. So it enters a backoff mode (i.e.,
CW = CWs > 0), where CW; is the smallest positive back-
off value and set to 15 in our evaluation. During the backoff mode,
it waits for a random time chosen from [0, CW] slots, as in IEEE
802.11. When the backoff is over, the sender transmits immedi-
ately with a probability Q). @ is chosen to maximize the expected
number of decodable transmissions based on the expected number
of new simultaneous transmissions, which can be estimated using
the difference between the total number of flows seen from the code
establishment in Section 3.2 and the total number of existing trans-
missions. 2 With a probability of 1 — @Q, it defers and updates
CW = min(a- CW,CWinae), where « > 1 further reduces col-
lisions and is set to 1.5 in our evaluation, and C'W,,, 4 is the maxi-
mum C'W and is set to 15 - a*?. Eventually when it transmits and
its frame is lost again, it updates CW = min(a - CW, CWiaz).
Whenever an ACK is received, CW = CW/a and if CW <
CWs, CW = 0. In this way, a sender can continuously send if
its data frame is acknowledged and only pays for the backoft cost
when necessary (i.e., frames are lost).

Receiver-side approach: Alternatively, we can let the receivers
decide who to transmit. Whenever a receiver receives a frame des-
tined to it (which can be detected using correlation in Section 3.3),

%A node can estimate the number of on-going transmissions using
preambles and postambles. The presence of a preamble indicates a
new transmission and the presence of a postamble indicates a de-
parting transmission. Alternatively, it can estimate the total num-
ber of on-going transmissions based on the instantaneous signal
strength measured across all channels, the selected channels, and
their coefficients.

it determines whether its sender can continue sending the next frame.
If so, it informs the sender by sending a notification encoded as a
PN sequence so that the sender can detect it using correlation even
in presence of collisions.

The receiver will send the notification to its sender when one of
the following conditions holds: (i) the number of on-going trans-
missions is within M — margin, where M is the total number of
channels, (ii) if not, it uses consistent hashing to choose M out
of the current N transmitters involved in the collision to continue
transmitting. All the receivers who see the same set of transmitters
involved in collisions will choose the same set of M transmitters
to continue. The unchosen sender will remain silent until it detects
the receiver’s notification, which will be sent when the number of
on-going transmissions seen by the receiver is within M — margin.

The receiver-side approach offers several unique advantages: (i)
it captures the receiver’s channel condition, which is the one that
matters; (ii) it knows the real reason for losses (e.g., whether due to
too many transmissions or due to weak signal from the transmitter)
and sends notification accordingly; (iii) even under undecodable
collisions, the chosen senders can immediately send without wait-
ing, thereby fully utilizing the resources.

3.5 Enhancing Spectrum Utilization Using Vir-
tual Flows

When the total number of flows Ny is below the total number
of channels M, the spectrum might be under-utilized. There are
two ways to address the issue: (i) increase the channel width and
reduce M to close to Ny, or (ii) increase Ny by creating more
flows. Modifying channel width complicates decoding since dif-
ferent flows may not see the same number of contending flows, and
it is difficult to support heterogeneous channel widths in a network.
Therefore we adopt (ii) by letting each physical flow create virtual
flows so that the total number of virtual flows Ny is close to M.
For example, when only 2 physical flows use 10 channels, we let
each physical flow create 5 virtual flows and stripe the data across
these 5 virtual flows. In this way, essentially we have 10 flows in
the system using 10 channels, achieving high utilization.

3.6 Handling Decoding Failures

A decoding failure arises when a receiver fails to correctly con-
struct the linear system (e.g., due to an inaccurate channel estimate)
or the channel coefficients of different flows are not linearly inde-
pendent. We use ACKs and retransmissions to enhance reliability
of data traffic. Right after transmitting the data frame, the sender
waits for an ACK. The ACK is sent in the same way as data frames.
That is, a receiver sends an ACK on the same set of selected chan-
nels and the sender decodes the ACK by solving a linear system. To
further improve efficiency of retransmissions, we can further apply
partial frame recovery to extract correct symbols from a partially
corrupted frame.

