
Tabulation Based 5-Universal Hashing and Linear Probing

Mikkel Thorup

AT&T Labs—Research

180 Park Avenue

Florham Park, NJ 07932, USA

mthorup@research.att.com

Yin Zhang

The University of Texas at Austin

1 University Station C0500

Austin, TX 78712, USA

yzhang@cs.utexas.edu

Abstract

Previously [SODA’04] we devised the fastest known algo-

rithm for 4-universal hashing. The hashing was based on

small pre-computed 4-universal tables. This led to a five-fold

improvement in speed over direct methods based on degree

3 polynomials.

In this paper, we show that if the pre-computed ta-

bles are made 5-universal, then the hash value becomes 5-

universal without any other change to the computation. Rela-

tively this leads to even bigger gains since the direct methods

for 5-universal hashing use degree 4 polynomials. Experi-

mentally, we find that our method can gain up to an order of

magnitude in speed over direct 5-universal hashing.

Some of the most popular randomized algorithms have

been proved to have the desired expected running time us-

ing 5-universal hashing, e.g., a non-recursive variant of

quicksort takes O(n log n) expected time [Karloff Ragha-

van JACM’93], and linear probing does updates and searches

in O(1) expected time [Pagh et al. SICOMP’09]. In con-

trast, inputs have been constructed leading to much worse ex-

pected performance with some of the classic primality based

2-universal hashing schemes.

In the context of linear probing, we compare our new

fast 5-universal hashing experimentally with the fastest

known plain universal hashing. We know that any reasonable

hashing scheme will work on random input, but from Pagh

et al., we know that 5-universal hashing leads to good ex-

pected performance on all input. We use a dense interval as

an example of a structured yet realistic input, wanting to see

if this could push the fastest multiplication-shift based plain

universal hashing into bad performance. Even though our 5-

universal hashing itself is slower than the fast plain universal

hashing, it makes linear probing much more robust.

1 Introduction.

This paper is about efficient 5-universal hashing. For any

n ∈ N, let [n] = {0, 1, · · · , n − 1}. As defined in [16], a

class H of hash functions from [n] into [m] is a k-universal

class of hash functions if for any distinct x0, · · · , xk−1 ∈ [n]

and any possibly identical v0, · · · , vk−1 ∈ [m],

Pr
h∈H

{h(xi) = vi, ∀i ∈ [k]} = 1/mk(1.1)

By a k-universal hash function, we mean a hash function

that has been drawn at random from a k-universal class of

hash functions. We will often contrast k-universal hash-

ing with (plain) universal hashing that just requires low

collision probability, that is, for any different x, y ∈ [n],
Prh∈H{h(x) = h(y)} ≤ 1/m.

We develop a fast implementation of 5-universal hash-

ing, gaining up to an order of magnitude in speed over di-

rect methods. 5-universal hashing is important because pop-

ular randomized algorithms such as linear probing [11] have

provably good expected performance with 5-universal hash-

ing. The same holds for a certain non-recursive variant of

quicksort [6].

Our new implementation of 5-universal hashing is based

on our previous fast scheme for 4-universal hashing [15].

This scheme used some small pre-computed tables. What

we show here is that to get 5-universal hashing, we only need

to make the pre-computed tables 5-universal. The procedure

that computes the hash function is not affected, hence neither

is the speed.

We conduct experiments evaluating the speed of our new

hash function against alternatives. We also run experiments

with linear probing on clustered inputs where we can clearly

see the advantages of 5-universal hashing over the fastest

multiplication-shift based plain universal hashing. The plain

universal hashing is in itself faster, but it sometimes results

in far more probes, making the overall process slower and

less reliable than our 5-universal scheme.

1.1 k-universal hashing. We will describe in more detail

the relevant known methods for k-universal hashing, and

show how our new tabulation based 5-universal hashing

fits in. We note that for the more complex hash functions

with k > 2, we will rarely need to hash keys with more

than 64 bits, because assuming that the number of keys is

n ≪ 232, then we can first use plain universal hashing

into a 64-bit domain and this mapping is collision-free with

high probability. In fact, for our primary application of

linear probing, it is shown in [14] that we can first use plain

universal hashing into a domain of size n, and then we only

need to handle 32-bit keys. Based on this, in the the rest

of the paper, we will focus on the hashing of 32 and 64 bit

keys in our comparison between different hashing scheme.

In fact, our scheme would only look better if we studied 96
or 128 bit integers, but here we focus on the cases that we

expect to be most important in practice.

1.1.1 Direct methods. The classic implementation of k-

universal hashing from [16] is to use a degree k − 1 polyno-

mial over some prime field:

h(x) =
k−1
∑

i=0

aix
i mod p(1.2)

for some prime p > x with each ai picked randomly from

[p]. If p is an arbitrary prime, this method is fairly slow

because ‘mod p’ is slow. However, as pointed out in [1],

we can get a fast implementation using shifts and bit-wise

Boolean operations if p is a so-called Mersenne prime of the

form 2i−1. We shall refer to this as CW-trick. In the hashing

of 32-bit integers, we can use p = 261 − 1, and for 64-bit

integers, we can use p = 289 − 1.

Multiplication-shift based hashing with small univer-

sality. For the special case of 2-universal hashing, we have

a much faster and more practical method from [2]. If we are

hashing from ℓin to ℓout bits, for some ℓ ≥ ℓin + ℓout − 1,

we pick two random numbers a, b ∈ [2ℓ], and use the hash

function ha,b defined by

ha,b(x) = (ax + b) ≫ (ℓ − ℓout).

Here ≫ denotes a right shift. The multiplication discards

overflow beyond the ℓ bits, as is done automatically in

most programming languages if, say, ℓ is 32 or 64. Some

generalizations to k-universal hashing for k > 2 are also

presented in [2], but they would not be faster than the classic

method from (1.2).

In fact, if we are satisfied with plain universal hashing,

then as shown in [3], it suffices that ℓ ≥ ℓin and to pick a

single odd random number a ∈ [2ℓ]. We then use the hash

function ha defined by

ha(x) = (ax) ≫ (ℓ − ℓout).

As a typical example, if ℓout ≤ ℓin = 32, then for the 2-

universal hashing, we would use a 64 bit number a and 64-

bit multiplication. But for plain universal hashing, it suffices

to work with 32 bits, which is faster.

The above two schemes can be viewed as instances of

multiplicative hashing [8] where the golden ratio of 2ℓ is

recommended as a concrete value of a (with such a fixed

value, the schemes lose universality). We refer to them as

“multiplication-shift” based methods.

1.1.2 Tabulation based methods. A totally different way

of getting a 2-universal hash value from a key is to divide the

key into characters, use an independent tabulated 2-universal

function to produce a hash values for each character, and

then return the bit-wise exclusive-or of each of these strings.

This method goes back to [1]. Theoretically tabulation is

incomparable with multiplication based method: we replace

multiplication, a comparatively slow operation, with look-

up from small tables that should reside in fast memory.

An experimental comparison with other methods is found

in [13], and the tabulation based approach was found to

be faster than other 2-universal methods on most of the

computers tested.

More precisely, if H is a 2-universal class of hash func-

tions from characters to bit-strings, and we pick q indepen-

dent random functions h0, · · · , hq−1 ∈ H, then the function
~h mapping a0a1 · · ·aq−1 to h0[a0]⊕h1[a1] · · ·⊕hq−1[aq−1]
is 2-universal. Here ⊕ denotes bit-wise exclusive-or and we

use ‘[]’ around the arguments of the hi to indicate that the

hi are tabulated so that function values are found by a single

array look-up. If H is 3-universal, then so is h. However, the

scheme breaks down above 3-universality. Regardless of the

properties of H, ~h is not 4-universal.

In [4, 12, 15] it is shown that we can get higher degrees

of universality if we tabulate some extra derived characters.

The case where the original key has q = 2 characters is

particularly nice. It is shown in [15] that

h[ab] = h0[a] ⊕ h1[b] ⊕ h2[a + b](1.3)

is a 4-universal hash function if h0, h1, and h2 are indepen-

dent 4-universal hash functions. As an example, for 32-bit

keys, a and b are 16-bit characters, so the tables h0 and h1

are of size 216 while h2 is of size 217. This fits quite easily

in cache leading to very fast implementations.

For q > 2 key characters, it is proved in [15] that

we can get 4-universal hashing using q − 1 extra derived

characters, hence 2q − 1 look-ups. The derivation of these

extra characters via a Cauchy matrix is a bit complicated to

describe but a careful implementation in C from [15] runs

fast.

