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ABSTRACT
In traffic monitoring, accounting, and network anomaly detection, it
is often important to be able to detect high-volume traffic clusters in
near real-time. Such heavy-hitter traffic clusters are often hierarchi-
cal (i.e., they may occur at different aggregation levels like ranges of
IP addresses) and possibly multidimensional (i.e., they may involve
the combination of different IP header fields like IP addresses, port
numbers, and protocol). Without prior knowledge about the precise
structures of such traffic clusters, a naive approach would require
the monitoring system to examine all possible combinations of ag-
gregates in order to detect the heavy hitters, which can be prohibitive
in terms of computation resources.

In this paper, we focus on online identification of 1-dimensional
and 2-dimensional hierarchical heavy hitters (HHHs), arguably the
two most important scenarios in traffic analysis. We show that the
problem of HHH detection can be transformed to one of dynamic
packet classification by taking a top-down approach and adaptively
creating new rules to match HHHs. We then adapt several exist-
ing static packet classification algorithms to support dynamic packet
classification. The resulting HHH detection algorithms have much
lower worst-case update costs than existing algorithms and can pro-
vide tunable deterministic accuracy guarantees. As an application
of these algorithms, we also propose robust techniques to detect
changes among heavy-hitter traffic clusters. Our techniques can ac-
commodate variability due to sampling that is increasingly used in
network measurement. Evaluation based on real Internet traces col-
lected at a Tier-1 ISP suggests that these techniques are remarkably
accurate and efficient.

Categories and Subject Descriptors
C.2.3 [Computer-Communications Networks]: Network Opera-
tions—Network Monitoring, Network Management

General Terms
Measurement, Algorithms

Keywords
Network Anomaly Detection, Data Stream Computation, Hierarchi-
cal Heavy Hitters, Change Detection, Packet Classification
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1. INTRODUCTION

1.1 Motivation and background
The Internet has emerged as a critical communication infrastruc-

ture, carrying traffic for a wide range of important scientific, busi-
ness and consumer applications. Network service providers and
enterprise network operators need the ability to detect anomalous
events in the network, for network management and monitoring,
reliability, security and performance reasons. While some traffic
anomalies are relatively benign and tolerable, others can be symp-
tomatic of potentially serious problems such as performance bot-
tlenecks due to flash crowds [24], network element failures, ma-
licious activities such as denial of service attacks (DoS) [23], and
worm propagation [28]. It is therefore very important to be able to
detect traffic anomalies accurately and in near real-time, to enable
timely initiation of appropriate mitigation steps. This paper focuses
on streaming techniques for enabling accurate, near real-time detec-
tion of anomalies in IP network traffic data.

A major challenge for anomaly detection is that traffic anomalies
often have very complicated structures: they are often hierarchical
(i.e., they may occur at arbitrary aggregation levels like ranges of IP
addresses and port numbers) and sometimes also multidimensional
(i.e., they can only be exposed when we examine traffic with spe-
cific combinations of IP address ranges, port numbers, and proto-
col). In order to identify such multidimensional hierarchical traffic
anomalies, a naive approach would require the monitoring system
to examine all possible combinations of aggregates, which can be
prohibitive even for just two dimensions. Another challenge is the
need to process massive streams of traffic data online and in near
real-time. Given today’s traffic volume and link speeds, the input
data stream can easily contain millions or more of concurrent flows,
so it is often infeasible or too expensive to maintain per-flow state.

1.2 Heavy hitters, aggregation and hierarchies
A very useful concept in identifying dominant or unusual traffic

patterns is that of hierarchical heavy hitters (HHHs) [11]. A heavy
hitter is an entity which accounts for at least a specified propor-
tion of the total activity measured in terms of number of packets,
bytes, connections etc. A heavy hitter could correspond to an indi-
vidual flow or connection. It could also be an aggregation of multi-
ple flows/connections that share some common property, but which
themselves may not be heavy hitters.

Of particular interest to our application is the notion of hierar-
chical aggregation. IP addresses can be organized into a hierarchy
according to prefix. The challenge for hierarchical aggregation is to
efficiently compute the total activity of all traffic matching relevant
prefixes. A hierarchical heavy hitter is a hierarchical aggregate that
accounts for some specified proportion of the total activity.

Aggregations can be defined on one or more dimensions, e.g.,
source IP address, destination IP address, source port, destination



port, and protocol fields for IP flows. Correspondingly, in this pa-
per we will be concerned with multidimensional hierarchical heavy
hitters, i.e., multidimensional sets of hierarchical aggregates that ac-
count for some specified proportion of the total activity.

1.3 Contribution and approach
The main contribution of this paper is the development of several

efficient streaming algorithms for detecting multidimensional hierar-
chical heavy hitters from massive data streams with a large number
of flows. The common component of these algorithms is an adap-
tive data structure that carries a synopsis of the traffic in the form
of a set of estimated hierarchical aggregates of traffic activity. The
data structure is adapted to the offered traffic in that each aggregate
contains no more than a given proportion of the total activity (with
possible exception for those aggregates that are not further divisible).

These algorithms have much lower worst-case update costs than
existing algorithms, and provide data independent deterministic ac-
curacy guarantees. By adjusting the threshold proportion for detec-
tion, the level of detail reported can be traded off against the compu-
tation time.

A key theoretical contribution that enables our work is that we
establish the close connection between multidimensional hierarchi-
cal heavy hitter detection and packet classification, two important
problems often studied separately in the literature. In packet clas-
sification one maps packets onto a given set of fixed prefixes. Our
problem is more challenging in that the set of prefixes (correspond-
ing to the heavy-hitter traffic clusters) is dynamic, adapting to the
set of IP addresses presented by the traffic and the relative activity
on each of the prefixes. In fact, all our algorithms have static coun-
terparts in the packet classification world (e.g., [31, 33]).

Our original motivation for this work was network anomaly de-
tection. Change detection, an important component in anomaly de-
tection, involves detecting traffic anomalies by deriving a model of
normal behavior based on the past traffic history and looking for sig-
nificant changes in short-term behavior (on the order of minutes to
hours) that are inconsistent with the model. In the present context,
this requires detecting changes across time in the activity associated
with the heavy hitters. As an application of our method, we describe
how standard change detection techniques can be adapted for robust
use with the activity time series of hierarchical heavy hitters gen-
erated from the measured traffic. Evaluation based on real Internet
traces collected at a Tier-1 ISP suggests that these techniques are
remarkably accurate and efficient.

An important challenge to change detection stems from the fact
that usage measurements are increasingly sampled. For instance, for
NetFlow data, there are typically 2 levels of sampling: (i) packet
sampling at the routers during the formation of NetFlow records
[10], and (ii) smart sampling [16, 15] of the NetFlow records within
the measurement infrastructure. Our techniques accommodate the
inherent sampling variability within our predictive scheme. Specifi-
cally, we can set alarm thresholds in order to keep the false positive
rate due to sampling variability within acceptable limits.

1.4 Related work
There is considerable literature in the area of statistical anomaly

detection. Change detection has been extensively studied in the con-
text of time series forecasting and outlier analysis [34, 9]. The stan-
dard techniques include simple smoothing techniques (e.g., expo-
nential averaging), the more general Box-Jenkins ARIMA model-
ing [6, 7, 1], and wavelet-based methods [5, 4]. Prior works have
applied these techniques to network fault detection (e.g., [22, 25,
35, 19]) and intrusion detection (e.g., [8]). Barford et al. recently
provided a good characterization of different types of anomalies [5]
and proposed wavelet-based methods for change detection [4].

Existing works on heavy hitter detection lack the multidimen-
sional adaptive hierarchical drill-down capability that our determin-

istic techniques offer. Existing change detection techniques typically
can only handle a relatively small number of time series. Recent
efforts use probabilistic summarization techniques like sketches to
avoid per-flow state, for scalable heavy hitter detection [13, 14, 17]
and change detection [26]. [11] presents both deterministic and
sketch-based probabilistic online algorithms for hierarchical heavy
hitter detection in one dimension. [18] presents effective techniques
for offline computation of multidimensional heavy hitters. Recently,
Cormode et al. [12] proposed an algorithm for multidimensional
heavy hitter detection, which is the closest in spirit to our work. We
will discuss their algorithm further at the end of Section 3.1.

The remainder of the paper is organized as follows: Section 2
formally presents the multidimensional HHH detection and change
detection problems. Section 3 provides detailed descriptions of our
proposed multidimensional HHH detection algorithms, and Section 4
describes our proposed techniques for change detection for HHH
clusters. Section 5 outlines our evaluation methodology, and Sec-
tion 6 presents evaluation results for our HHH detection and change
detection algorithms. Finally, Section 7 concludes the paper.