3.7 Handling Misalignment between Colliding
OFDM Symbols

In real networks, frames rarely collide at exactly the same time
(i.e., the OFDM symbols from different transmissions that collide
may be misaligned). A natural question is how to decode the colli-
sions when misalignment arises. The following will detail how the
Cyclic Prefix (CP) of each OFDM symbol will permit us to prop-
erly decode collisions with misalignment and how a phase correc-
tion for each subcarrier of the delayed colliding symbol is neces-
sary for proper symbol decoding.

Cyclic Prefix and phase correction: The CP is widely used to
handle misalignment when decoding clean signals [6, 20, 40] in
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Figure 3: A example shows that the collision offset between two
senders is the same as the Cyclic Prefix (CP).

existing wireless systems (e.g., IEEE 802.11a/g/n). The CP works
by appending the last Ncp samples of an OFDM symbol to the
start, and is generally designed to deal with multipath arrivals [6].
For example, if an OFDM symbol contains 512 samples and the CP
contains 12 samples. OFDM will append samples 501 through 512
to the start of the OFDM symbol so that the final OFDM symbol
contains 524 samples. Even when the FFT window misaligns with
the incoming signal by up to 12 samples, it will still contain the
entire 512 samples for decoding.

Now the question is how to decode collisions caused by mis-
aligned transmissions. To simplify the description, we consider
two symbols involved in the collision. The same technique extends
to a collision involving more than two symbols. Figure 3 shows
an example. Since OFDM symbols rely on an IFFT to modulate
subcarriers, any timing offset that occurs in the channel results in
a phase shift after the receiver FFT [40]. First, we begin with the
PN sequence correlator to detect the exact time at which each trans-
mission involved in a collision starts. This gives us the value of the
misalignment, denoted as 7. We begin the synchronization process
with the FFT window that aligns with one of the transmissions but
is misaligned with the other transmission by 7.

The IFFT at the OFDM transmitter is expressed as:

] Nt ‘
a(k) = 5 D Xnel?TH),
n=0
where N is the number of subcarriers, which is also the size of the
IFFT, z(k) is the symbol at sample time k, and X, is the modulated
data symbol on the nt" subcarrier.
At the receiver, assuming perfect frequency synchronization, the
FFT will be:
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where the term in the braces denotes the Fourier transform of an
exponential, with the result choosing the frequency component at
n = no.

If there is an offset between the received signal and the perceived
start of the symbol (i.e., in our case, an offset between the two
colliding symbols), we can rewrite our time samples as z(k — 7),
where 7 is the timing offset in sample intervals. Then the FFT at
the receiver becomes
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Therefore, pre-multiplying the received signal after the FFT with a
factor of e(=7277 V) will synchronize the signals. In Figure 9, we
plot the amplitude and angle with and without using this factor to
compensate for the offset. As it shows, this compensation restores
the misaligned signal.

Therefore, when signals perfectly align, the receiver solves Vj:
R(j,f) = >, h(4,7, f)e(d, f)z(i). Now with misalignment by
75, the receiver solves

R, f) = 3 hGi, . Pei, el ™ % (i)

Clock synchronization: Without clock synchronization, the offset
between two signals can differ by more than the CP duration. In
such a case, one signal’s FFT window does not contain a complete
OFDM symbol from the other signal and will result in interference
from loss of orthogonality. As derived in [16], such interference
tends to be weak and it is possible to use iterative interference can-
cellation to decode the signal.

To further enhance the decoding success rate, we can use syn-
chronization to keep the offset between signals within the CP du-
ration. In particular, the sender divides time into equal sized slots
and starts transmitting a new frame only at the beginning of a new
slot. A clock synchronization protocol is used to synchronize the
slot boundaries to be within the CP duration. Note that the de-
fault OFDM CP duration is 0.8 microsecond in IEEE 802.11a/g/n.
Such level of synchronization can be achieved by existing synchro-
nization protocols for wireless LANs [30, 37]. In particular, [30]
develops a source synchronization protocol that can synchronize
neighboring senders to within 20 nanoseconds across the opera-
tional range of IEEE 802.11 SNRs. As a result, for two senders
that are H-hops away from each other, the synchronization error
is bounded by 20 - H nanoseconds. Since most wireless networks
have relatively few hops (i.e., H is small), all senders’ clocks can
be properly synchronized within the CP. The duration of each slot
is chosen to be equal to the time it takes to transmit an OFDM
symbol including its CP. Such a choice ensures that if the begin-
ning of a frame is closely aligned with a slot boundary, then all
the OFDM symbols in the frame are also aligned with slot bound-
aries. By starting frame transmissions only at or near slot bound-
aries, CRMA guarantees that the maximum offset for any colliding
OFDM symbols is bounded by the CP duration. Therefore, we can
directly apply the above phase correction to effectively compensate
for misalignment.