For general k > 4, it is shown in [15] that we can get k-

universal hashing, first making q look-ups to get (k− 1)(q−
1) + 1 derived characters, and then use these as look-ups in

k-universal character tables, thus using k(q−1)+2 look-ups

in total.

The older methods from [4, 12] lead to more look-ups

when k is constant, but the method from [12] is better for

larger k. Our interest here is 5-universal hashing, and then

the current best choice is the method from [15] leading to to

5(q − 1) + 2 look-ups.

1.1.3 Our new tabulation based 5-universal hashing.

Our theoretical contribution here is to show that the above

4-universal tabulation scheme from [15] leads to 5-universal

hashing as long as the character tables are 5-universal and

not just 4-universal. In particular, we get 5-universal hashing

with 2q − 1 look-ups.

Proving that we get 5-universal hashing in the 2-

character case is quite simple and was noted in [11]. How-

ever, for q > 2, the situation gets complicated. All the pre-

vious proofs from [4, 12, 15] of k-universality from derived

characters use a peeling lemma of Siegel [12, Lemma 2.6]

which identifies a unique character among k keys with de-

rived characters. Here we need a generalized peeling lemma

identifying an appropriate full-rank n×n matrix. The previ-

ous unique character forms the special case of a 1×1 matrix.

1.2 Contents. First we describe the previous tabulation

based 4-universal hashing from [15] in more detail. Next we

give the proof that it also gives 5-universal hashing. Then

we switch to experiments, first just looking at the speed of

different hashing schemes, second considering the impact on

linear probing.

2 Previous tabulation based 4-universal hashing.

In this section, we review our previous tabulation based 4-

universal hashing from [15]. In the next section, we show

that the same scheme also works for 5-universal hashing.

2.1 General framework. The general framework for tab-

ulation based k-universal hashing with q characters is as fol-

lows.

1. Given a vector of q input characters ~x =
(x0 x1 · · · xq−1), xi ∈ [2c], we construct a vec-

tor of q + r derived characters ~z = (z0 z1 · · · zq+r−1),
zj ∈ [p], p ≥ max{2c, q + r}. Some of the derived

characters may be input characters, and those that are

not, are called new.

2. We will have q+r independent tabulated hash functions

hj into [2ℓout], and the hash value is then

h(~x) = h0[z0] ⊕ · · · ⊕ hq+r−1[zq+r−1](2.4)

The domain of the different derived characters depends

on the application. Here we just assume that hj has an

entry for each possible value of zj .

We will now define the notion of a “derived key matrix”

along with some simple lemmas. Consider k′ ≤ k distinct

keys ~xi = (xi,0 xi,1 · · · xi,q−1), i ∈ [k′], and let the derived

characters ~zi be (zi,0 zi,1 · · · zi,q+r−1). We then define the

derived key matrix as

D =

z0,0 z0,1 · · · z0,q+r−1

z1,0 z1,1 · · · z1,q+r−1

. . .

zk′−1,0 zk′−1,1 · · · zk′−1,q+r−1

We will use the following “peeling lemma” from [12,

Lemma 2.6] (see also [15, Lemma 1]):

LEMMA 2.1. Suppose for any k′ ≤ k distinct keys ~xi,

i ∈ [k′], the derived key matrix D contains some element

that is unique in its column, then the combined hash function

h defined in (2.4) is k-universal if all the hj , j ∈ [q + r], are

independent k-universal hash functions.

In [15, Lemma 2], it is noted that

LEMMA 2.2. Suppose all input characters are used as de-

rived characters, then the unique character condition of

Lemma 2.1 is satisfied for any k′ ≤ 3.

2.2 4-universal hashing with 2 characters.

THEOREM 2.1. In the case of two-character keys xy, if we

use x, y, and x + y as derived characters, then the unique

character condition of Lemma 2.1 is satisfied for any k′ = 4.

This also holds if ‘+’ is in an odd prime field Zp containing

x and y. In particular,

h(xy) = h0[x] ⊕ h1[y] ⊕ h2[x + y]

is a 4-universal hash function if h0, h1, and h2 are indepen-

dent 4-universal hash functions into [2ℓ].

The point in using the above prime field is that it may allow

us to reduce the range of x + y, hence the size of the table

h2 above. In particular, with 8-bit characters, we can use the

prime p = 28 + 1 and with 16-bit characters, we can use

p = 216 + 1.

2.3 4-universal hashing with q characters. For 4-

universal hashing with more than two input characters, we

can recursively apply the two-character scheme. But then,

for q characters, we would end up using qlog
2
3 derived char-

acters. As shown in [15] it is show that we can get down to

2q − 1 derived characters.

Let r = q − 1. Given q input characters ~x =
(x0 x1 · · · xq−1), xi ∈ [2c], we obtain q + r characters by

including the q input characters themselves together with r
new characters ~y = (y0 y1 · · · yr−1) derived using ~y = ~xG,

where G is a q × r generator matrix with the property that

any square submatrix of G has full rank, and vector element

additions and multiplications are performed over an odd

prime field Zp, p ≥ max{2c, q + r}. We then use the above

general framework to combine q + r independent tabulated

4-universal hash functions. For example, we can use a q × r
Cauchy matrix below over Zp (where p ≥ q + r):

Cq×r =

[

1

i + j + 1

]

i∈[q], j∈[r]

=

1
0+0+1

1
0+1+1 · · · 1

0+(r−1)+1
1

1+0+1
1

1+1+1 · · · 1
1+(r−1)+1

· · ·
. . . · · ·

1
(q−1)+0+1

1
(q−1)+1+1 · · · 1

(q−1)+(r−1)+1

THEOREM 2.2. Let G be a q × r generator matrix with the

property that any square submatrix of G has full rank over

prime field Zp, where p ≥ max{2c, q + r} is an odd prime.

Given any q characters ~x = (xi), i ∈ [q], let ~y = (yj),
j ∈ [r], be the r = q − 1 new characters derived using

~y = ~xG. Then, for any k′ = 4 distinct keys, one will have

a derived character that is unique in its column. Therefore,

the combined hash function

h(~x) = h0[x0]⊕· · ·⊕hq−1[xq−1]⊕h̃0[y0]⊕· · ·⊕h̃r−1[yr−1]

is a 4-universal hash function if hash functions hi (i ∈ [q])
and h̃j (j ∈ [r]) are independent 4-universal hash functions

into [2ℓ].

With the above scheme, we only need 2q − 1 table

lookups to compute the hash value for q input characters.

However, to make the scheme useful in practice, we still

need to compute ~y = ~x G very efficiently, which requires

O(qr) = O(q2) multiplications and additions on Zp using

schoolbook implementation. In § 3.3, we show efficient

techniques to compute ~y = ~x G in O(q) time for general

5-universal hashing.

3 Generalizing to 5-universal hashing.

We will now show that our construction for tabulation-

based 4-universal hashing can be directly used to generate

5-universal hashing.

3.1 5-universal hashing with 2 characters. In the case of

2 characters, we note that

LEMMA 3.1. For any set of k′ = 5 distinct two-character

keys, some character is unique in its column.

Proof. To get 5 distinct keys, one of the two input columns

must contain at least 3 distinct characters. One of these 3 is

used at most once in the 5 keys.

This uniqueness for k′ = 5 is trivial compared with the

uniqueness for k′ = 4 from Theorem 2.1. Further combining

with Lemma 2.1 and 2.2, we get

THEOREM 3.1. In the case of two-character keys xy, the

hash function

h(xy) = h0[x] ⊕ h1[y] ⊕ h2[x + y]

is a 5-universal hash function if h0, h1, and h2 are indepen-

dent 5-universal hash functions into [2ℓ].

This simple generalization for the case of two characters was

also noted in [11].

3.2 5-universal hashing with q characters. For q > 2
characters, we can no longer use the classic peeling lemma

(Lemma 2.1). Instead of peeling a unique character, we have

to look for a certain full-rank square indicator matrix defined

as follows. The unique character is the special case where

n = 1.

DEFINITION 1. (SPECIAL INDICATOR MATRIX) From the

derived key matrix D, we pick n possibly identical columns

c0, · · · , cn−1, and for each j ∈ [n], we pick a special char-

acter wj . In the special indicator matrix M , each element

M [i, j] is a 0/1 indicator telling whether special character

wj appears at row i in column cj of D. That is,

M [i, j] =

{

1, if D[i, cj] = wj ;
0, otherwise.