2. PROBLEM SPECIFICATION
In this section, we formally define the notion of multidimensional

hierarchical heavy hitters and introduce the heavy hitter detection
problem.

We adopt the Cash Register Model [29] to describe the streaming
data. Let I = α1, α2, · · · , be an input stream of items that arrives
sequentially. Each item αi = (ki, ui) consists of a key ki, and a
positive update ui ∈ R. Associated with each key k is a time varying
signal A[k]. The arrival of each new data item (ki, ui) causes the
underlying signal A[ki] to be updated: A[ki]+= ui.

Below we first review the definition of Heavy Hitter and Hierar-
chical Heavy Hitters.

DEFINITION 1 (HEAVY HITTER). Given an input stream I =
{(ki, ui)} with total sum SUM =

P

i ui and a threshold φ (0 ≤
φ ≤ 1), a Heavy Hitter (HH) is a key k whose associated total value
in I is no smaller than φSUM . More precisely, let vk =

P

i:ki=k
ui

denote the total value associated with each key k in I. The set of
Heavy Hitters is defined as {k|vk ≥ φSUM}.

We define the heavy hitter problem as the problem of finding all
heavy hitters, and their associated values, in a data stream. For in-
stance, if we use the destination IP address as the key, and the byte
count as the value, then the corresponding HH problem is to find all
destination IP addresses that account for at least a proportion φ of
the total traffic.

DEFINITION 2 (HIERARCHICAL HEAVY HITTER). Let I =
{(ki, ui)} be an input stream whose keys ki are drawn from a hi-
erarchical domain D of height h. For any prefix p of the domain
hierarchy, let elem(D, p) be the set of elements in D that are de-
scendents of p. Let V (D, p) =

P

k
vk : k ∈ elem(D,p) denote the

total value associated with any given prefix p. The set of Hierarchi-
cal Heavy Hitters (HHH) is defined as {p|V (D, p) ≥ φSUM}.

We define the hierarchical heavy hitter problem as the problem
of finding all hierarchical heavy hitters, and their associated values,
in a data stream. If we use the destination IP address to define the
hierarchical domain, then the corresponding HHH problem not only
wants to find destination IP addresses but also all those destination
prefixes that account for at least a proportion φ of the total traffic.

Note that our definition of HHH is different from that of [11, 18].
Specifically, we would like to find all the HH prefixes, whereas [11,
18] returns a prefix p only if its traffic remains above φSUM even
after excluding all traffic from HH prefixes that are descendents of p.
All our algorithms can be adapted to use this more strict definition
of HHH . We choose to use a simpler definition as part of our goal



of HHH detection is to perform change detection on HHHs. If we do
not output all the heavy hitter prefixes, then we can easily miss those
big changes buried inside the prefixes that were not tracked (under
the more strict definition).

We can generalize the definition of HHH to multiple dimensions:

DEFINITION 3 (MULTIDIMENSIONAL HHH). Let D = D1×
· · · ×Dn be the Cartesian product of n hierarchical domains Dj of
height hj (j = 1, 2, · · · , n). For any p = (p1, p2, · · · , pn) ∈ D, let
elem(D, p) = elem(D1, p1)×· · ·×elem(Dn, pn). Given an input
stream I = {(ki, ui)}, where ki is drawn from D, let V (D, p) =
P

k
vk : k ∈ elem(D,p). The set of Multidimensional Hierarchical

Heavy Hitters is defined as {p|V (D, p) ≥ φSUM}.

For simplicity, we also refer to a multidimensional hierarchical
heavy hitter as a HHH cluster in the rest of the paper.

The multidimensional hierarchical heavy hitter problem is de-
fined as the problem of finding all multidimensional hierarchical
heavy hitters, and their associated values, in a data stream. As an
example, we can define D based on source and destination IP ad-
dresses. The corresponding 2-dimensional HHH problem is to find
all those source-destination prefix combinations < p1, p2 > that ac-
count for at least a proportion φ of the total traffic.

Once the multidimensional hierarchical heavy hitters have been
detected in each time interval, we then need to track their values
across time to detect significant changes, which may indicate poten-
tial anomalies. We refer to this as the change detection problem.

Our goal in this paper is to develop efficient and accurate stream-
ing algorithms for detecting multidimensional hierarchical heavy hit-
ters and significant changes in massive data streams that are typical
of today’s IP traffic.

3. MULTIDIMENSIONAL HHH DETECTION
To recall, our goal is to identify all possible keys (in the con-

text of network traffic a key can be made up of fields in the packet
header) that have a volume associated with them that is greater than
the heavy-hitter detection threshold at the end of the time interval.
A key may be associated with very large ranges. For example in
the case of IP prefixes the range is: [0, 232). Also the key may be
a combination of one or more fields, which can result in significant
increase in the complexity of the problem. Clearly monitoring all
possible keys in the entire range can be prohibitive (especially in the
multidimensional context where we would have to consider a cross-
product of all the individual ranges).

Our solution to this problem entails building an adaptive data
structure that dynamically adjusts the granularity of the monitoring
process to ensure that the particular keys that are heavy-hitters (or
more likely to be heavy-hitters) are correctly identified without wast-
ing a lot of resources (in terms of time and space) for keys that are
not heavy-hitters. In the 1-dimensional case, our data structure re-
sembles a decision tree that dynamically drills down and starts mon-
itoring a node (that is associated with a key) closely only when its di-
rect ancestor becomes sufficiently large. In the 2-dimensional case,
our data structure provides similar dynamic drill-down capability.

There are two key parameters that we will use throughout the rest
of the paper: φ and ε. Given the total sum SUM , φSUM is the
threshold for a cluster to qualify as a heavy hitter; εSUM specifies
the maximum amount of inaccuracy that we are willing to tolerate in
the estimates generated by our algorithms.

To guide the building process of the summary data structure, we
use a threshold, which we call the split threshold (Tsplit), to make
local decisions at each step. It is used to make a decision as to when
the range of keys under consideration should be looked at in a finer
grain. Tsplit is chosen to ensure that the maximum amount of traf-
fic we miss during the dynamic drill-down is at most εSUM for
any cluster. The actual choice of Tsplit depends on the algorithm.

For now we assume that SUM is a pre-specified constant. Later in
Section 3.6, we will introduce a simple technique that allows us to
specify Tsplit in terms of the actual total sum in a given time interval.

To exemplify the algorithms described in this section, we consider
the source and the destination IP fields as the two dimensions for
HHH detection. We also use what we call the volume, the number
of bytes of traffic, associated with a given key, as the metric that we
would like to use for detecting heavy-hitters. The metric as well as
the fields to be considered for the dimensions may be changed based
on the application requirements.

We start by considering a simple baseline solution to the HHH de-
tection problem followed by adaptive algorithms for 1-dimensional
and 2-dimensional HHH detection, arguably the two most important
scenarios for traffic analysis. We conclude this section with a dis-
cussion on how our algorithms can be used as building blocks for
general n-dimensional HHH detection.

3.1 Baseline solution
Below we describe a relatively straightforward, albeit inefficient,

solution to the n-dimensional HHH detection problem. The scheme
transforms the problem to essentially multiple (non-hierarchical) HH
detection problems, one for each distinct combination of prefix length
values across all the dimensions of the original key space. For an
n-dimensional keyspace with a hierarchy of height hi in the i-th
dimension, there are Πn

i=1(hi + 1) non-hierarchical HH detection
problems, which have to be solved in tandem. Such a brute force ap-
proach will need to update the data structure for all possible combi-
nations of prefix lengths. So the per-item update time is proportional
to Πn

i=1(hi + 1).
We use the above approach as a baseline for evaluating the mul-

tidimensional HHH detection algorithms proposed later in this sec-
tion. We use the following two baseline variants that differ in the
specific HH detection algorithm used. In the interest of space, we
only provide a high level summary of the HH detection algorithms;
readers are referred to [14, 27] for detailed descriptions.
Baseline variant 1: Sketch-based solution (sk), which uses sketch-
based probabilistic HH detection. Count-Min sketch [14] is a proba-
bilistic summary data structure based on random projections (see [29]
for a good overview of sketch and specific sketch operations). Let
[m] denote set {0, 1, · · · , m− 1}. A sketch S consists of a H × K
table of registers: TS [i, j] (i ∈ [H], j ∈ [K]). Each row TS[i, ·]
(i ∈ [H]) is associated with a hash function hi that maps the original
key space to [K]. We can view the data structure as an array of hash
tables. Given a key, the sketch allows one to reconstruct the value
associated with it, with probabilistic bounds on the reconstruction
accuracy. The achievable accuracy is a function of both the number
of hash functions (H), and the size of hash tables (K). The base-
line scheme uses a separate sketch data structure per distinct prefix
length combination in all the dimensions.
Baseline variant 2: Lossy Counting-based solution (lc), which
uses a deterministic, single-pass, sampling-based HH detection al-
gorithm called Lossy Counting (see [27]). Lossy Counting uses two
parameters: ε and φ, where 0 ≤ ε � φ ≤ 1. At any instant,
let N be the total number of items in the input data stream. Lossy
Counting can correctly identify all heavy-hitter keys whose frequen-
cies exceed φN . lc provides lower and upper bounds on the count
associated with a heavy hitter. The gap between the two bounds is
guaranteed to be at most εN . The space overhead for the algorithm
is O( 1

ε
log(εN)). The Lossy Counting algorithm can be modified to

work with byte data instead of count data. All the complexity and
accuracy results still apply except that we need to replace N with
SUM . We use this adapted version in our evaluation.