4. QUALNET SIMULATION
4.1 Simulation Methodology

We implement our approach in Qualnet 4.5.1 [28], and compare
its performance with the following algorithms:

e CRMA: This is CRMA without virtual flows.

e CRMA-VF: It is CRMA with virtual flows enabled to utilize
all available channels. If the number of physical flows is
smaller than the number of channels, each flow activates mul-
tiple virtual flows. We assume the number of virtual flows for
each sender is given a priori. If the number of physical flows
are greater than or equal to the number of channels, each
node uses just one virtual flow, which is the same as CRMA
without virtual flows.



o CSMA/CA: A transmitter carrier senses all channels and trans-
mits on the channels whose total energy is below its clear
channel assessment (CCA) threshold. If multiple channels
have energy below CCA, the transmitter stripes data across
all of the selected channels, which are picked either ran-
domly or based on least-used. If any of them has energy
above CCA, the transmitter performs binary backoff. The re-
ceiver sends a MAC-layer ACK when it successfully receives
the frame. Upon ACK timeout, the transmitter retransmits
and doubles the contention window until the maximum con-
tention window is reached. Upon a successful transmission,
the contention window is reset to the minimum value.

e Wi-Fi: Different from CSMA/CA, it only transmits on one
of the channels whose noise is below the CCA threshold. If
multiple such channels exist, one of them is chosen either
randomly or based on least-used channel selection.

e Random Access: A sender transmits its signal on a selected
channel without performing carrier sense (no DIFS overhead).
The contention window is doubled after a failure and reset to
the minimum after a successful transmission.

In all schemes, senders and receivers exchange the set of chan-
nels to use on a separate control channel, and the receivers know the
channel coefficients on all the channels. In addition, all schemes
use slot time of 9 ps and SIFS of 16 us. They all use MAC-layer
ACKs (with the same format) and retransmissions to provide re-
silience. In addition, all schemes except CRMA and CRMA-VF can
decode the symbols whose SNR is above the required threshold.
We assume perfect synchronization when simulating CRMA.

The parameters used in simulation are: 1000-byte frames (in-
cluding MAC and PHY header sizes), 16-QAM modulation, 20
MHZz total spectrum divided into 10 channels each having 2 MHz,
6.4 Mbps physical data rate on each channel, CCA threshold of -85
dBm (as used in IEEE 802.11a) for 5 GHz short distance networks,
and CCA threshold of -91 dBm (as used in IEEE 802.11b) for 700
MHz spectrum long distance networks. We use short distance net-
works as the default setting. We implement the modulation and
demodulation of 16-QAM to map between bits and signals. Qual-
net models the propagation delay of all signals.

For each scenario, we conduct 10 random trials. In each trial,
flow sources and destinations are picked randomly and the simu-
lation time is 5 seconds. Longer simulations yield similar results.
For fair comparison, all the schemes use either random or least-
used channel selection (as described in Section 3.1). All simula-
tions use 3 channels per flow. We generate channel coefficients
of 10 subcarriers within each channel between a sender and re-
ceiver pair using Rayleigh fading (i.e., the real/imaginary parts of
the channel responses are modeled by an independent and iden-
tically distributed zero-mean Gaussian process). The variance of
the fading across different subcarriers is 6 dB according to our in-
door measurements of 20 MHz WiFi channels [2]. We compare
our scheme with the other schemes using long-distance networks,
short-distance networks, varying the number of flows, data rate,
and payload size.