DEFINITION 2. (FULL-RANK SQUARE INDICATOR MATRIX)

A special indicator matrix with n columns is considered

a full-rank square indicator matrix if the following two

conditions hold: (i) the indicator matrix has exactly n
non-zero rows (i.e., rows with a 1 somewhere), and (ii) these

non-zero rows form a n × n square submatrix that has full

rank over GF(2).

As a special case, if we have a unique character in some

column, then we can make it the only special character, and

use it as a 1 × 1 full-rank square indicator matrix.

As another example, suppose derived key matrix D has

5 rows with the first 3 columns being

D[∗, 1–3] =

a c e
a d f
a c f
b d e
b d e

.

Let (c0, c1, c2) = (1, 2, 3) and (w0, w1, w2) = (a, c, f). The

resulting special indicator matrix is

M =

1 1 0
1 0 1
1 1 1
0 0 0
0 0 0

.

M has exactly 3 non-zero rows: 1, 2, 3. Moreover, the 3× 3
submatrix M [1–3, ∗] has full-rank on GF(2). Therefore, M
is a full-rank square indicator matrix.

Generalizing Lemma 2.1, we now prove

LEMMA 3.2. Suppose for any k′ ≤ k distinct q-character

keys ~xi, we can identify a full-rank square indicator matrix

in the derived key matrix. Then the combined hash function

h defined in (2.4) is k-universal if all the hj , j ∈ [q + r], are

independent k-universal hash functions.

Proof. The proof is by induction and is similar to our proof

for Lemma 2.1. Consider a set of k distinct keys along with

their derived key matrix D. For any vi, i ∈ [k], we have to

show that

Pr {h(~xi) = vi, ∀i ∈ [k]} = 1/2kℓ

By assumption, we can find n ≥ 1 (possibly identical)

columns C = (c0, · · · , cn−1) and n special characters W =
(w0, · · · , wn−1) such that (i) the resulting special indicator

matrix M has exactly n non-zero rows R = (r0, · · · , rn−1),
and (ii) the n × n submatrix M [R, ∗] is full-rank on GF(2).

Since the hi are independent k-universal hash functions,

each character in each column is hashed independently.

Assume w.l.o.g. that the hash values hcj
[wj] (j ∈ [n]) are

picked after all the other characters are hashed. By hashing

all the other characters, we obtain hash values for (k − n)
keys h(~xi) (i ∈ [k] \ R). By induction, these are hashed

(k − n)-universally, so

Pr {h(~xi) = vi, ∀i ∈ [k] \ R} = 1/2(k−n)ℓ

Conditioned on the initial hashing of the other charac-

ters, we only need to prove

Pr {h(~xi) = vi, ∀i ∈ R} = 1/2nℓ

For ∀i ∈ R, let

v′i = vi ⊕

⊕

j:M [i,j]=0

hcj
[D[i, cj]]

 ⊕

⊕

c 6∈C

hc[D[i, c]]

 .

Clearly, h(~xi) = vi, ∀i ∈ R is equivalent to:

⊕

j

M [i, j] ⊗ hcj
[wj] = v′i ∀i ∈ R(3.5)

The fact that M [R, ∗] is a full-rank square matrix on

GF(2) ensures that given all the v′i (i ∈ R), there is a unique

solution for the hash values hcj
[wj] (j ∈ [n]). Therefore, the

probability for (3.5) to hold is 1/2nℓ, which completes our

proof of Lemma 3.2.

THEOREM 3.2. Let G be a q × r generator matrix with the

property that any square submatrix of G has full rank over

prime field Zp, where p ≥ max{2c, q + r} is an odd prime.

Given any q characters ~x = (xi), i ∈ [q], let ~y = (yj),
j ∈ [r], be the r = q − 1 new characters derived using

~y = ~xG, then

h(~x) = h0[x0]⊕· · ·⊕hq−1[xq−1]⊕h̃0[y0]⊕· · ·⊕h̃r−1[yr−1]

is a 5-universal hash function if hash functions hi (i ∈ [q])
and h̃j (j ∈ [r]) are independent 5-universal hash functions

into [2ℓ].

Proof. Our proof for Theorem 2.2 already establishes that

for any k′ ≤ 4 distinct q-character keys ~xi (i ∈ [k′]), we can

construct a special indicator matrix with just one column and

one 1 in that column (corresponding to the unique element

in that column). Therefore, in order to apply Lemma 3.2,

we just need to prove that when D has 5 rows and (2q − 1)

columns, we can always construct a special indicator matrix

M with n ≥ 1 columns and all its non-zero rows form a

n × n full-rank matrix on GF(2).
Assume that D contains no column with a unique char-

acter (otherwise, we are done). Then each column of D will

either have one character that appears 5 times, or have two

characters that appear 2 times and 3 times, respectively. Let

MinorD be a 0/1 indicator matrix that indicates whether

each element of D is a minority element in its column. Then

each column of MinorD has either five 0s, or two 1s and

three 0s. It is easy to see that for any i0, i1 ∈ {1, · · · , 5},

MinorD[i0, j] = MinorD[i1, j] ⇐⇒ D[i0, j] = D[i1, j].

Below we first establish a few lemmas before proving

we can always construct a M as required by Theorem 3.2.

These lemmas involve the following two conditions:

• (C1) no two rows of D share q elements, and

• (C2) every column of MinorD has exactly two 1s and

three 0s.

LEMMA 3.3. Under conditions (C1) and (C2), for any given

three rows, say, row 1–3, there are at most m
△

= ⌊(q − 1)/2⌋
distinct columns in MinorD whose corresponding elements

in those three rows are all 0s.

Proof. Assuming by way of contradiction that MinorD has

(m + 1) columns (say, 1, · · · , m + 1) whose elements in row

1–3 are all 0s. So each of these (m + 1) columns in D has

equal elements in row 1–3.

Consider the remaining (2q − 2 − m) columns m +
2, · · · , 2q − 1. Each of the remaining columns in D has at

least two equal elements in row 1–3. There are
(

3
2

)

= 3
possible row pairs within {1, 2, 3}. Thus there must exist two

rows i0, i1 ∈ {1, 2, 3} such that at least ⌈(2q − 2 − m)/3⌉
columns have equal elements in row i0 and row i1. Since the

first (m+1) columns also have equal elements in row i0 and

i1, the number of columns in which row i0 and i1 have equal

characters is at least

(m + 1) + ⌈(2q − 2 − m)/3⌉

=

⌊

q + 1

2

⌋

+

⌈

2q − 2 − ⌊(q − 1)/2⌋

3

⌉

=

{

q/2 + ⌈q/2 − 1/3⌉ (if q is even)

(q + 1)/2 + ⌈ (2q−2)−(q−1)/2
3 ⌉ (if q is odd)

= q,

contradicting (C1).

LEMMA 3.4. Under conditions (C1) and (C2), every row of

MinorD contains at least one 0.

Proof. Assume by way of contradiction that at least one

row (say, row 1) of MinorD contains no 0. That is,

all elements of MinorD[1, ∗] are 1s. From (C2), each

column of MinorD contains a second 1 in one of four rows:

2, 3, 4, 5. From Lemma 3.3, for each possible row of the

second 1, there are at most ⌊(q − 1)/2⌋ distinct columns

in D. So altogether the number of columns is at most

4 × ⌊(q − 1)/2⌋ ≤ 2 × (q − 1) < 2q − 1, contradicting

the fact that D has 2q − 1 columns.

LEMMA 3.5. Under conditions (C1) and (C2), every row of

MinorD contains at least one 1.

Proof. Assume by way of contradiction that all elements of

one row (say, row 5) of MinorD are 0s. Now consider row

1–4 in MinorD, i.e., MinorD[1–4, ∗]. Given (C2), each

column contains exactly two 0s in row 1–4. With 2q − 1
columns, there are 2× (2q− 1) = (4q− 2) 0s. With 4 rows,

there exists one row with at least ⌈(4q − 2)/4⌉ = q 0s. As

a result, this row and row 5 have equal elements in at least q
columns, contradicting (C1).

LEMMA 3.6. Under conditions (C1) and (C2), there are at

least two columns of MinorD with non-overlapping 1s.

Proof. Assume by way of contradiction that any two

columns of MinorD have at least an overlapping 1. Sup-

pose w.l.o.g. that

MinorD[∗, 1] =

1
1
0
0
0

.

From Lemma 3.4, MinorD has a column that has a 0 in row

1. Since this column has an overlapping 1 with column 1, it

must have a 1 in row 2. Assume w.l.o.g. that

MinorD[∗, 1–2] =

1 0
1 1
0 1
0 0
0 0

.