We note that the algorithm in [12] is also based on Lossy Count-
ing. So we expect its accuracy to be similar to that of lc. In addition,
while their algorithm is normally much more efficient than lc, the
worst-case amortized update cost is comparable to lc (the worst-case



scenario can occur when the keys in the input stream are uniformly
distributed, which can be caused by events like a distributed denial-
of-service attack using spoofed source addresses). So although we
do not directly compare against their algorithm, we expect the per-
formance of lc to be indicative of the worst-case performance of
their algorithm.

3.2 A trie-based solution to 1-d HHH detection
Our goal is to identify the prefixes (considering that we use the

destination IP as the key) that are responsible for an amount of traf-
fic that exceeds a given threshold. We would like to do so while
maintaining minimal state and performing a minimum number of
update operations for each arriving flow or packet.

The hierarchical nature of the problem reminds us of the clas-
sical IP lookup problem in which for every received packet the IP
destination field in the packet header is used to search for a longest
matching prefix in a set of given IP prefixes (also known as a routing
table). The difference between our particular situation and the IP
lookup problem is that in the IP lookup problem the set of prefixes is
given as an input and is often static. In contrast, we need to generate
dynamically (based on the packet arrival pattern) the set of prefixes
that are associated with the heavy hitters.

Despite the difference, however, we are able to develop an effec-
tive solution to 1-d HHH detection by adapting an existing solution
to the static IP lookup problem – the trie-based solution proposed by
Srinivasan et al. [32].

Trie is a simple data structure. Each node in a one-bit trie has at
most two child nodes, one associated with bit 0 and the other with bit
1. Srinivasan et al. [32] have extended on the basic idea of one-bit
tries to create more refined multi-bit tries that are better suited for
the IP lookup problem. Our algorithm is designed and implemented
for m-bit tries, where each node of the trie has 2m children, similar
to the idea of the multi-bit tries. However for simplicity we describe
our algorithm using one-bit tries.

The trie data structure. We maintain a standard trie data struc-
ture (as illustrated in Figure 1). Each node n in the trie is associated
with a prefix p∗ identified by the path between the root of the trie
and the node. Array n.child contains pointers to the children of
n. Field n.depth gives the depth of n. Field n.fringe indicates
whether n is a fringe node – we consider n as a fringe node if af-
ter its creation, we see less than Tsplit amount of traffic associated
with destination prefix p; otherwise, we consider n as an internal
node. Field n.volume records the volume of traffic associated with
prefix p that we see after n is created and before n becomes an inter-
nal node. Field n.subtotal gives the total volume of traffic for the
entire subtrie rooted at n, excluding the portion already accounted
for by n.volume. Fields n.miss copy and n.miss split represent
estimated volume of traffic missed by node n (i.e., traffic that is as-
sociated with prefix p but appears before the creation of n). The
copy-all and the splitting rules are used to compute n.miss copy

and n.miss split, respectively (details to follow). The last four
volume related fields are used to estimate the total volume of traf-
fic that is associated with prefix p. We will describe the estimation
algorithm later in this section.

// vol type is the data type for volume
typedef struct {

trie ∗ child[·]; // child[i] points to the i-th child
int depth; // the depth of this node
boolean fringe; // true iff volume for entire subtrie < Tsplit
vol type volume; // volume of traffic trapped at this node
vol type subtotal; // total volume of traffic in all descendents
vol type miss copy; // missed traffic (estimated by copy-all)
vol type miss split; // missed traffic (estimated by splitting)

} trie;

Figure 1: The trie data structure

Updating the trie. Our data structure starts with a single node
trie that is associated with the zero-length prefix ∗. The volume

field associated with this node is incremented with the size of each
arriving packet. When the value in this field exceeds Tsplit, we mark
the node as internal and create one new child node associated with
the prefix 0∗ or 1∗ that the incoming packet matches. The size of
the current packet is then used to initialize the volume field in the
newly created child node. The structure develops dynamically with
the arrival of each new packet. This procedure is summarized in
Figure 2.

1 int UPDATE 1D(key, value)
2 n = root
3 while (true)
4 if (n.fringe)
5 if (n.volume + value < Tsplit)
6 n.volume+= value
7 return n.depth− 1
8 else
9 n.fringe = false

10 if (n.depth = W )
11 n.subtotal = value
12 return n.depth
13 endif
14 endif
15 else if (n.depth = W )
16 n.subtotal+= value
17 return n.depth
18 endif
19 index = get Nth bit(key, n.depth + 1)
20 c = get child(n,index)
21 if (c = NULL)
22 c = create child(n, index)
23 endif
24 n = c
25 endwhile

Figure 2: The update operation is very simple: walk down the
trie until we reach a fringe node, and check if we can update
its volume. if the updated volume is still below Tsplit, make the
update and return; otherwise, mark the node as internal and
continue walking down the trie. The actual implementation also
includes some special handling when we reach the bottom of the
trie (i.e., we use up all bits in the key)

In Figure 3 we illustrate the update operation for a trie with Tsplit

set to 10. The arriving packet has a Destination IP prefix of 100∗
and a size of 5 bytes. Figure 3 (a) shows the trie at the time of
the packet arrival. The algorithm first performs a longest matching
prefix operation on the trie and arrives at the node associated with
prefix 10∗. Adding 5 bytes to the volume field of this node would
make its value cross Tsplit. Therefore, the algorithm creates a new
node associated with prefix 100∗ (i.e., the child node associated with
bit 0). The size of the current packet is used to initialize the volume
field of the newly created node. Figure 3(b) shows the trie after the
update operation.

One can see that our trie construction process guarantees that the
values of the volume field in any internal node is always less than
Tsplit. As a result, if we set Tsplit = εSUM/W , we can ensure
that the maximum amount of traffic we miss as we dynamically drill
down to the fringe is at most εSUM .

The time complexity of the operations described above is on the
same order of magnitude as a regular IP lookup operation, i.e., O(W ).
For every packet arrival, we update at most one node in the trie. At
most one new node is created during each update as long as the vol-
ume for the new item is below Tsplit (in case the volume exceeds
Tsplit, we need to create an entire new branch all the way to the max-
imum depth W ). It is easy to see that at each depth, there can be no
more than SUM/Tsplit = W/ε internal nodes (otherwise the total
sum over all the subtries rooted at those nodes would exceed SUM ,
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Figure 3: (a) shows the trie at the arrival of a packet of size 5
bytes and prefix 100∗. Tsplit is set to 10. (b) shows the trie af-
ter accounting for the packet. The newly created node is repre-
sented in grey. In both tries, dotted circles represent the internal
nodes, while solid circles represent the fringe nodes.

1 vol type COMPUTE TOTAL 1D(n)
2 if (n.depth 6= W )
3 n.subtotal = 0
4 for (each child c of n)
5 if ( c 6= NULL )
6 child total = COMPUTE TOTAL 1D(c)
7 n.subtotal+= child total
8 endif
9 endfor

10 endif
11 return (n.volume + n.subtotal)

Figure 4: The total volume associated with an internal node can
be reconstructed recursively in a bottom-up fashion.

which is impossible). So the worst-case memory requirement of the
data structure is O(W 2/ε).
Reconstructing volumes for internal nodes. In our trie building
algorithm, every packet arrival results in at most one update. The
update occurs at the node which is the most specific node represent-
ing the destination IP prefix (of the packet) at the time of the packet
arrival. Therefore we need to reconstruct the volumes of the internal
nodes at the end of the time interval. By delaying the reconstruc-
tion process to the end of the time interval, the reconstruction cost is
amortized across the entire time interval.

To compute the volumes associated with all the internal nodes, we
perform a recursive post-order traversal of the trie. In each recursive
step the volume of the current node is computed as being the sum of
the volume represented in the current trie node and its child nodes.
This procedure is illustrated in Figure 4.
Estimating the missed traffic for each node. We note that because
of utilizing Tsplit to guide the trie construction process the volumes
represented in the internal nodes even after reconstruction are not
entirely accurate. In order to more accurately estimate the volume
associated with a given node, we also need to include an estimate of
the missed traffic for that node. Below we consider three ways of
estimating the missed traffic.