4.2 Simulation Results

Long-distance networks: Next, we evaluate the performance of
various schemes under long-distance networks using 700 MHz spec-
trum, which corresponds to white spaces. We use a transmission
power of 29 dBm, which gives the transmission range of 19 km
and carrier sense range of 42 km. We randomly place nodes in a
40 km x 40 km terrain and pick flows whose senders and receivers

are at least 75% of the transmission range (but within the transmis-
sion range) from each other to yield long propagation delay. The
total data rate over 10 channels is 64 Mbps.

In long-distance networks, the carrier sensing becomes more chal-
lenging and more inefficient since the longer propagation delay in-
creases the chance of collisions [24, 26, 32]. Using 802.11 de-
fault parameters for DIFS and ACK timeouts is not suitable for
long-distance networks, thus we adapt the modified DIFS and ACK
timeouts according to [18]. Due to the longer propagation de-
lay, one sender does not receive another sender’s signal in time
so that CRMA cannot accurately identify the exact number of active
senders in the network. Similarly, CSMA/CA and Wi-Fi also suffer
from inaccurate carrier sensing.

Figure 4 compares the performance under long-distance networks
when all the schemes use random channel selection. We make the
following observations. First, we observe that CRMA-VF consis-
tently receives high throughput of 47-48 Mbps across all numbers
of physical flows. It utilizes the available 10 channels by creating
10 virtual flows in all cases. As we would expect, when the number
of physical flows are smaller than the number of channels, the vir-
tual flow approach is more efficient than CRMA: its throughput is
150-400% higher than CRMA under 2-4 physical flows and 24-66%
higher than CRMA under 6-8 physical flows. Its performance is the
same as CRMA when the number of physical flows is 10 or higher.

Second, CRMA without virtual flows significantly out-performs
CSMA/CA, Wi-Fi, and Random Access. In particular, for a small
number of flows (2-4 flows), CRMA out-performs CSMA/CA by
33%-50%, Wi-Fi by 86%-93%, and Random Access by 64%-68%.
For a larger number of flows (6-16 flows), CRMA out-performs
CSMA/CA by 48%-61%, Wi-Fi by 47%-111%, and Random Ac-
cess by 16%-73%. CRMA without virtual flows has a lower perfor-
mance benefit under smaller numbers of flows because it duplicates
the same signal over multiple channels, which is wasteful in the low
load case.

Third, comparing the existing schemes, we observe that Random
Access performs similarly to Wi-Fi and CSMA/CA in low load,
but out-performs Wi-Fi and CSMA/CA in high load. Since Ran-
dom Access uses only one channel per flow whereas CSMA/CA
uses multiple channels per flow, its collision probability is lower
and performs better than CSMA/CA. Furthermore, Random Ac-
cess out-performs Wi-Fi by 12%-27%, because Wi-Fi pays for the
carrier sense overhead but does not get accurate information in re-
turn. In comparison, Random Access does not pay for carrier sense
and performs better.
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Figure 4: Performance comparison in long-distance networks,
using random channel selection.

Short-distance networks: Next, we evaluate the performance of
5 GHz networks by varying the number of flows from 2 to 16.
In short-distance networks, the communication and carrier sense



ranges are both 93.3 m, and nodes are randomly placed in a 100 m
x 100 m area. Each flow is between a sender and a receiver that are
within communication range from each other. Figure 5 shows the
total throughput of each scheme using random channel selection.

First, CRMA-VF consistently achieves the highest throughput
across all numbers of flows by effectively utilizing all available
channels. It out-performs CRMA by 144%-399% under 2-4 flows,
and 12%-57% under 6-8 flows. Its performance is the same as
CRMA under 10-16 flows, as we would expect. In addition, CRMA-
VF out-performs CSMA/CA by 52-246%, Wi-Fi by 52-670%, and
Random Access by 95-685%.

Second, CRMA (without virtual flows) out-performs all the ex-
isting schemes under 6-16 flows. In particular, CRMA has 41%-
79% higher throughput than CSMA/CA, 52%-113% higher than
Wi-Fi, and 94%-137% higher than Random Access. Under 2-4
flows, CRMA performs 56%-82% better than Wi-Fi, and 57%-87%
better than Random Access, but comparably or 30% worse than
CSMA/CA. The latter is because CRMA does not utilize all the
available channels. CRMA-VF effectively addresses this limitation.