From Lemma 3.4, MinorD has a column that has a 0 in row

2. Since this column has an overlapping 1 with both column

1 and column 2, it must have 1 in row 1 and 3. Assume

w.l.o.g. that

MinorD[∗, 1–3] =

1 0 1
1 1 0
0 1 1
0 0 0
0 0 0

.

But then every remaining column must have two 1s in row 1–

3 (otherwise, its 1s will be non-overlapping with at least one

of the first three columns). But then row 4 and 5 of MinorD

contain no 1, contradicting Lemma 3.5.

LEMMA 3.7. Under condition (C1), we can always con-

struct a special indicator matrix M with n ≥ 1 columns

and all its non-zero rows form a n × n full-rank matrix on

GF(2).

Proof. We prove the lemma by performing induction on q.

The base case (q = 1) is trivial, because in this case D
contains only one column and every element of this column

is unique (according to (C1)).

Now suppose Lemma 3.7 holds for D with 2q′ − 1
columns (∀q′ < q). Below we show that the lemma also

holds for D with 2q − 1 columns. We assume that D has no

column with a unique character (otherwise, M is trivial to

construct). Then each column of MinorD either has five 0s,

or has two 1s and three 0s.

Case 1. At least one column (say, the last column) of

MinorD has five 0s. Now consider the first 2q− 3 columns.

No two rows can have q−1 equal elements in the first 2q−3
columns. Otherwise, when combined with the last column,

we get two rows that share q elements, contradicting (C1).

Notice that 2q − 3 = 2× (q − 1)− 1. Hence condition (C1)

holds on the first 2q − 3 columns of D. By our induction

assumption, we can construct the desired M from these

2q − 3 columns.

Case 2. No column of MinorD has five 0s. In this case,

every MinorD has exactly two 1s and three 0s. That is,

condition (C2) holds. Given (C1) and (C2), we know from

Lemma 3.6 that MinorD contains two columns with non-

overlapping 1s. Assume w.l.o.g. that the first two columns

of MinorD are:

MinorD[∗, 1–2] =

1 0
1 0
0 1
0 1
0 0

.

From Lemma 3.5, there exists a column (say, column 3)

of MinorD that has 1 in row 5, i.e., MinorD[5, 3] = 1.

Assume w.l.o.g. that MinorD[1, 3] = 1 (the other cases are

symmetric). That is,

MinorD[∗, 1–3] =

1 0 1
1 0 0
0 1 0
0 1 0
0 0 1

.

Thus, we have

D[∗, 1–3] =

a c e
a c f
b d f
b d f
b c e

.

Let C = (1, 2, 3) and W = (a, c, e). We then obtain

M =

1 1 1
1 1 0
0 0 0
0 0 0
0 1 1

.

With R = (1, 2, 5), the matrix M [R, ∗] has rank 3 over

GF(2), which is exactly what we need.

Given Lemma 3.7, the only remaining task in the proof

for Theorem 3.2 is to show that condition (C1) holds on

D. This turns out to be a direct consequence of (i) our

choice of G and (ii) the fact that D is derived from distinct

keys. Specifically, each row i of D can be computed as

D[i, ∗] = ~xi[Iq G], where Iq is a q × q identity matrix, and

[Iq G] is the horizontal concatenation of two matrices Iq and

G. Since any square submatrix of G has full rank over prime

field Zp, it is easy to show that any q× q submatrix of [Iq G]
has full rank over Zp. Therefore, from any q elements of

D[i, ∗], we can reconstruct the ~xi, and thereby the entire row

D[i, ∗] = ~xi[Iq G]. As a result, if two rows of D share

q elements, they are identical (because both rows can be

reconstructed by the same q elements), which is impossible

given the fact that D is derived from distinct keys. This

completes our proof for Theorem 3.2.

3.3 Relaxed and efficient computation of ~x G on Zp.

Below we show how to compute ~y = ~xG very efficiently

on Zp for general 5-universal hashing.

Multiplication through tabulation. Let ~Gi. i ∈ [q],
be the q rows of the generator matrix G from Theorem 3.2.

Then

~y = ~x G = (x0 · · · xq−1)

~G0

...
~Gq−1

=

∑

i∈[q]

xi
~Gi

Therefore, we can avoid all the multiplications by storing

with each xi, not only hi[xi], but also the above vector xi
~Gi,

denoted ~gi(xi). Then we compute ~y as the sum
∑

i∈[q] ~gi(xi)
of these tabulated vectors.

Using regular addition. We will now argue that for 5-

universality, it suffices to compute
∑

i∈[q] ~gi(xi) using reg-

ular integer addition rather than addition over Zp. What

was shown in the proof of Theorem 3.2 is that there

were n ≥ columns c0, · · · , cn−1 and n special characters

w0, · · · , wn−1 (wj ∈ [p], ∀j ∈ [n]) such that (i) the result-

ing special indicator matrix M has exactly n non-zero rows

R = (r0, · · · , rn−1), and (ii) the n × n submatrix M [R, ∗]
has full rank over GF(2). By using regular integer addi-

tion rather than addition over Zp, a variable multiple of p is

added to each occurrence of wj , which effectively turns wj

into a set of special characters Wj . By splitting each column

M [∗, j] into a set of columns indicating where each special

character w ∈ Wj appears in column D[∗, cj], we obtain a

new special indicator matrix M ′ with n′ ≥ n columns and n
non-zero rows. It is easy to see that with such splitting, M ′

still has rank n over GF(2). So we can take a subset of n
columns of M ′ to form a full-rank square indicator matrix.

As a result, our hash function remains 5-universal.

Parallel additions. To make the additions efficient, we

can exploit bit-level parallelism by packing the ~gi(xi) into

bit-strings with ⌈log2 q⌉ bits between adjacent elements.

Then we can add the vectors by adding the bit strings as

regular integers. By Bertand’s Postulate, we can assume

p < 2c+1, hence that each element of ~gi(xi) uses c + 1 bits.

Consequently, we use c′ = c+1+ ⌈log2 q⌉ bits per element.

For any application we are interested in, 1 + ⌈log2 q⌉ ≤
c, and then c′ ≤ 2c. This means that our vectors are coded

in bit-strings that are at most twice as long as the input keys.

We have assumed our input keys are contained in a word.

Hence, we can perform each vector addition with two word

additions. Consequently, we can perform all q − 1 vector

additions in O(q) time.

In our main tests, things are even better, for we use 16-

bit characters of single and double words. For single words

of 32 bits, this is the special case of two characters. For

double words of 64 bits, we have q = 4 and r = q − 1 = 3.

This means that the vectors ~gi(xi) are contained in integers

of rc′ = 3(16 + 1 + 2) = 57 bits, that is, in double words.

Thus, we can compute
∑

i∈[q] ~gi(xi) using 3 regular double

word additions.

Compression. With regular addition in
∑

i∈[q] ~gi(xi),

the derived characters may end up as large as q(p−1), which

means that tables for derived characters need this many

entries. If memory becomes a problem, we could perform

the mod p operation on the derived characters after we have

done all the additions, thus placing the derived characters in

[p]. This can be done in O(log q) total time using bit-level

parallelism like in the vector additions.

However, for character lengths c = 8, 16, we can do

even better exploiting that p = 2c +1 is a prime. We are then

going to place the derived characters in [2c + q]. Consider a

vector element a < qp. Let a′ = (a∧ (2c − 1))+ q− ((a ≫
c) ∧ (2c − 1)), where ≫ denotes a right shift and ∧ denotes

bit-wise AND. Then it is easy to show that 0 ≤ y < 2c + q
and a′ ≡ a + q (mod p). Adding q and a variable multiple

of p to each element of the derived key matrix splits each

special character into a set of special characters and does not

reduce the rank of the resulting special indicator matrix. So

our hash function remains 5-universal with these compressed

derived characters. The transformation from a to a′ can

be performed in parallel for a vector of derived characters.

With appropriate pre-computed constants, the compression

is performed efficiently in one line of C code.

4 Experiments.

In this section, we experimentally evaluate (i) the speed of

different hashing schemes, and (ii) the impact of different

hash functions on linear probing. For (i) the basic target is to

evaluate different 5-universal methods, but we also compare

with the very fast multiplication-shift based methods to get

a feel for the price paid for the 5-universality. For (ii) we

perform the comparison within the context of linear probing.

Here the multiplication-shift based methods represent the

natural choice of a practical hash function for someone not

aware that a higher degree of universality is needed, and

our goal is to see how our theory-founded choice of a 5-

universal hash function performs against this more naı̈ve

practical choice.