1 void COMPUTE MISSED 1D(n)
2 for (each child c of n)
3 if (c 6= NULL )
4 c.miss copy = n.volume + n.miss copy

5 frac = (c.subtotal + c.volume)/n.subtotal
6 c.miss split = (n.volume + n.miss split) · frac
7 COMPUTE MISSED 1D(c)
8 endif
9 endfor

Figure 5: The missed traffic can be estimated in a top-down fash-
ion (using either the copy-all or the splitting rule)
.

Copy-all: the missed traffic for a node N is estimated as the sum
of the total traffic seen by the ancestors of node N in the path from
node N to the root of the tree. Note that copy-all is conservative
in that it copies the traffic trapped at a node to all its descendents.
It always gives an upper bound for the missed traffic. Since our
update operation maintains the invariant that every internal node n
has n.volume below Tsplit, the estimate given by the copy-all rule is
further upper bounded by depth of the node ×Tsplit.

No-copy: this is the other extreme that optimistically assumes the
amount of missed traffic to be 0.

Splitting: the total contribution of missed traffic by a node n is
split among all its children c in proportion to the total traffic for
c. Essentially what this assumes is that the traffic pattern before and
after the creation of a node are very similar, so we can predict missed
traffic by proportionally splitting the traffic trapped at a node to all
its children.

Both the copy-all and the splitting rule can be easily implemented
by traversing the trie in a top-down fashion (as shown in Figure 5).
Detecting HHHs. Once we have an estimate of the missed traffic,
we can combine it with the total amount of traffic we have seen and
use the sum as input for HHH detection. The accuracy clearly de-
pends on which rule we use: copy-all ensures that there is no false
negative but there will be some false positives; no-copy ensures that
there is no false positive but there may be some false negatives; split-
ting will have fewer false positives than copy-all and fewer false
negatives than no-copy.

3.3 Detecting 2-d HHHs via Cross-Producting
We next consider the 2-dimensional HHH problem and develop a

solution by adapting the cross-producting technique [33], which was
originally proposed for solving the packet classification problem [33,
21, 3, 30, 20].

The high level idea of our solution is to execute our 1-dimensional
algorithm described in Section 3.2, for each of the dimensions (IP
destination, and IP source) and to use the length associated with the
longest matching prefix nodes in each of the dimensions as an index
into a data-structure that holds the volume data for the 2-dimensional
HHHs.

In our solution, we maintain three data structures. Two tries are
used to keep track of the 1-dimensional information, a W ×W array
H of hash tables is used to keep track of the 2-dimensional tuples.
A tuple < p1, p2 > comprises of the longest matching prefix in both
the dimensions. The array is indexed by the lengths of the prefixes
p1 and p2. In the case of IPv4 prefixes, for a 1-bit trie-based solution,
W = 32.
Updating the summary data structure. For every incoming
packet we first update the individual 1-dimensional tries, which re-
turn the longest matching prefix in each of the dimensions. This
gives us two prefixes p1 and p2 with lengths l1 and l2 respectively.
Next the two lengths are used as an index to identify the hash ta-
ble H[l1][l2]. < p1, p2 > is then used as a lookup key in the hash
table H[l1][l2]. Subsequently, the volume field of the entry associ-
ated with the key is incremented. This process is repeated for every
arriving packet. Figure 6 illustrates the basic algorithm.

For every packet three update operations are performed, one op-
eration in each of the two 1-dimensional tries, and one operation
in at most one of the hash-tables. This results in a very fast algo-
rithm. The memory requirement in the worst case is O((W 2/ε)2) =
O(W 4/ε2), due to the use of cross-producting. But in practice, we
expect the actual memory requirement to be much lower.
Reconstructing volumes for 2-d internal nodes. To compute the
total volume for the internal nodes, we just need to add the volume
for each element in the hash tables to all its ancestors. This can be
implemented by scanning all the hash elements twice. During the
first pass, for every entry e represented by key < p1, p2 > (where
p1 and p2 represent prefixes) with prefix lengths < l1, l2 > we add



1 void UPDATE CP(key1, key2, value)
2 l1 = UPDATE 1D(trie1, key1, value)
3 l2 = UPDATE 1D(trie2, key2, value)
4 if (l1 ≥ 0 ∧ l2 ≥ 0 )
5 p1 = prefix(key1, l1)
6 p2 = prefix(key2, l2)
7 H[l1][l2].update(< p1, p2 >, value)
8 endif

Figure 6: The update operation for Cross-Producting involves
two 1-dimensional trie updates and one hash table update.

the volume associated with e to its left parent in the hash-map rep-
resented by key < ancestor(p1), p2 > and lengths < l1 − 1, l2 >.
Note that we start from entries with the largest l1 and end with en-
tries with the smallest l1. Then in the second pass, we add the vol-
ume to right parent represented by the key < p1, ancestor(p2) >
and lengths < l1, l2 − 1 >. This time we start from entries with the
largest l2 and end with entries with the smallest l2.
Estimating the missed traffic for each node. The algorithm is
as follows. For each key (recall that the key is made up of the des-
tination prefix and the source prefix) in the hash table traverse the
individual tries to find the prefix represented by the key and return
the missed traffic estimate obtained from the node (by applying ei-
ther the copy-all, or the splitting rule as described in Section 3.2).
The missed traffic is then estimated as the maximum of the two es-
timates returned by the two 1-d tries. Using the maximum preserves
the conservativeness of copy-all.

3.4 Grid-of-Tries and Rectangle Search
The proposed scheme using the Cross-Producting technique is

very efficient in time, however it can be potentially memory inten-
sive in the worst case. We try to overcome this drawback by adapting
two other well known algorithms for two-dimensional packet classi-
fication to our problem: Grid-of-Tries and Rectangle Search [33].

Just like Cross-Producting, both Grid-of-Tries and Rectangle Search
have been applied in the packet classification context. This is not a
coincidence. Conceptually, if we view each node as a rule, then find-
ing nodes on the fringe becomes a packet classification problem.

However most packet classification algorithms are optimized for
a relatively static rule set (through pre-computation), whereas in our
context, we may need to dynamically maintain the fringe set. This
may involve updating n nodes and possibly creating n new nodes.
Despite the clear difference, we are able to adapt Grid-of-Tries and
Rectangle Search to solve our problem. Since both algorithms have
been well documented in the literature, we will only illustrate the ba-
sic idea and highlight the main difference. Interested readers should
refer to [33, 31, 2] for further details on these algorithms.

3.4.1 Grid-of-Tries
The grid-of-tries data structure has been introduced by Srinivasan

et al. [33] as a solution to the 2-dimensional packet classification
problem. The data structure contains two levels of tries. The first
level is associated with the IP destination prefixes in the classifier (a
predefined rule set) while the second level tries are associated with
IP source prefixes in the classifier.

For every valid prefix (P1) node in the first level trie there is a
pointer to a second level trie. The second level trie is created using
all the prefixes (P2) for which there is a rule P1,P2 in the classifier.
For a complete description the reader is kindly directed to [33, 2].
As in the 1-dimensional HHH detection case, our grid-of-tries data
structure is dynamically built based on the packet arrival pattern.
Constructing grid-of-tries for 2-d HHH detection. Each node in
the data structure contains a pointer to each of its children. In addi-
tion each node in the first-level trie maintains a pointer to a second-
level trie and each node in the second-level trie maintains a jump
pointer (details to follow) for fast trie traversal. The thing to note is

that there is only one first-level trie, but multiple second-level tries.
Specifically, there is a second-level trie for each node in the first-
level trie. Each node also stores a volume field associated with the
volume of traffic that corresponds to all the packets having a prefix
equal with the prefix of the node from the moment that the node is
created till the moment when new child nodes are associated with
the node.

Let us assume the existence of a current grid-of-tries structure at
the given moment. New nodes and tries may be appended to the
current grid-of-tries with the arrival of a new packet. First, a longest
matching prefix (LMP) operation is executed in the first-level trie
(using the destination prefix). A fringe node is always identified.
Then same as in the case of our 1-d trie algorithm (described in sec-
tion 3.2) if the volume associated with this node becomes greater
than Tsplit then a new child node is created and associated with this
node. As in the 1-d algorithm, the size of the current packet is used
to initialize the volume field for the newly created child node. In
addition to adding child nodes in the first-level trie, in our 2-d algo-
rithm we must also initialize and associate a new second-level trie
with each one of these newly created children. These second-level
tries when first created are only initialized with a root node. The
size of the current packet is used to increment the volume associated
with the second-level trie that is associated with the new LMP in the
first-level trie.