Third, comparing the existing schemes, we observe that CSMA/CA

performs better than Wi-Fi by 0%-125%, and Wi-Fi performs 0%-
28% better than Random Access. CSMA/CA performance degrades
under high load case because it uses more channels per flow than
Wi-Fi and Random Access and experiences more collisions.
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Figure 5: Performance comparison in short-distance networks,
using random channel selection.

Effects of payload sizes: Next, we evaluate the impact of pay-
load size on the performance of all schemes. We omit the curve
of CRMA-VF, since CRMA-VF has similar performance as CRMA
when the number of physical flows is close to the number of chan-
nels. We use 8 flows, the 5 GHz network, and vary the payload
size from 100 bytes to 1500 bytes. Short packets are common in
networks, e.g., TCP/ACK and VoIP. As shown in Figure 6, the per-
formance benefit of CRMA increases as the packet size decreases.
For 1000-1500 byte packets, CRMA performs 57-73% better than
CSMA/CA, 103-107% better than Wi-Fi, and 139-140% better than
Random Access. The improvement increases to 99-130% over
CSMA/CA, 134-166% over Wi-Fi, and 150-166% over Random
Access for 400-600 bytes. As the packet sizes decrease to 100-200
bytes, corresponding to VoIP and TCP/ACK, the benefit of CRMA
increases to 208-308% over CSMA/CA, 248-361% over Wi-Fi, and
208-266% over Random Access.

Effects of data rates: Figure 7 shows the normalized throughput
as we vary the total data rate of all channels from 1 Mbps to 64
Mbps. The normalized throughput is defined as the ratio between
the achieved application throughput versus the total data rate (e.g.,
throughput of 1 Mbps under 2 Mbps data rate corresponds to 0.5
normalized throughput). We show normalized throughput because
the y-axis spans a significant range due to the large difference in
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Figure 6: Performance comparison under varying payload
sizes, using random channel selection.

data rates, which makes it hard to see the relative performance of
various schemes if plotted in absolute numbers.

We make two observations. First, across all data rates, CRMA
has higher efficiency than other protocols: its efficiency is 70%-
72%, whereas the efficiency of CSMA/CA, Wi-Fi, and Random
Access is 44%-54%, 38%-47%, and 34%-38%, respectively. The
efficiency of all schemes is considerably lower than 100% due to
significant header overhead, since we only count the application
payload towards the throughput. Second, the performance gain of
CRMA increases with the data rate. For example, it is 30% better
than CSMA/CA under 1 Mbps, 33-36% better than CSMA/CA un-
der 2-8 Mbps, 38-50% better than CSMA/CA under 16-32 Mbps,
and 58% better than CSMA/CA under 64 Mbps. As the wireless
link capacity constantly increases, the carrier sense overhead is be-
coming increasingly significant. CRMA is an effective approach to
harnessing ever-increasing data rates.
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Figure 7: Performance comparison under varying data rate,
using least-used channel selection.

S. TESTBED EXPERIMENTS

We implement CRMA on top of the default OFDM implementa-
tion in the GNU Radio/USRP platform [39]. Below we introduce
our experiment methodology, and present performance results.

5.1 Experiment Methodology

We conduct our experiments in the 5 GHz spectrum space to
avoid interference with our campus WLAN network. Unless oth-
erwise mentioned, we use a total of 0.39 MHz spectrum, which
consists of 200 subcarriers, each with 1.95 KHz. We partition the
spectrum into two channels when performing experiments of two
flows. We use BPSK as the modulation scheme. To evaluate the
performance, it is necessary to have collisions. We generate col-
lisions in the following way. We first separately log the signals in



the time domain without collisions. Then we add them up to mimic
collisions and give the resulting signals to our decoder. We feed
the decoded signals output by our decoder to the GNU Radio re-
ceiver to measure the packet delivery rate (PDR) and bit error rate
(BER). PDR is defined as the fraction of frames that our algorithm
can successfully decode.

The decoding ratio is significantly affected by signal strength.
GNU Radio does not have a unit for the received signal strength,
so we use a spectrum analyzer to calibrate the received signal and
compute SINR.