4.1 Hashing. We first compare the speed of different hash-

ing schemes.

Experiments. We have implemented our schemes and

CW-trick in C. Here both schemes are understood to be 5-

universal, so our character tables are 5-universal, and for

CW-trick we use a degree 4 polynomial in (1.2). To eval-

uate their performance, we record the total running time for

performing 10 million hash computations. In [15], we sim-

ply use 1, 2, ..., 107 as the sequence of input keys. But our re-

sults suggest that such an input sequence can give tabulation-

based hashing an unfair advantage. Specifically, since the

key is incremented by 1 each time, the higher order bits of

the key change only infrequently. As a result, the results

of table lookups involving higher-order characters often re-

side in the cache already, thus reducing the need for memory

access in many cases. For a more fair comparison, we gen-

erate a million distinct random input keys 10-universally and

stored them in an array. We then cycle through the array of

random keys 10 times, resulting in a total of 10 million hash

computations.

Findings. Table 1 compares the different algorithms in

terms of average hashing overhead (in nanoseconds) on two

computers with different architectures. For w = 32, 48, 64,

the goal is to produce w-bit hash values from w-bit keys.

Univ and Univ2 are the very fast multiplication-shift based

methods from §1.1.1 for plain universal hashing and 2-

universal hashing, respectively. The actual code for Univ

and Univ2 can be found in § A.2. CWtrick32, CWtrick48

and CWtrick64 are CW-trick schemes as described in §1.1.1

hashing time (nanoseconds)

bits algorithm computer A computer B

32 Univ 1.87 3.07

32 Univ2 5.79 3.22

32 CWtrick32 99.83 22.94

32 ShortTable32 17.06 21.79

32 CharTable32 10.18 12.70

48 CWtrick48 139.24 40.34

48 ShortTable48 217.36 193.74

48 CharTable48 50.75 17.37

64 CWtrick64 324.48 59.08

64 ShortTable64 278.33 235.27

64 CharTable64 75.99 22.12

Table 1: Average time per hash computation for 10 million

hash computations on computer A (single-core Intel Xeon

3.2 GHz processor with 32-bit address), and B (dual-core

AMD Opteron 2 GHz processor with 64-bit address). For

each key length, we highlight the best performance on each

computer.

with Mersenne primes 261 − 1, 261 − 1, and 289 − 1,

respectively. The actual code for CWtrick32, CWtrick48,

and CWtrick64 can be found in § A.9, § A.10, and § A.11,

respectively. All the codes are fairly tuned. ShortTable

and CharTable are instances of our new tabulation based

5-universal hashing schemes from §3 with 16-bit and 8-bit

input characters, respectively. To minimize their memory

requirement, we enable compression (described in § 3.3) in

all our experiments. The code for ShortTable and CharTable

with different key lengths can be found in § A.3–A.8.

It is interesting to compare the performance of Com-

puter A and B since A is a 32-bit architecture while B is

64-bit. This shows up nicely in the difference between Univ

and Univ2. The difference between the schemes is that Univ

does a 32-bit multiplication where Univ2 does a 64-bit mul-

tiplication. On Computer A we have that Univ is almost

three times faster than Univ2. This could indicate that it

uses its fast 32-bit multiplication to simulate 64-bit multi-

plication. On Computer B the difference in speed is less

than 10%, so this 64-bit architecture gains very little from

working on 32-bit numbers. The difference between the two

computers shows up even more strongly in the CWtrick im-

plementations which are all dominated by 64-bit multiplica-

tions. Here Computer B appears to be 3-5 times faster than

Computer A. Note that because of differences in compilation

and pipelining, we can never hope to give exact prediction of

performance based the speed of individual operations. An-

other issue is that the timing results include the time spent

on reading the keys sequentially from an array. This adds at

most a nanosecond to most timing results. We find no sim-

ple way of correctly subtracting the effect, e.g., sometimes

adding more operations reduced running times due to dif-

ferences in the compilation, and even the cycle counter isn’t

reliable in measuring the cost of the hash computation itself.

Nevertheless it is clear that Computer B is much better at the

64-bit operations needed for CWtrick.

If we now turn our attention to CharTable32 which is

dominated by memory look-ups from small tables, each with

around 28 entries, we see that the two computers have a

similar performance with Computer A being slightly faster.

However, CharTable48 and CharTable64 becomes relatively

slower on Computer A. The number of table look-ups with

CharTable is 2(w/8) − 1, hence 7, 11, and 15 look-ups for

w = 32, 48, 64. This increase seems reasonably matched

on Computer B but on Computer A, we have a marked

jump going from 32 to 48 bits. The likely explanation is

that we start working more with 64-bit integers, which is

comparatively less efficient on Computer A.

Considering ShortTable, we see that it is always worse

than CharTable. The code is simper for ShortTable, but the

individual tables are much larger, with 216 instead of 28

entries. With ShortTable32 we use 3 such tables with 32-bit

values, adding up to less than 1MB, but With ShortTable48,

we use 5 tables with 64-bit values, adding up to more than

2.5 MB, and then the memory performance starts slowing

down. For comparison, CharTable64 uses 15 tables, each

with 28 64-bit integers, so the total tabulation space is only

about 15K, which fits easily in cache.

Across the experiments, for 5-universal hashing, we

see that CharTable consistently gives the best performance

regardless of the key length and the computer architecture.

CharTable consistently outperforms ShortTable, especially

for longer keys. Compared with CWtrick (which is the

previous fastest method for 5-universal hashing), CharTable

gains a factor of 2 to 10 in speed. The advantage is much

smaller on Computer B whose fast 64-bit arithmetic is a big

win for CWtrick, yet the advantage is always more than a

factor of 1.8.

4.2 Linear probing. Linear probing is one of the most

popular implementations of dynamic hash tables storing all

keys in a single array. Below we generally assume that the

keys fill half the array. When we get a key, we first hash it to a

location. Next we probe consecutive locations until the key

or an empty location is found. Giving birth to the analysis

of algorithm, Knuth [7] proved that linear probing uses an

expected constant number of probes if the hash function is

truly random. More recently, Pagh et al. [11] proved that 5-

universal hashing suffices for an expected constant number

of probes per update or search, and this is for any possible

set of input keys. We also note that Thorup [14] has shown

that we preserve this constant expected time if we first do

plain universal hashing into a domain of the same size n
as the number of keys. Thus if we can provide a fast 5-

universal hashing for 32- or at most 64-bit keys, then we get

a fast implementation of linear probing with provably good

expected performance.

Our next question is then if our 5-universal hashing with

its good theoretical performance would also perform better

in practice on some simple to understand realistic data. We

know that these data should not be random, for then any

reasonable hash function would work well. In fact, in [9] it is

shown that plain universal hashing suffices as long as there

is enough entropy in the data. As our competing practical

hash function, we use the very fast multiplication-shift based

methods Univ and Univ2. These methods represent the

natural choice of a practical hash function for someone not

aware that a higher degree of universality is needed, and our

goal is to see how our theory-founded choice of a 5-universal

hash function performs against this more naı̈ve practical

choice. We note that this choice is not that naı̈ve, for plain

universal hashing suffices for other implementations of hash

tables like simple chaining, and it is only recently [11] that

we have learned that the theoretical performance of linear

probing is so sensitive to the degree of universality.

It was already known from [5] that structured input

can cause linear probing to be slower than other methods,

but in [5] the slowness was largely due to the use of the

old-fashioned direct 2-universal method from (1.2). This

particular hash function was proven to be bad also for linear

probing in [11]. Here we compete against the multiplication-

shift based methods that are an order of magnitude faster.

Also our experiments are special in that that we do many

experiments to study robustness.

Experiments. We conduct experiments to evaluate the

impact of hash functions on the performance of linear prob-

ing. We construct a hash table with 221 entries. We then

insert entries into the hash table one by one until the ar-

ray is half full. From then on we perform 10 million in-

sertion/deletion cycles. During each cycle, we first insert a

new key into the hash table, and then delete an old key from

the hash table, which was inserted into the hash table a mil-

lion steps back. We then compute the average amount of

time spent for each update operation (i.e., either insertion or

deletion). In addition to such timing results, we report the

average number of linear probes involved per update, which

is independent of machine configurations.

For our experiments, we construct two very different key

sequences:

• A dense interval. In this case, we use a random

permutation of [220] as the key sequence. To do so,

we first generate 220 distinct 32-bit random numbers

10-universally and then sort these numbers to obtain a

permutation of their original indices. At any point, we

have the last 1 million keys in the table, representing

roughly 95% of [220].