The arrival of a packet may also result in a situation where the
node represented by the LMP in the second-level trie exceeds Tsplit.
In this case a new child is created and associated with this node
in the second-level trie in a way similar to the 1-dimensional HHH
detection node creation process.

Every packet that arrives may contribute to multiple updates in the
volume field of the nodes in the second dimension tries. To illustrate
the update process let us consider the example in Figure 7, and the
arrival of a packet with destination IP prefix 000∗, and source IP
prefix 111∗ with a size of 4 bytes. Tsplit is set to 10 for this illustra-
tion. Figure 7 represents the grid-of-tries data structure at the time
of the packet arrival. For the moment ignore the dotted lines in the
figure. This arriving packet contributes to a modification in the value
of the volume field in each one of the second-dimension tries asso-
ciated with the LMP node in the first-dimension and all ancestors of
this LMP node. Figure 8 shows the data structure after the update
operation. The nodes that are affected by the update are shown in
grey. To walk through the process, first a LMP operation was done
in the first-level trie using the first prefix 000∗, and the value of the
volume field associated with this LMP node is increment. We next
follow the pointer to the second-level trie. Again we do a LMP op-
eration in the second-level trie using the second prefix 111∗. Our
search terminates with the node for prefix 1∗. If we were to add the
size of the current packet to the volume associated with this node it
would increase beyond Tsplit. We therefore create a new child node
for this node. The size of the current packet is used to initialize the
volume associated with the new child node for prefix 11∗ as this new
node now represents the LMP. We must also update the second level
tries associated with all the less specific prefixes of 000∗ namely
00∗, 0∗ and ∗.

In order to provide a fast update operation, each fringe node in the
second-level trie contains a pre-computed jump pointer. Each fringe
node in a second-level trie T2 for prefix P2 originating at prefix P1

in the first-level trie maintains a jump pointer to the same prefix P2

in a second-level trie that is associated with the direct ancestor of
P1. Note that the jump pointer discussed here can be maintained
dynamically – whenever we create a node in the second-level trie
associated with P1, we also create a node for the second-level trie
associated with the direct ancestor of P1 (if not already present). In
contrast, schemes discussed in the packet classification context are
more complicated and require precomputation [2]. Utilizing jump
pointers allows us to keep the time complexity within O(W ) as dur-
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Figure 7: The grid-of-trie data structure at the time of a packet
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Figure 8: The grid-of-trie data structure after the update oper-
ation. The nodes to which we add the size of the current packet
are shown in grey. The dashed lines represent jump pointers
(which are always between nodes with the same source prefix).

ing the update process we can avoid having to restart the longest
prefix matching problem at the root of every second-level trie (recall
that we need to update every second-level trie associated with all an-
cestors of the longest matching prefix node in the path between the
node and the root of the first-level trie). The dashed lines in Figure 7
and 8 represent jump pointers.

To ensure we only miss εSUM traffic in the worst case, we need
to choose Tsplit = εSUM/(2W ). The space requirement is O(W 2 ·
(2W )/ε) = O(2W 3/ε).

3.4.2 Rectangle Search
Rectangle Search [33] is another classic solution proposed for

2-dimensional packet classification. Like Grid-of-Tries, it can be
adapted to solve the 2-dimensional HHH detection problem.

Conceptually, Rectangle Search does exactly the same thing as
Grid-of-Tries – updating all the elements on the fringe and expand-
ing it whenever necessary. The major difference lies in how the al-
gorithm locates all the elements on the fringe. Grid-of-Tries does
so using jump pointers. In the worst case, it requires 3W memory
accesses, where W is the width of the key. Rectangle Search uses
hash tables instead and requires 2W (hashed) memory accesses in
the worst case.

The basic data structure for Rectangle Search is a set of hash ta-
bles arranged into a 2-dimensional array. More specifically, for each
destination prefix length l1 and source prefix length l2, there is an
associated hash table H[l1][l2]. Initially, only H[0][0] contains an
element < ∗, ∗ > with volume 0.

The update operation for a new tuple < k1, k2 > (with value
v) is illustrated in Figure 3.4.2. We first consider the case when
v is below Tsplit, which is the common case as the total number
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Figure 9: The update operation for rectangle search. The fringe
nodes are in dark shade, and the internal nodes are in light
shade. When a new tuple < k1, k2 > (with value v) arrives, we
start from the bottom left corner and move towards the upper
right corner. Tsplit is set to 10. So a new element gets created.

of elements above the Tsplit is limited. The algorithm starts with
(l1, l2) = (0, W ) (the lower left corner in Figure 3.4.2(c)). During
each step, the algorithm checks if tuple < p1, p2 > belongs to the
hash table H[l1][l2], where pi = prefix(ki, li). If < p1, p2 >
does not exist in H[l1][l2], we simply decrement l2 by 1 (i.e., move
upwards in Figure 3.4.2(c)) and continue. Otherwise, we have found
an element e. If e is a fringe node and e.volume+ v is below Tsplit,
we simply add v to e.volume. Otherwise, either e is already an
internal node (when updating some other descendents of e) or should
become one after this update. In either case, we create a new element
with key < p1, prefix(k2, l2 + 1) > and value v and insert it into
H[l1][l2+1]. In case l2 = 0 and e becomes a new internal node, then
we also expand the fringe towards the right by creating an element
with the key < prefix(k1, l1+1), p2 > and inserting it into H[l1+
1][l2]. We then increment l1 by 1 and continue (i.e., move towards
right in Figure 3.4.2(c)). The algorithm terminates whenever either
l1 > W or l2 < 0. Since during each step either we either increment
l1 by one or decrement l2 by one, the algorithm takes at most 2W−1
steps to terminate.

When v is above Tsplit, the algorithm is virtually identical, except
that for each l1 we need to insert one element with value 0 into each
hash table H[l1][j] (l2 < j < W ) and then one element with value
v into hash table H[l1][W ]. In the worst case, this may create (W +
1)2 new elements. But since the number of elements above Tsplit is
small (below SUM/Tsplit), the amortized cost is quite low.

The pseudo code in Figure 10 illustrates the general idea for the
update operation when v is below Tsplit. The actual implementation
is more detailed due to issues like boundary cases.

Just like Grid-of-Tries, Rectangle Search requires O(2W 3/ε) space
to guarantee an error bound of εSUM .

3.5 Lazy expansion
In all the algorithms described so far, whenever we receive an item

< k1, k2 > with value v above Tsplit, we will create state for all its
ancestors < p1, p2 > if they do not already exist. Such express
expansion of the fringe has the advantage that it leads to less missed
traffic for the fringe nodes and thus higher accuracy. However, it also
requires a lot of space, especially when Tsplit is very small and there
are a large number of items with value above it (this can happen, for
instance, when the maximum depth of the trie is large). Here we



1 void UPDATE RS(k1, k2, v)
2 l1 = 0; l2 = W ; // lower left corner
3 while ( l1 ≤ W ∧ l2 ≥ 0 )
4 p1 = prefix(k1, l1); p2 = prefix(k2, l2)
5 e = H[l1][l2].lookup(< p1, p2 >)
6 if ( undefined(e) )
7 l2−− // moving upwards
8 else
9 if (e.fringe ∧ e.volume + v < Tsplit)

10 // e remains a fringe node
11 e.volume+= v
12 else // e becomes internal
13 insert an element into H[l1][l2 + 1]
14 if (e.fringe ∧ l2 = 0)
15 insert an element into H[l1 + 1][l2]
16 endif
17 e.fringe = false
18 endif
19 l1++ // moving towards right
20 endif
21 endwhile

Figure 10: The update operation for Rectangle Search.

introduce a simple technique, lazy expansion to significantly reduce
the space requirement.

The basic idea for lazy expansion is very simple. Whenever we
receive a large item with value v satisfying v/Tsplit ∈ [k−1, k], we
split it into k smaller items, each with value v/k < Tsplit. We then
perform k separate updates. Since each item is below Tsplit, it will
lead to the creation of no more than W elements. So long as k < W ,
we are guaranteed to reduce space requirement while still achieving
the same deterministic worst-case accuracy guarantee. Meanwhile,
we can modify the update operation to batch k updates together (by
taking into account the multiplicities of the item). This avoids any
increase in the update cost.

3.6 Compression
So far all our algorithms assume a fixed value for SUM . For

many online applications, however, it may be desirable to set the
threshold as a fraction of the actual total traffic volume for the cur-
rent interval, which is not known until all the traffic is seen. Our
strategy is to first use a small threshold based on some conservative
estimate of the total traffic (i.e., a lower bound), and increase the
threshold when a large amount of additional traffic is seen. Note that
as we increase the threshold, we need to remove all the nodes that
should no longer exist under the new threshold. We refer to this as
the compression operation.