5.2 Performance Results

Accuracy of preamble detection: We first evaluate the accuracy
of preamble detection using signal correlation described in Sec-
tion 3. We have a pair of senders transmit frames back-to-back
without any carrier sensing. The receiver runs the correlation algo-
rithm to detect the preambles. The preamble has one OFDM sym-
bol. We quantify the accuracy of preamble detection using false
positive and false negative under different values of SINR. A false
positive indicates that our algorithm detects a preamble that is ac-
tually not present and a false negative indicates that our algorithm
fails to detect a preamble that is actually present.

In order to identify a false positive and a false negative, we ob-
tain the ground truth as follows. We start the first sender A and then
record the clean preamble from it and measure the inter-packet ar-
rival time, which remains constant throughout the experiment due
to the absence of carrier sense. We then start the sender B, which
collides with A for 500-600 times at each value of SINR. We then
stop the sender A and measure the inter packet arrival time from
B. We can now backtrack into the collisions of A and B, and
figure out all the positions where A and B’s packets would have ar-
rived. This is then compared against the preambles detected based
on correlation, where we automatically detect a spike in correlation
whenever the correlation value exceeds a threshold, which is set
to be proportional to the amplitude of the clean preamble received
from the sender.

As shown in Figure 8, the false positives and false negatives are
0 when the SINR is as low as -2. Further reducing SINR slightly
increases the false positives while the false negatives remain 0. We
can adjust the threshold used to detect correlation spike to tradeoff
between false positives and false negatives.
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Figure 8: Accuracy of preamble detection.

Accuracy of sender and receiver ID detection: In this experi-
ment, we quantify the accuracy of identifying the source using the
correlation technique described in Section 3.2. The detection ac-
curacy of identifying the receiver should be the same. We assign
each sender ID with a unique PN sequence and add it right after
the frame preamble. The receiver first records the PN sequence re-
ceived from each of the senders during a clean transmission. Let

s; denote the received PN sequence from sender . Whenever the
receiver detects a preamble, it runs correlation against all s;’s and
determines the source as the one that gives the highest spike in the
correlation. We vary SINR from -6 to 6 dB. At each SINR value,
we use around 400 packets to quantify the accuracy. In all cases,
the correlation-based detection correctly identifies the source ID.

Effects of updating channel estimates: The wireless channel varies
over time. We find that without updating channel estimates the
packet delivery rate is low and the BER rises quickly with increas-
ing bit positions in the frame because the channel estimation of the
later bits becomes inaccurate.

Channel update interval (# | High SNR || Low SNR
OFDM symbols)

20 60% 29%

10 1% 57%

5 95% 80%

3 98% 95%

1 98% 96%

Table 1: Packet delivery rate with varying update intervals.
1000-byte packets, SINR=3 at the high SNR node and -3 at the
low SNR node.

Table 1 summarizes the packet delivery rates with varying inter-
vals of updating the channel estimates. Reducing the update period
from 20 OFDM symbols to 10 OFDM symbols improves packet
delivery rate by 10-30%; further increasing it to 3 OFDM symbols
improves packet delivery rate to 95-98%.

Effect of SINR on decoding accuracy: Table 2 and Table 3 show
the packet delivery rates for 500-byte and 1000-byte packets when
we update the channels every 3 OFDM symbols. We observe that
CRMA can decode packets from both high and low SNR senders.
The decoding probabilities are lower when the SNR is close to
zero due to possible signal cancellation. When the receiving sig-
nal strength is larger than 7 dB, the capture effect dominates. In
such cases, the stronger signals have high decoding rates, but the
weaker signals have low decoding rates. Other collision decoding
schemes, such as [16], have similarly low decoding rates in this
case (e.g., its BER is 0.016 when the SNR is -8.7 dB, which is
close to O frame delivery rate for 500-byte or 1000-byte frames).
We can use partial packet recovery to extract correct symbols from
partially correct frames to improve performance.

SINR (dB) | High SNR | Low SNR
0 0% 0%

1 95 % 90%

3 98% 95%

5 99% 90%

7 97% 0%

Table 2: Packet delivery rate with varying SINR. 500-byte
packets, channel estimates updated every 3 OFDM symbols,
where SINR in the table is reported by the high SINR node
and the low SINR node sees —SINR.