• Random keys. In this case, we generate 220 distinct 32-

bit random numbers 10-universally and use them as the

key sequence. This is also the sequence used when we

test the speed of the hash functions above.

We store the constructed input key sequence in an array

(of size 220) and then cycle through the array to obtain

the next key to insert or delete. For the same input key

sequence, we repeat the experiment 100 times. In each

experiment, we obtain a different set of random numbers

(from random.org) and use them to initialize all the hash

functions.

Findings. Figure 1–2 show the results. In each figure

we have a particular input key sequence for which we study

linear probing with different hash functions. For each hash

function, we consider 100 different sets of random seeds,

and plot the performance from best to worst. In (a) we have

the average number of probes per operation over 10 million

insert/delete cycles; in (b) and (c) we have the average time

per operation on Computer A and B, respectively. The

random seeds are the same across (a)–(c), so the same probe

count holds for both computers.

We first consider the combinatorial probe count measure

(a). In Figure 1 we have a dense interval. For such highly

structured input, neither Univ nor Univ2 is robust. For

some experiments, the use of Univ and Univ2 require a

significant number of linear probes per insertion/deletion.

In contrast, with our 5-universal schemes, CharTable32 and

CWtrick32, we do not see any obvious difference between

the best and the worst experiment. The average probe count

ranges from 3.23 to 3.26. The much smaller variance for 5-

universal hashing is expected, because the result from [11]

also limits the variance on the probes per operation. More

precisely, to bound the expected number of probes, they

show in the proof of [10, Theorem 4.3] that the probability

of doing more than ℓ probes is O(1/ℓ2), hence that the

expected number is O(
∑

ℓ∈[n] 1/ℓ2) = O(1). We can also

use this to bound the variance, which within a factor 2 can

be computed by letting the ℓth probe pay ℓ, leading to a

variance bound of O(
∑

ℓ∈[n] ℓ/ℓ2) = O(log n). Overall, for

10–20% experiments (which use different random seeds for

initializing the hash function), CharTable32 and CWtrick32

significantly outperform Univ and Univ2 in terms of the

average probe count.

Now consider instead the average probe count in Fig-

ure 2 (a) for a random set of keys. These are 10-universal, so

in fact, much more random than our 5-universal hash func-

tions CharTable32 and CWtrick32. With so much random-

ness in the keys, the limited randomness in the hash functions

has no impact, and now we see that all schemes have a robust

average probe count of around 3.24. In particular, the heavy

tails disappear from Univ and Univ2.

We now switch our attention to the average time spent

per update on the two computers. In essence this is the cost

of hash computation plus the cost of memory access for the

 3

 1

 2

 4

 8

 16

 32

 64

 128

 0 10 20 30 40 50 60 70 80 90 100

p
ro

b
e
s
 p

e
r

u
p
d
a
te

sorted run ID

CharTable32
CWtrick32

Univ
Univ2

(a) Average probes per update

 32

 64

 128

 256

 512

 1024

 0 10 20 30 40 50 60 70 80 90 100

ti
m

e
 p

e
r

u
p
d
a
te

 (
n
a
n
o
s
e
c
o
n
d
s
)

sorted run ID

CharTable32
CWtrick32

Univ
Univ2

(b) Average time per update (Computer A)

 32

 64

 128

 256

 512

 1024

 0 10 20 30 40 50 60 70 80 90 100

ti
m

e
 p

e
r

u
p
d
a
te

 (
n
a
n
o
s
e
c
o
n
d
s
)

sorted run ID

CharTable32
CWtrick32

Univ
Univ2

(c) Average time per update (Computer B)

Figure 1: Impact of hash functions on linear probing per-

formance with permuted input sequence. Each data point

represents the result for one experiment run.

 3

 1

 2

 4

 8

 16

 32

 64

 128

 0 10 20 30 40 50 60 70 80 90 100

p
ro

b
e
s
 p

e
r

u
p
d
a
te

sorted run ID

CharTable32
CWtrick32

Univ
Univ2

(a) Average probes per update

 32

 64

 128

 256

 512

 1024

 0 10 20 30 40 50 60 70 80 90 100

ti
m

e
 p

e
r

u
p
d
a
te

 (
n
a
n
o
s
e
c
o
n
d
s
)

sorted run ID

CharTable32
CWtrick32

Univ
Univ2

(b) Average time per update (Computer A)

 32

 64

 128

 256

 512

 1024

 0 10 20 30 40 50 60 70 80 90 100

ti
m

e
 p

e
r

u
p
d
a
te

 (
n
a
n
o
s
e
c
o
n
d
s
)

sorted run ID

CharTable32
CWtrick32

Univ
Univ2

(c) Average time per update (Computer B)

Figure 2: Impact of hash functions on linear probing perfor-

mance with random input sequence. Each data point repre-

sents the result for one experiment run.

probes in the table. The latter is dominated by the cache miss

from the initial probe at the hash location. For the random

keys in Figure 2, we essentially have the same number of

probes with all the hash function, so the differences in time

are due to the differences in hash computation. Thus it is not

surprising that we see the same ordering as the one found for

the hash computations alone in Table 1.

In Figure 2 (b) we have the results for Computer A. A

slightly surprising thing is that the differences are bigger than

those in Table 1. More precisely, in Figure 2 (b) we see

that CharTable32 is about 25 nanoseconds slower than Univ,

and CWtrick32 is about 130 nanoseconds slower. In both

cases, this is much more than the cost of computing the hash

function itself. It appears that the optimizing compiler does

not do as good a job when faced with the more complicated

hash functions.

In Figure 2 (c) we have the results for Computer B.

Again we see CharTable32 and CWtrick32 are slower than

what we would expect from Table 1, and relatively speak-

ing, the difference between CharTable32 and CWtrick32 is

reduced, yet we still have CharTable32 coming out as the

fastest 5-universal scheme.

If we now consider Figure 1 (b) and (c), we see the com-

bined effect of differences in hashing speed and differences

in number of probes. This gives Univ and Univ2 an addi-

tive advantage compared with the pure probe count in (a), so

now it is only for 10% of the cases that CharTable32 and

CWtrick32 perform better than Univ and Univ2. Yet the

heavy tails persist, so Univ and Univ2 are still much less

robust.

4.3 Summary. Among 5-universal schemes, we have seen

that our tabulation based scheme CharTable is much faster

than the classic CWtrick. When the hashing is studied in

isolation (c.f. Table 1) the difference is by a factor 2 to 10.

The smallest gain is on Computer B which has really fast

64-bit multiplications as needed by CWtrick, but seemingly

slightly slower memory. When used inside linear probing

(c.f. Figures 1–2 (b)–(c)), we see that CharTable continues

to outperform CWtrick. We therefore recommend CharTable

as the fastest choice for a 5-universal hash function for

computers with a reasonably fast cache.

Our other research question is how the 5-universal hash-

ing with its proven theoretical performance would perform

against the fast practical multiplication-shift based choices

Univ and Univ2. On the random data from Figure 2, we see

that we lose about 10% in speed on Computer A, and about

40% on computer B. On the other hand, Univ and Univ2 have

a very heavy tail on the dense interval in Figure 1. Thus we

recommend using CharTable over Univ and Univ2 if robust-

ness is an issue and we have no guarantee that the input is

random.

References

[1] J. Carter and M. Wegman. Universal classes of hash func-

tions. J. Comp. Syst. Sci., 18:143–154, 1979.

[2] M. Dietzfelbinger. Universal hashing and k-wise independent

random variables via integer arithmetic without primes. In

Proc. 13th STACS, LNCS 1046, pages 569–580, 1996.

[3] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Pent-

tonen. A reliable randomized algorithm for the closest-pair

problem. J. Algorithms, 25:19–51, 1997.

[4] M. Dietzfelbinger and P. Woelfel. Almost random graphs

with simple hash functions. In Proc. 35th STOC, pages 629–

638, 2003.

[5] G. L. Heileman and W. Luo. How caching affects hashing. In

Proc. 7th ALENEX, pages 141–154, 2005.

[6] H. Karloff and P. Raghavan. Randomized algorithms and

pseudorandom numbers. J. ACM, 40(3):454–476, 1993.

[7] D. E. Knuth. Notes on ”open” addressing,

1963. Unpublished memorandum. Available at

citeseer.ist.psu.edu/knuth63notes.html.