The compression algorithm for the 1-d case is illustrated in Fig-
ures 11 and 12. We maintain a lower bound and an upper bound of
the actual sum (SUM ). Whenever the actual sum exceeds the up-
per bound, we perform the compression operation and then double
the upper bound. The compression operation simply walks through
the trie in a top down manner and removes the descendents of all
the fringe nodes (according to the new threshold). The algorithms
are more involved in 2-d case, but the high-level idea is very simi-
lar. We omit them for the interest of brevity. We make the following
comments:

• In the worst case, compression can double the space require-
ment. It also adds some computational overhead. But the
number of compression operations only grows logarithmically
with the value of SUM . In practice, we can often get a rea-
sonable prediction of the actual sum based on past history. So
typically we just need a very small number of compressions.

• Compression can potentially provide a better accuracy bound.
In particular, a node can potentially get created sooner than
with a larger threshold, so the amount of missed traffic can
be lower (but in the worst case, the accuracy guarantee still

1 initialization:
2 SUML = lower bound of actual SUM

3 SUMU = 2 · SUML

4 Tsplit = ε · SUML/W
5 upon each update:
6 if (SUM ≥ SUMU)
7 SUML = SUM

8 SUMU = 2 · SUM

9 Tsplit = ε ∗ SUML/W
10 COMPUTE TOTAL 1D(root)
11 COMPRESS 1D(root, Tsplit)
12 endif

Figure 11: We maintain a lower bound and an upper bound of
the actual total traffic volume (SUM ) and perform compression
whenever the actual SUM exceeds the upper bound.

1 // assuming COMPUTE TOTAL 1D has been called
2 void COMPRESS 1D(n,thresh)
3 if ( n.volume + n.subtotal < thresh )
4 n.fringe = true
5 n.volume = n.volume + n.subtotal
6 n.subtotal = 0
7 delete all descendents of n
8 else
9 for (each child c)

10 COMPRESS 1D(c, thresh)
11 endfor
12 endif

Figure 12: Compression is done in a top-down manner.

remains the same). We will demonstrate such effects later in
Section 6.

• Compression also makes it possible to aggregate multiple data
summaries (possibly for different data sources or created at
different times or locations). For example, in the 1-d case, to
merge two tries, we just need to insert every node in the sec-
ond trie into the first trie, update the total sum and detection
threshold, and then perform the compression operation (us-
ing the new detection threshold). Such aggregation capability
can be very useful for applications like detecting distributed
denial-of-service attacks.

3.7 5-d HHH detection for network anomaly
detection

We can use Rectangle Search and Grid-of-Tries as a building block
to solve the general n-dimensional HHH detection problem and al-
ways result in a factor of W improvement over the brute-force ap-
proach. However, this may still be too slow for many applications.

Fortunately, for many practical applications, we do not need to
deal with general HHH detection in all the fields. This is precisely
the case for network anomaly detection, our primary motivating ap-
plication. In this context, we need to handle 5 fields: (src ip, dst ip,
src port, dst port, protocol). For protocol, we would typically re-
quire exact match (TCP, UDP, ICMP, others). For source or desti-
nation port, we can construct some very fat and shallow tree. For
instance, we can use a 3-level tree, with level 0 being * (i.e., don’t
care), level 1 being the application class (Web, chat, news, P2P, etc.),
and level 2 being the actual port number. In addition, we typically
only need to match on one of the port numbers (instead of their com-
bination). Finally, we typically only care about port numbers for
TCP and UDP protocols. Putting all these together, it often suffices
to just consider the following 6 combinations in the context of net-
work anomaly detection. For each combination, we have an array of
grid-of-tries. So the update operation involves updating 6 tries.



src port * TCP/UDP
src app * TCP/UDP

* dst port TCP/UDP
* dst app TCP/UDP
* * protocol
* * *

4. APPLICATION TO SCALABLE CHANGE
DETECTION

Change detection is a major component for statistical anomaly de-
tection. The standard techniques for change detection include differ-
ent smoothing techniques (such as exponential averaging), the Box-
Jenkins ARIMA modeling [6, 7, 1] and wavelet-based [5, 4]. In the
context of network applications, however, one often needs to deal
with tens of millions of network time series and it is infeasible to
apply standard techniques on per time series basis. To address the
challenge, Krishnamurthy et al. [26] propose to perform scalable
change detection on massive data streams through the use of sketch,
a probabilistic data summary technique. Sketch-based change detec-
tion works very well when there is only a single fixed aggregation
level. But if we want to apply it to find changes at all possible ag-
gregation levels, we have to take a brute-force approach and run one
instance of sketch-based change detection for every possible aggre-
gation level, which can be prohibitive.

In this section, we demonstrate how we can perform scalable change
detection for all possible aggregation levels by using our HHH de-
tection algorithms as a pre-filtering mechanism. The basic idea is
to extract all the HHH traffic clusters using a small HHH thresh-
old φ in our HHH detection algorithms, reconstruct time series for
each individual HHH traffic cluster, and then perform change detec-
tion for each reconstructed time series. Intuitively, if a cluster never
has much traffic, then it is impossible to experience any significant
(absolute) changes. So we expect our approach to capture most big
changes so long as the HHH threshold φ is sufficiently small. We
show later in Section 6.2 that this is indeed the case.

A major issue we need to address is how to deal with the recon-
struction errors introduced by our summary data structure. The pic-
ture is further complicated by the increasing use of sampling in net-
work measurements, which introduces sampling errors to the input
stream. Lack of effective mechanisms to accommodate such errors
can easily lead to false alarms (i.e., detection of spurious changes).
Our change detection method can accommodate both types of errors
in a unified framework. It is quite general and can be applied to any
linear forecast model, including various smoothing techniques and
Box-Jenkins ARIMA modeling.

Below we present our method in the context of one specific change
detection method: Holt-Winters, which has been successfully ap-
plied in the past for anomaly detection [8]. Given a time series {Xi},
the (non-seasonal) Holt-Winters forecast model maintains a sepa-
rate smoothing baseline component Si and a linear trend component
Ti. There are two exponential smoothing parameters α ∈ [0, 1] and
β ∈ [0, 1].

Si =



α Xi−1 + (1 − α) (Si−1 + Ti−1) i > 2
X1 i = 2

(1)

Ti =



β (Si − Si−1) + (1 − β) Ti−1 i > 2
X1 − X0 i = 2

(2)

The forecast is simply Fi = Si + Ti. The forecast error is then
Ei = Xi − Fi. Big changes can be detected by looking for data
points that significantly deviate from the forecast, i.e., with forecast
errors Ei exceeding the (time-varying) detection threshold DTi. For
online change detection, it is common to maintain an exponentially
weighted moving average of |Ei| and set DTi to be some multiple
of this smoothed deviation.

4.1 Extracting time series
Given a traffic cluster (with true traffic volume Xi in interval i),

our summary data structure produces three different values by us-
ing different rules to calculate the amount of missed traffic: a lower
bound XL

i (using the no-copy rule), an upper bound XU
i (using the

copy-all rule), and an estimate XS
i (using the splitting rule). Our ex-

perience with HHH detection suggests that XS
i often gives the most

accurate estimate (see Section 6.1). Therefore, we use time series
{XS

i } as the input for the Holt-Winters forecast model to obtain ES
i

and DT S
i , which are estimates for the true forecast errors Ei and

detection thresholds DTi, respectively. We also use XL
i and XU

i

to obtain tight bounds on the true forecast errors Ei as shown in
Section 4.3.

4.2 Dealing with missing clusters
One important issue we need to deal with is the presence of miss-

ing clusters. A cluster may not appear in the summary structure for
every interval. When this happens, we would still like to estimate
its associated traffic volume, otherwise there will be a gap in the re-
constructed time series. Fortunately, our summary structure allows
us to conveniently obtain such estimates. For example, given a 2-d
missing cluster with key < p1, p2 >, conceptually all we need to do
is to insert a new element with key < p1, p2 > and value 0 into the
summary data structure, which will result in one or more newly cre-
ated fringe nodes. We can then obtain estimates for the first newly
created fringe node and use them as the corresponding estimates for
< p1, p2 >. After this, we can then remove all the newly created
nodes through compression. Note that in the final implementation,
we do not need to actually create the new fringe nodes and then re-
move them – we just need to do a lookup to find the first insertion
position.

4.3 Obtaining bounds on forecast errors
Let the use of superscript L and U on a variable denote the lower

and upper bounds for the variable, respectively. For example, XL
i

denotes the lower bound for Xi. Below we show how to compute
EL

i and EU
i , the bounds for the true forecast errors Ei.