Effects of misalignment: In CRMA, we can decode collisions with
offsets up to the length of the Cyclic Prefix (CP). In practice, FFT
itself is robust against a few misalignments, so the actual misalign-
ment that can be tolerated is slightly higher than the CP length. We
use a CP of length 128 in the following experiments.

First, we show our approach in Section 3.7 can correctly decode
misaligned transmissions. Specifically, a receiver receives two col-
liding signals A and B, and A arrives earlier than B by 10 sam-



SINR (dB) | High SNR | Low SNR
0 25% 25%

1 98% 95%

3 98% 95%

5 100% 98%

7 99% 0.09%

Table 3: Packet delivery rate with varying SINR. 1000-byte
packets, channel estimate updated every 3 OFDM symbols,
where SINR in the table is reported by the high SINR node
and the low SINR node sees —SINR.

ples (there are 512 samples in our FFT windows) in the time do-
main. Let FF'T(B) and F FT(A+ B) denote the signals after FFT
for B and the colliding signals, respectively. If the offset is zero,
one should expect that FFT(A + B) = FFT(A) + FFT(B)
or FFT(B) = FFT(A + B) — FFT(A). When the offset is
not zero, FFT(B) # FFT(A+ B) — FFT(A) as shown by
the curves marked as “amplitude/angle without offset’ and "ampli-
tude/angle when offset = 10” in Figure 9, respectively. However, by
using Equation 5 the offset signal can be readily fixed, and so the
curves marked as ’fixed amplitude/angle when offset = 10’ com-
pletely overlap with *amplitude/angle without offset’.

Note that the amplitudes in all cases are almost the same but the
angle differs by a significant amount. After applying our approach,
the new signal has almost the same amplitude and angle as the orig-
inal signal without any offset (i.e., the first and third curves overlap
in both plots). This indicates our approach can correctly decode
misaligned signals.

We further quantify the accuracy of decoding two colliding sig-
nals with misalignment ranging from O to 140. As shown in Fig-
ure 10, CRMA can accurately decode collisions up to 140 sample
offsets. Beyond that, the FFT window does not contain complete
OFDM symbols and has difficulty in decoding the symbols, as we
would expect.

6. RELATED WORK

Our work is related to the research on (i) decoding collisions, (ii)
CDMA, and (iii) channel assignment and channel hopping, which
we briefly describe below.

Decoding collisions: The ability to simultaneously receive mul-
tiple frames at a wireless node has been an active research topic.
For example, [7] and [38] provide theoretical analysis of potential
gain of multiple frame reception using advanced signal process-
ing and antenna array techniques. [41] proposes successive inter-
ference cancellation to decode collisions. The authors in [10] build
a prototype of SIC on ZigBee and experimentally demonstrate its
effectiveness. A major limitation of SIC is that it is applicable only
when the information rate is lower than what the current SNR can
support. To overcome this limitation, ZigZag [8] develops a novel
approach to decode using multiple collisions. It exploits varied oft-
sets in different collisions. It first decodes all interference-free sym-
bols using a standard decoder and then re-encodes those symbols
and subtracts them from the collision that overlaps with those sym-
bols. It iteratively applies this technique to decode entire frames. It
has a known issue of error propagation since decoding future sym-
bols relies on the correct decoding of previous symbols. Different
from ZigZag, our decoding algorithm avoids such error propaga-
tion since we decode individual symbols independent of previous
symbols. Analog network coding proposed in [13] can also decode
collisions, but it requires a receiver to have one of the two colliding
frames, which does not hold in general. Moreover, SIC, ZigZag,
and analog network decoding are different ways to decode colli-
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Figure 9: Amplitude and angle before and after using Equa-
tion 5 to fix the impact of collision offset. The offset is 10. In
the first subfigure, all three curves almost entirely overlap since
the amplitude of the signals before and after having an offset is
quite similar, and so the difference is not visible in this small
plot. Similarly, in the second subfigure, the angle without offset
and the angle that is fixed using our technique almost entirely
overlap which means that Equation 5 is working well. Note
however, the angle with offset is not the same.

sions whereas CRMA leverages the ability of decoding collisions to
build a MAC protocol.