[8] D. E. Knuth. The Art of Computer Programming, Volume

3: Sorting and Searching. Addison-Wesley, Reading, Mas-

sachusetts, 1973. ISBN 0-201-03803-X.

[9] M. Mitzenmacher and S. P. Vadhan. Why simple hash

functions work: exploiting the entropy in a data stream. In

Proc. 19th SODA, pages 746–755, 2008.

[10] A. Pagh, R. Pagh, and M. Ruzic. Linear probing with constant

independence. In Proc. 39th STOC, pages 318–327, 2007.

[11] A. Pagh, R. Pagh, and M. Ruzic. Linear probing with constant

independence. SIAM J. Computing, 39(3):1107–1120, 2009.

[12] A. Siegel. On universal classes of extremely random

constant-time hash functions. SIAM J. Comput., 33(3):505–

543, 2004.

[13] M. Thorup. Even strongly universal hashing is pretty fast. In

Proc. 11th SODA, pages 496–497, 2000.

[14] M. Thorup. String hashing for linear probing. In Proc. 20th

SODA, pages 655–664, 2009.

[15] M. Thorup and Y. Zhang. Tabulation based 4-universal

hashing with applications to second moment estimation. In

Proc. 15th SODA, pages 608–617, 2004.

[16] M. Wegman and J. Carter. New hash functions and their use

in authentication and set equality. J. Comp. Syst. Sci., 22:265–

279, 1981.

A Code.

A.1 Common data types and macros.

typedef unsigned char INT8;

typedef unsigned short INT16;

typedef unsigned int INT32;

typedef unsigned long long INT64;

typedef INT64 INT96[3];

// different views of a 64-bit double word

typedef union {

INT64 as_int64;

INT16 as_int16s[4];

} int64views;

// different views of a 32-bit single word

typedef union {

INT64 as_int32;

INT16 as_int16s[2];

INT8 as_int8s[4];

} int32views;

typedef struct {

INT64 h;

INT64 u;

INT32 v;

} Entry;

// extract lower and upper 32 bits from INT64

const INT64 LowOnes = (((INT64)1)<<32)-1;

#define LOW(x) ((x)&LowOnes)

#define HIGH(x) ((x)>>32)

A.2 Multiplication-shift based hashing for 32-bit keys.

/* plain universal hashing for 32-bit key x

A is a random 32-bit odd number */

inline INT32 Univ(INT32 x, INT32 A) {

return (A*x);

}

/* 2-universal hashing for 32-bit key x

A and B are random 64-bit numbers */

inline INT32 Univ2(INT32 x,

INT64 A, INT64 B)

{

return (INT32) ((A*x + B) >> 32);

}

A.3 Tabulation based hashing for 32-bit keys using 16-
bit characters.

/* tabulation based hashing for 32-bit key x

using 16-bit characters.

T0, T1, T2 are pre-computed tables */

inline INT32 ShortTable32(INT32 x,

INT32 T0[], INT32 T1[], INT32 T2[])

{

INT32 x0, x1, x2;

x0 = x&65535;

x1 = x>>16;

x2 = x0 + x1;

x2 = compressShort32(x2); // optional

return T0[x0] ˆ T1[x1] ˆ T2[x2];

}

// optional compression

inline INT32 compressShort32(INT32 i) {

return 2 - (i>>16) + (i&65535);

}

A.4 Tabulation based hashing for 32-bit keys using 8-
bit characters.

/* tabulation based hashing for 32-bit key x

using 8-bit characters.

T0, T1 ... T6 are pre-computed tables */

inline INT32 CharTable32(int32views x,

INT32 *T0[], INT32 *T1[],

INT32 *T2[], INT32 *T3[],

INT32 T4[], INT32 T5[], INT32 T6[])

{

INT32 *a0, *a1, *a2, *a3, c;

a0 = T0[x.as_int8s[0]];

a1 = T1[x.as_int8s[1]];

a2 = T2[x.as_int8s[2]];

a3 = T3[x.as_int8s[3]];

c = a0[1] + a1[1] + a2[1] + a3[1];

c = compressChar32(c); // optional

return

a0[0] ˆ a1[0] ˆ a2[0] ˆ a3[0] ˆ

T4[c&1023] ˆ T5[(c>>10)&1023] ˆ

T6[c>>20];

}

// optional compression

inline INT32 compressChar32(INT32 i) {

const INT32 Mask1 =

(((INT32)3)<<20) + (((INT32)3)<<10) + 3;

const INT32 Mask2 =

(((INT32)255)<<20) +

(((INT32)255)<<10) + 255;

const INT32 Mask3 =

(((INT32)3)<<20) + (((INT32)3)<<10) + 3;

return Mask1 + (i&Mask2) - ((i>>8)&Mask3);

}

A.5 Tabulation based hashing for 48-bit keys using 16-
bit characters.

/* tabulation based hashing for 48-bit key x

using 16-bit characters.

T0, T1 ... T4 are pre-computed tables */

inline INT64 ShortTable48(int64views x,

INT64 *T0[], INT64 *T1[], INT64 *T2[],

INT64 T3[], INT64 T4[])

{

INT64 *a0, *a1, *a2, c;

a0 = T0[x.as_int16s[0]];

a1 = T1[x.as_int16s[1]];

a2 = T2[x.as_int16s[2]];

c = a0[1] + a1[1] + a2[1];

c = compressShort48(c); // optional

return

a0[0] ˆ a1[0] ˆ a2[0] ˆ

T3[c&262143] ˆ T4[c>>18];

}

// optional compression

inline INT32 compressShort48(INT64 i) {

const INT64 Mask1 = (((INT64)3)<<18) + 3;

const INT64 Mask2 =

(((INT64)65535)<<18) + 65535;

const INT64 Mask3 = (((INT64)3)<<18) + 3;

return Mask1 + (i&Mask2) - ((i>>16)&Mask3);

}

A.6 Tabulation based hashing for 48-bit keys using 8-
bit characters.

/* tabulation based hashing for 48-bit key x

using 8-bit characters.

T0, T1 ... T10 are pre-computed tables */

inline INT64 CharTable48(int64views x,

INT64 *T0[], INT64 *T1[], INT64 *T2[],

INT64 *T3[], INT64 *T4[], INT64 *T5[],

INT64 T6[], INT64 T7[], INT64 T8[],

INT64 T9[], INT64 T10[])

{

INT64 *a0, *a1, *a2, c;

a0 = T0[x.as_int8s[0]];

a1 = T1[x.as_int8s[1]];

a2 = T2[x.as_int8s[2]];

a3 = T2[x.as_int8s[3]];

a4 = T2[x.as_int8s[4]];

a5 = T2[x.as_int8s[5]];

c = a0[1] + a1[1] + a2[1] +

a3[1] + a4[1] + a5[1];

c = compressChar48(c); // optional

return

a0[0] ˆ a1[0] ˆ a2[0] ˆ

a3[0] ˆ a4[0] ˆ a5[0] ˆ

T6[(c&2047)] ˆ T7[((c>>11)&2047)] ˆ

T8[((c>>22)&2047)] ˆ

T9[((c>>33)&2047)] ˆ T10[c>>44];

}

// optional compression

inline INT32 compressChar48(INT64 i) {

const INT64 Mask1 = 5 +

(((INT64)5)<<11) + (((INT64)5)<<22) +

(((INT64)5)<<33) + (((INT64)5)<<44);

const INT64 Mask2 = 255 +

(((INT64)255)<<11) + (((INT64)255)<<22) +

(((INT64)255)<<33) + (((INT64)255)<<44);

const INT64 Mask3 = 7 +

(((INT64)7)<<11) + (((INT64)7)<<22) +

(((INT64)7)<<33) + (((INT64)7)<<44);

return Mask1 + (i&Mask2) - ((i>>8)&Mask3);

}

A.7 Tabulation based hashing for 64-bit keys using 16-
bit characters.

/* tabulation based hashing for 64-bit key x

using 16-bit characters.