A naive solution. At the first glance, it seems rather straightfor-
ward to compute EL

i and EU
i —we can directly apply (1) and (2)

to recursively compute bounds for Si, Ti and then use them to form
bounds for Fi and Ei. More specifically, we have

SU
i = α XU

i−1 + (1 − α) (SU
i−1 + T U

i−1) (3)

SL
i = α XL

i−1 + (1 − α) (SL
i−1 + T L

i−1) (4)

T U
i = β (SU

i − SL
i−1) + (1 − β) T U

i−1 (5)

T L
i = β (SL

i − SU
i−1) + (1 − β) T L

i−1 (6)

F U
i = SL

i + T L
i F L

i = SU
i + T U

i (7)

EU
i = XU

i − F L
i EL

i = XL
i − F U

i (8)

Unfortunately, reconstruction errors can accumulate exponentially
with this approach and cause the resulted bounds EL

i and EU
i to

be too loose to be useful. This is evident in Figure 13(a), which
shows the forecast error bounds produced by the naive solution when
XL

i = 0 and XU
i = 1.

Our solution. We can obtain tight bounds by directly represent-
ing Si and Ti as linear combinations of Xj (j ≤ i) and then in-
corporating the bounds XL

i and XU
i . More specifically, let Si =

Pi−1
j=1 s[i, j]Xi and Ti =

Pi−1
j=1 t[i, j]Xj . From (1) and (2), we can
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Figure 13: Forecast error bounds when XL
i = 0, XU

i = 1 (α =
0.5, β = 0.25)

compute s[i, j] and t[i, j] recursively as follows:

s[i, j] =



α j = i − 1
(1 − α) (s[i − 1, j] + t[i − 1, j]) j < i − 1

t[i, j] = β (s[i, j] − s[i − 1, j]) + (1 − β) t[i − 1, j]

We can prove by induction that s[i, j] = s[i − 1, j − 1] and
t[i, j] = t[i − 1, j − 1] for ∀j > 2 (proof omitted for the inter-
est of brevity). So when we increment i, we only need to compute
s[i, j] and t[i, j] for j ≤ 2. Once we have s[i, j] and t[i, j], let
f [i, j] = s[i, j]+ t[i, j]. We then compute the forecast error bounds
EL

i and EU
i as

EU
i = XU

i −
X

j: f [i,j]>0

f [i, j] · XL
j −

X

j: f [i,j]<0

f [i, j] · XU
j

EL
i = XL

i −
X

j: f [i,j]>0

f [i, j] · XU
j −

X

j: f [i,j]<0

f [i, j] · XL
j

As shown in Figure 13(b), our solution yields very tight bounds.
Note that the above solution requires keeping the entire interval

series [XL
i , XU

i ]. Our solution is simply to ignore the remote past.
This is reasonable as the use of exponential smoothing means the
remote past has very little effect on predicting the future. That is,
f [i, j] becomes very small when i − j is sufficiently large. As a
result, we only need to keep state for the most recent few intervals
for each flow.

4.4 Testing for significant changes
Recall that in Section 4.1 we apply time series analysis on XS

i

to compute ES
i and DT S

i ; in Section 4.3 we show how to com-
pute the forecast error bounds. To accommodate the reconstruc-
tion errors introduced by the summary data structure, our detec-
tion criteria combines both DT S

i and the forecast error bounds EL
i ,

EU
i . More specifically, we report a significant change whenever

the two intervals [EL
i , EU

i ] and [−DT S
i , DT S

i ] do not overlap, i.e.,
[EL

i , EU
i ] ∩ [−DT S

i , DT S
i ] = ∅.

4.5 Dealing with sampling errors
Network measurements are increasingly subject to sampling. This

introduces inherent variability into the traffic metrics under study.
This section describes how the effects of sampling variability can be
accommodated within our framework.

The idea is to represent each sampled measurement in the form
(key, value, var) where value is an unbiased usage esti-
mate (e.g. of bytes or packets in a flow) arising from sampling, and
var is a sampling variance associated with the estimate. In this
framework, the values to be estimated are considered as fixed rather
than statistical quantities. Conditioned upon these values, the sam-
pling decisions can be assumed independent. Hence when measure-
ments are aggregated, the variance of the aggregate is taken to be the
sum of the individual variances.

The aggregate variance can then be used to attach error bars to
time series of a heavy hitters aggregate. We just need to maintain an
estimate of the variance. This is easy because the variance can be
updated in exactly the same way as the value:

whenever n.value = n.value + value
we do n.var = n.var + var

In the end, besides obtaining XL, XU, XS for each cluster, we also
have the corresponding estimates for aggregated sampling variance:
V L, V U, V S.

We can then replace XL and XU with XL
∗ − s

“

V U
”0.5

and

XU
∗ = XU + s

“

V U
”0.5

, respectively. We can make s sufficiently
large so that the probability for any actual value to fall outside the
interval [XL

∗ , XU
∗ ] is extremely low (for example, using the 6 sigma

rule if we the sampling error is close to Gaussian). We can then use
XL

∗ and XU
∗ together with XS in our earlier analysis.

Due to space limit, we do not explicitly show how the estimate
value and its variance var are calculated when working with sam-
pled flow statistics. Details can be found in [16, 15].

5. EVALUATION METHODOLOGY
We evaluate our HHH detection algorithms along a number of

dimensions to measure their accuracy and resource (space and time)
requirements. We use the following accuracy metrics.

• False Positive (FP ) measures the number of entities that the
algorithm incorrectly identifies as Hierarchical Heavy Hitters.

• False Negative (FN ) measures the number of Hierarchical
Heavy Hitters entities that the algorithm fails to identify as
such.

• Error estimate (ES) for a HHH cluster is measured as the dif-
ference between the actual volume and the volume estimated
by the algorithm.

For the accuracy experiments, we compute the FP , FN and ES
values as follows: an offline evaluation computes the exact volumes
for every multidimensional cluster, and given a value of φ, deter-
mines the true set of HHH clusters and their actual volumes. Exam-
ining the differences in set membership with the HHH set output by
the online HHH detection algorithms yields the FP and FN . For
each correctly identified HHH cluster, the difference between the
actual and estimated volume yields ES.

We use the following resource metrics:



• Space Overhead : measured in terms of the number of entries
in the two types of data structures involved: (a) array and (b)
hash table.

• Computation Overhead : measures the runtime overheads of
different HHH detection algorithms.in terms of the following
three types of operations: (a) lookup/update, i.e., get an entry
from an array (via array indexing) or a hash table (via a hash
table lookup) and possibly update its value; (b) insertion, i.e.,
inserting new entries into an array or a hash table; (c) deletion,
i.e., deleting entries from an array or a hash table.

We use the following naming conventions for the different 2-d
HHH detection algorithms: Cross Producting (cp), Grid-of-Tries
(got), Rectangle Search (rs). cp∗, got∗, and rs∗ are the corre-
sponding variants with the lazy expansion optimization enabled. We
compare these techniques against the three baseline HHH detection
algorithms described in Section 3.1. For the sketch-based technique
sk, recall that the accuracy bound depends on both H and K. In the
evaluations, we set K = 10/ε and

H = log(SUM · (1 + 32/gran)2/δ)/ log(Kε),

where gran is the granularity we are using (e.g., gran = 8 indicates
we only consider prefix lengths 0, 8, 16, 24 and 32), and SUM is
the total traffic volume. This ensures that with probability 1 − δ the
method gives no false positives (the analysis is similar to the proof
of Theorem 6 in [14]). In our evaluation we set δ = 0.01. We also
tested a less expensive solution sk2 that uses H = 2.

5.1 Dataset description
We use multiple large netflow traces collected from a tier-1 ISP to

drive the evaluations of our algorithms (see Table 1).

trace duration #routers # records volume
ISP-100K 3 min 1 0.10 M 66.48 MB
ISP-1day 1 day 2 332.26 M 223.51 GB
ISP-1mon 1 month 2 7457.07 M 5.17 TB

Table 1: Data Description: Network Traces used

6. RESULTS

6.1 Evaluation of HHH detection

6.1.1 Resource Efficiency
We first compare the amortized runtime costs of different HHH

detection algorithms. Figure 14 compares the average number of op-
erations for each newly arrived item using different algorithms and
granularities on trace ISP-100k. Clearly, all our algorithms signifi-
cantly outperform the brute-force solutions by orders of magnitude.
In addition, for high resolution (i.e., gran = 1), the use of lazy ex-
pansion further reduces the runtime costs significantly for both got
and rs. This is not surprising, as lazy expansion can significantly re-
duce the number of nodes to be created, resulting in a much smaller
summary structure and thus runtime costs.