[9] applies the combination of interference alignment and in-
terference cancellation to decode colliding signals in MIMO net-
works. [37] exploits MIMO to provide spatial multiple access in
wireless LANs and decode colliding signals. Both [9] and [37]
require the wireline network connecting APs for coordination and
work only under MIMO.

CDMA: Our coding-based spectrum allocation is related to CDMA.
However, the existing CDMA schemes have several limitations that
make them either impractical or inefficient. Synchronous CDMA
assigns users with orthogonal codes and other users’ transmissions
do not cause any interference. Its major limitation is that the or-
thogonality of codes is only guaranteed when all the transmissions
are synchronous, since it is mathematically impossible to gener-
ate orthogonal codes with arbitrarily random offsets [4, 42]. Asyn-
chronous CDMA addresses this issue by encoding the signals using
"pseudo-random" or "pseudo-noise" (PN) sequences. They do not
require synchronization. However, different PN sequences are sta-
tistically uncorrelated and signals coded with other PN sequences
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Figure 10: Packet delivery rate for two senders. The SINR be-
tween the two received signals is 3, and the packet size is 1000
bytes.

produce Multiple Access Interference (MAI) [4, 42]. Therefore,
unlike synchronous CDMA, other users’ signals interfere with the
desired signal and the amount of interference is proportional to the
number of users and the bit-error-rate (BER) deteriorates quickly
with the number of active transmitters. The reason that asynchronous
CDMA suffers from interference is that the receiver has no knowl-
edge about the other signals and simply treats them as noise. How-
ever, CRMA explicitly takes advantage of information about other
signals and can cancel them out to achieve high reception quality.

Channel assignment and channel hopping: There are significant
works on channel assignment (e.g., [15, 21, 33]) and channel hop-
ping (e.g., SSCH [1] and MAXchop [22]). All these approaches
aim to ensure no more than one transmission can be active on any
channel. CRMA provides a new perspective on spectrum sharing
by using random coding and can more effectively support spectrum
sharing in a distributed network.

Other capacity enhancement techniques: FICA [37] also rec-
ognizes the significant contention overhead, especially as the data
rate increases. It improves capacity by dividing a channel into
smaller subchannels and letting users contend and use subchan-
nels. Meanwhile it reduces contention overhead by replacing time-
domain backoff with frequency-domain backoff. The efficiency
of FICA depends on how often users choose unique subchannels.
FICA lets each flow use one random subchannel, which may yield
high collisions on some subchannels while leaving other subchan-
nels under-utilized. In comparison, CRMA can more effectively
utilize channels using random coding.

7. CONCLUSION

In this paper, we propose CRMA, which views the OFDM physi-
cal layer as multiple orthogonal but sharable sub-carriers, and lever-
ages random linear codes to share the available spectrum. Com-
pared with CSMA, Random Access, and Wi-Fi, CRMA can achieve
high efficiency without fine-grained coordination and presents an
interesting design point in spectrum sharing. Our simulation results
show that CRMA significantly out-performs the alternative schemes
in a wide range of scenarios. Our testbed implementation and ex-
periments using USRP further show the feasibility of our approach.

This paper is just a first step towards a new direction of spec-
trum sharing. There are many open questions that remain to be
answered. First, CRMA requires fairly accurate channel estimation.
This is feasible in static environments. In mobile networks, the
channel condition can change rapidly and it is important to quickly
adapt the channel estimate and enhance the robustness of the de-
coding algorithm against estimation error. Second, an increasing

data rate places more stringent requirements on the accuracy of
the channel estimation and decoding algorithm as well as decod-
ing efficiency. We are interested in evaluating the performance un-
der higher data rates in the future. Third, CRMA currently incurs
overhead in order to ensure the number of active transmissions is
no more than the number of channels being used. We plan to ex-
plore decoding algorithms that can gracefully degrade as the num-
ber of active transmissions increases beyond the number of chan-
nels. Fourth, we are interested in developing a full-fledged pro-
totype implementation and more extensively evaluating its perfor-
mance in a wide range of scenarios.
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