T0, T1 ... T6 are pre-computed tables */

inline INT64 ShortTable64(int64views x,

INT64 *T0[], INT64 *T1[],

INT64 *T2[], INT64 *T3[],

INT64 T4[], INT64 T5[], INT64 T6[])

{

INT64 *a0, *a1, *a2, *a3, c;

a0 = T0[x.as_int16s[0]];

a1 = T1[x.as_int16s[1]];

a2 = T2[x.as_int16s[2]];

a3 = T3[x.as_int16s[3]];

c = a0[1] + a1[1] + a2[1] + a3[1];

c = compressShort64(c); // optional

return

a0[0] ˆ a1[0] ˆ a2[0] ˆ a3[0] ˆ

T4[c&2097151] ˆ

T5[(c>>21)&2097151] ˆ T6[c>>42];

}

// optional compression

inline INT64 compressShort64(INT64 i) {

const INT64 Mask1 = 4 +

(((INT64)4)<<21) + (((INT64)4)<<42);

const INT64 Mask2 = 65535 +

(((INT64)65535)<<21) +

(((INT64)65535)<<42);

const INT64 Mask3 = 31 +

(((INT64)31)<<21) + (((INT64)31)<<42);

return Mask1 + (i&Mask2) - ((i>>16)&Mask3);

}

A.8 Tabulation based hashing for 64-bit keys using 8-
bit characters.

/* tabulation based hashing for 64-bit key x

using 8-bit characters.

T0, T1... T14 are pre-computed tables */

inline INT64 CharTable64(int64views x,

Entry T0[], Entry T1[], Entry T2[],

Entry T3[], Entry T4[], Entry T5[],

Entry T6[], Entry T7[], INT64 T8[],

INT64 T9[], INT64 T10[], INT64 T11[],

INT64 T12[], INT64 T13[], INT64 T14[])

{

Entry *a0, *a1, *a2, *a3,

*a4, *a5, *a6, *a7;

INT64 c0;

INT32 c1;

a0 = &T0[x.as_int16s[0]];

a1 = &T1[x.as_int16s[1]];

a2 = &T2[x.as_int16s[2]];

a3 = &T3[x.as_int16s[3]];

a4 = &T4[x.as_int16s[4]];

a5 = &T5[x.as_int16s[5]];

a6 = &T6[x.as_int16s[6]];

a7 = &T7[x.as_int16s[7]];

c0 = a0->u + a1->u + a2->u + a3->u +

a4->u + a5->u + a6->u + a7->u;

c1 = a0->v + a1->v + a2->v + a3->v +

a4->v + a5->v + a6->v + a7->v;

c0 = compressChar64_0(c0); // optional

c1 = compressChar64_1(c1); // optional

return

a0->h ˆ a1->h ˆ a2->h ˆ a3->h ˆ

a4->h ˆ a5->h ˆ a6->h ˆ a7->h ˆ

T8[(c0&2043)] ˆ T9[((c0>>11)&2043)] ˆ

T10[((c0>>22)&2043)] ˆ

T11[((c0>>33)&2043)] ˆ T12[(c0>>44)] ˆ

T13[(c1&2043)] ˆ T14[(c1>>11)];

}

// optional compression

inline INT64 compressChar64_0(INT64 i) {

const INT64 Mask1 = 7 +

(((INT64)7)<<11) + (((INT64)7)<<22) +

(((INT64)7)<<33) + (((INT64)7)<<44);

const INT64 Mask2 = 255 +

(((INT64)255)<<11) + (((INT64)255)<<22) +

(((INT64)255)<<33) + (((INT64)255)<<44);

const INT64 Mask3 = 7 +

(((INT64)7)<<11) + (((INT64)7)<<22) +

(((INT64)7)<<33) + (((INT64)7)<<44);

return Mask1 + (i&Mask2) - ((i>>8)&Mask3);

}

// optional compression

inline INT32 compressChar64_1(INT32 i) {

const INT64 Mask1 = (((INT64)7)<<11) + 7;

const INT64 Mask2 =

(((INT64)255)<<11) + 255;

const INT64 Mask3 = (((INT64)7)<<11) + 7;

return Mask1 + (i&Mask2) - ((i>>8)&Mask3);

}

A.9 CW trick for 32-bit keys with prime 261 − 1.

const INT64 Prime = (((INT64)1)<<61) - 1;

/* Computes ax+b mod Prime,

possibly plus 2*Prime,

exploiting the structure of Prime. */

inline INT64 MultAddPrime32(INT32 x,

INT64 a, INT64 b)

{

INT64 a0,a1,c0,c1,c;

a0 = LOW(a)*x;

a1 = HIGH(a)*x;

c0 = a0+(a1<<32);

c1 = (a0>>32)+a1;

c = (c0&Prime)+(c1>>29)+b;

return c;

}

// CWtrick for 32-bit key x (Prime = 2ˆ61-1)

inline INT64 CWtrick32(INT32 x, INT64 A,

INT64 B, INT64 C, INT64 D, INT64 E)

{

INT64 h;

h = MultAddPrime32(

MultAddPrime32(

MultAddPrime32(

MultAddPrime32(x,A,B),x,C),x,D),x,E);

h = (h&Prime)+(h>>61);

if (h>=Prime) h-=Prime;

return h;

}

A.10 CW trick for 48-bit keys with prime 261 − 1.

/* Computes ax+b mod Prime,

possibly plus 2*Prime,

exploiting the structure of Prime. */

inline INT64 MultAddPrime(INT64 x,

INT64 a, INT64 b)

{

INT64 x0, x1, c0, c1, c,

a0, a1, ax00, ax01_10, ax11;

x0 = LOW(x); x1 = HIGH(x);

a0 = LOW(a); a1 = HIGH(a);

ax00 = a0*x0;

ax11 = a1*x1;

ax01_10 = a0*x1 + a1*x0;

c0 = ax00 + (ax01_10<<32);

c1 = (ax00>>61) + (ax01_10>>29) +

(ax11<<3);

c = (c0&Prime61) + c1 + b;

c = (c&Prime61) + (c>>61);

return c;

}

// CWtrick for 48-bit key x (Prime = 2ˆ61-1)

inline INT64 CWtrick48(INT32 x, INT64 A,

INT64 B, INT64 C, INT64 D, INT64 E)

{

INT64 h;

h = MultAddPrime(

MultAddPrime(

MultAddPrime(

MultAddPrime(x,A,B),x,C),x,D),x,E);

h = (h&Prime)+(h>>61);

if (h>=Prime) h-=Prime;

return h;

}

A.11 CW trick for 64-bit keys using prime 289 − 1.

const INT64 Prime89_0 = (((INT64)1)<<32)-1;

const INT64 Prime89_1 = (((INT64)1)<<32)-1;

const INT64 Prime89_2 = (((INT64)1)<<25)-1;

const INT64 Prime89_21 = (((INT64)1)<<57)-1;

/* Computes (r mod Prime89) mod 2ˆ64,

exploiting the structure of Prime89 */

inline INT64 Mod64Prime89(INT96 r) {

INT64 r0, r1, r2;

// r2r1r0 = r&Prime89 + r>>89

r2 = r[2];

r1 = r[1];

r0 = r[0] + (r2>>25);

r2 &= Prime89_2;

return (r2 == Prime89_2 &&

r1 == Prime89_1 &&

r0 >= Prime89_0) ?

(r0 - Prime89_0) : (r0 + (r1<<32));

}

/* Computes a 96-bit r such that

r mod Prime89 == (ax+b) mod Prime89

exploiting the structure of Prime89. */

inline void MultAddPrime89(INT96 r, INT64 x,

INT96 a, INT96 b)

{

INT64 x1, x0, c21, c20, c11, c10, c01, c00;

INT64 d0, d1, d2, d3;

INT64 s0, s1, carry;

x1 = HIGH(x); x0 = LOW(x);

c21 = a[2]*x1; c20 = a[2]*x0;

c11 = a[1]*x1; c10 = a[1]*x0;

c01 = a[0]*x1; c00 = a[0]*x0;

d0 = (c20>>25)+(c11>>25)+

(c10>>57)+(c01>>57);

d1 = (c21<<7);

d2 = (c10&Prime89_21) + (c01&Prime89_21);

d3 = (c20&Prime89_2) +

(c11&Prime89_2) + (c21>>57);

s0 = b[0] + LOW(c00) + LOW(d0) + LOW(d1);

r[0] = LOW(s0); carry = HIGH(s0);

s1 = b[1] + HIGH(c00) + HIGH(d0) +

HIGH(d1) + LOW(d2) + carry;

r[1] = LOW(s1);

carry = HIGH(s1);

r[2] = b[2] + HIGH(d2) + d3 + carry;

}

// CWtrick for 64-bit key x (Prime = 2ˆ89-1)

inline INT64 CWtrick64(INT64 x, INT96 A,

INT96 B, INT96 C, INT96 D, INT96 E)

{

INT96 r;

MultAddPrime89(r,x,A,B);

MultAddPrime89(r,x,r,C);

MultAddPrime89(r,x,r,D);

MultAddPrime89(r,x,r,E);

return Mod64Prime89(r);

}