We next evaluate the space requirements. To better illustrate the
behavior of these algorithms under different granularities, we nor-
malize the space cost by 1/ε · (32/gran)2, the maximum possible
number of flows whose traffic volume exceeds εSUM .

The results are summarized in Figures 15(a)-(b). Across both
granularities, sk2 has the highest space requirement. Among the
proposed algorithms, the pair got and rs have very similar space re-
quirements, as do their counterpart pair got∗ and rs∗ that use lazy
expansion.

For high resolution (gran = 1, see Figure 15(a)), got and rs
have substantially higher space requirements than the existing lc al-
gorithm. However, the use of lazy expansion in got∗ and rs∗ results
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Figure 14: Amortized runtime costs for different algorithms.
The total sum is assumed to be given in advance. The cost for
sk (not shown) is 5.5 times more than sk2 due to the use of 11
instead of 2 tables per sketch.

in substantially smaller space requirements that are comparable to
that for lc. For example, the space requirement for rs∗ is just 14%
of that for rs. Cross-Producting has the least overhead, both with
and without lazy expansion.

For the low resolution scenario (gran = 8, see Figure 15(b)),
lazy expansion does not have any noticeable impact on the space
usage of the proposed algorithms, and lc has the least space require-
ment. Note that the values in Figures 15(a)-(b) represent only con-
servative estimates of the space usage, as they depict only the space
required by the hash table or array entries required in each approach,
and ignore any auxiliary overhead associated with maintaining those
data structures. For instance, rs, rs∗ and lc use hash tables and
thus require additional space to maintain the keys. An array-based
approach like got or got∗ does not have this additional overhead.
Hence the actual difference between the space requirement of got∗

and lc is smaller than shown in Figure 15(b). A more accurate space
comparison should also account for these extra overheads.

The above plots demonstrate that lazy expansion results in both
low space usage and low computation overhead. In the remainder of
the evaluations, we shall use the lazy expansion variants (got∗, rs∗,
cp∗) of our proposed algorithms.

6.1.2 Accuracy
A number of factors determine the accuracy of the proposed algo-

rithms – we consider each of them in turn. Note that under the same
situation, got and rs always provide identical estimates of the count
associated with a cluster, and hence have identical accuracy (FN ,
FP and ES) measures. In the following accuracy evaluations, we
therefore only present results for got∗, with the knowledge that the
accuracy-related conclusions for got∗ apply identically to rs∗.

First we consider the impact of the three heuristics copy-all, no-
copy, and splitting (introduced in Section 3.2) for estimating the
overall traffic corresponding to a cluster. Figures 16(a)-(b) com-
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Figure 15: Normalized space costs of different algorithms. (nor-
malized space cost = total space cost / [1/ε · (32/gran)2]). The
cost for sk (not shown) is 5.5 times more than that for sk2.
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Figure 16: Comparison between 3 detection criteria

pare the accuracy for the three heuristics for the 2-d HHH detec-
tion techniques got∗ and cp∗, respectively, as a function of the HHH
threshold φ, for gran = 1. Recall that by definition, copy-all has
FN = 0, and no-copy has FP = 0 (the corresponding plots are

omitted from the figures for better readability). The plots show that
across all combinations of HHH detection algorithm and missing
traffic estimation heuristic, both the FP and FN values are higher
for smaller φ and and decrease for larger φ. FP for copy-all is sub-
stantially higher than for the other 2 heuristics, for both got∗ and
cp∗, particularly for small φ. Note also that no-copy has the worst
FN among the three copy schemes. Given the low FP and FN
for splitting, in the remainder of the evaluations, we focus on this
heuristic.
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Figure 17: Accuracy without compression

We next examine the impact of the compression technique (see
Section 3.6) on the accuracy. Figures 17(a)-(b) respectively plot the
FN and FP as a function of φ, for different HHH detection algo-
rithms, when compression is not used. Figures 18(a)-(b) present the
corresponding plots when compression is used. Note that the Lossy
Count based baseline HHH detection algorithm lc can be configured
to detect HHHs using either a lower bound estimate (which ensures
FP = 0), or an upper bound estimate (which ensures FN = 0)
of the actual volume of each HHH; we use lc-noFP and lc-noFN
to refer to these two configurations of lc, respectively. The set of
plots reveal that compression significantly improves both and FN,
for both cp∗ and got∗. The cause of this behavior can be traced to
the way compression works. Recall that the compression technique
begins with a small initial estimate of the total volume – its expan-
sion threshold is therefore smaller initially. Hence cp∗ (also got∗)
with compression may create a node for a HHH cluster and begin
accounting for its traffic at an earlier instant, and therefore miss less
counts for the cluster. This contributes to the increased accuracy. A
second point to take away from the graphs is that the FP and FN
values are low and comparable for the baselines and the proposed
schemes, even without compression.

The detailed evaluations above are all based on the ISP-100K
trace. We next use the much larger one month long trace ISP-1mon
to measure the accuracy of got∗ across the one-month period. We
present the cummulative distribution of the FP and FN for two dif-
ferent routers in Figures 19(a)-(b). The plots show that the bulk of
the FP and FN values are very low, for both routers.
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Figure 18: Accuracy with compression.

Algorithm Normalized Error Estimates (%)
Max. 99 percentile 90 percentile Med.

sk 4.30 0.64 0.06 0.00
sk2 239.83 101.27 2.15 0.00
lc-noFN 75.32 41.48 16.25 2.01
lc-noFP 97.67 71.70 30.12 0.28
got∗-split 7.26 3.28 1.52 0.40

Table 2: Normalized Error Estimates (absolute value) for the
one month trace ISP-1mon (gran = 1).

The FP and FN metrics measure an algorithm’s ability to cor-
rectly identify HHH clusters. We are also interested in the accuracy
of the the estimated volumes for the HHH clusters. Table 2 shows
the empirical distribution of the absolute value of ES (defined in
Section 5) normalized by 1/ε, for gran = 1. The values indicate
that got with lazy expansion and compression has significantly lower
ES than lc-noFN, lc-noFP and sk2. Only the baseline algorithm sk
seems to have slightly better ES values that got∗. However, the com-
putation cost for sk is significantly higher (recall Figure 14).

In summary, the key conclusions from the HHH evaluations are:
(i) The techniques lazy expansion, splitting and compression are ef-
fective and should be used. (ii) compared to the baseline algorithms,
the proposed algorithms got∗, cp∗, and rs∗ have orders of magni-
tude smaller run-time costs, comparable or smaller space require-
ments, and comparable FN and FP values. Also the algorithm got
had substantially lower volume reconstruction error values than the
baselines – the only exception being sk, for which got had slightly
worse ES.

6.2 Evaluation on change detection
Figure 20 summarizes the overlap percentage between top N biggest

changes reported by online and offline algorithms. The overlap ratio
is always above 97% even for very large N . For N below 100, the
top N lists produced by the two algorithms often differ by no more
than one element.

Figure 21 illustrates the effects of smart sampling [16, 15] on ac-
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Figure 19: Cummulative distribution of error ratios over an en-
tire month (algo = got∗, ε = 0.001).
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Figure 20: Overlap between top N biggest changes reported by
online and offline algorithms for router2 in trace ISP-1day. On-
line algorithms uses got* with compression and lazy expansion
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curacy. With a sampling threshold of 300KB, we are able to reduce
the number of flow records to be processed by a factor of 12. Yet the
accuracy still consistently remains above 90%.

7. CONCLUSIONS

In this paper, we present several efficient streaming algorithms
for detecting multidimensional hierarchical heavy hitters. These al-
gorithms are based on adaptive synopsis data structures that hierar-
chically organize the traffic into its most active components. The al-
gorithms are much more efficient than existing algorithms, and pro-
vide data-independent deterministic accuracy guarantees on traffic
estimates for the multidimensional hierarchical heavy hitters. Our
motivating application is network anomaly detection, and we use ro-
bust techniques to detect changes among such heavy hitters. Our



 90

 92

 94

 96

 98

 100

 0  50  100  150  200

ov
er

la
p 

pe
rc

en
ta

ge
 (%

)

top N

sample thresh = 20KB
sample thresh = 50KB

sample thresh = 200KB
sample thresh = 300KB

Figure 21: Overlap between top N biggest changes reported
by online and offline algorithms for router2 in trace ISP-1day.
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processed by a factor of 12).

techniques can accommodate variability due to sampling that is in-
creasingly used in network measurement. Evaluation using real In-
ternet traces collected at a Tier-1 ISP suggests that these techniques
are remarkably accurate and efficient. Our results are promising and
point to the potential of using our algorithms as a building block
for network anomaly detection and traffic measurement in large net-
works. We are developing a prototype anomaly detection system
that embodies the algorithms developed in this paper.
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