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Abstract— Traffic matrices are required inputs for many IP  inference problem is more challenging at finer levels of itleta
network management tasks, such as capacity planning, traffic the finest so far considered being router-to-router.
engineering and network reliability analysis. However, it IS pqtimating traffic matrices from link loads is a non-trivial
difficult to measure these matrices directly in large operational IP L .
networks, so there has been recent interest in inferring traffic na- task. The Cha”?nge_“es in the |||-p08€_d nature of the ml
trices from link measurements and other more easily measured for @ network with/V ingress/egress points we need to estimate
data. Typically, this inference problem is ill-posed, as it involves the N2 origin/destination demands. At a PoP lev¢lis in the
significantly more unknowns than data. Experience in many tens, at a router leveéV may be in the hundreds, at a link level
scientific and engineering fields has shown that it is essential N may be tens of thousands, and at the prefix léVehay be
to approach such ill-posed problems via “regularization”. This ’
paper presents a new approach to traffic matrix estimation using of th_e order O_f one hl_Jndred t_housand. H_owever, the number
a regularization based on “entropy penalization”. Our solution Of pieces of information available, the link measurements,
chooses the traffic matrix consistent with the measured data remains approximately constant. One can see the difficulty —
that is information-theoretically closest to a model in which for large N the problem becomes massively underconstrained.
source/destination pairs are stochastically independent. It applies There is extensive experience with ill-posed linear ingers

to both point-to-point and point-to-multipoint traffic matrix . . .
estimation. We use fast algorithms based on modern convex problems from fields as diverse as seismology, astronondy, an

optimization theory to solve for our traffic matrices. We evaluate medical imaging [8], [9], [10], [11], [12], all leading to ¢h
our algorithm with real backbone traffic and routing data, and  conclusion that some sort of side information must be brbugh

demonstrate that it is fast, accurate, robust, and flexible. in, with results that may be good or bad depending on the

Index Terms— Traffic matrix estimation, information theory,  quality of this information. All of the previous work on IP
minimum mutual information, regularization, traffic engineering,  traffic matrix estimation has incorporated prior infornoati

SNMP, point-to-point, point-to-multipoint, failure analysis. for instance, Vardi [1] and Tebaldi and West [2] assume
a Poisson traffic model, Cao et al. [3] assume a Gaussian
. INTRODUCTION traffic model, Zhang et al. [5] assume an underlying gravity

Traffic matrices which specify the amount of traffic be-model, and Medina et al. [4] assume a logit-choice model.
tween origin and destination in a network, are required impuEach method is sensitive to the accuracy of this prior: for
for many IP network management tasks, such as capadigtance, [4] showed that the methods in [1], [2], [3] were
planning, traffic engineering and network reliability arsi. sensitive to their prior assumptions, while [5] showed thatr
However, it is often difficult to measure these matricesafiyje  Method improved if the prior (the so called gravity modelswa
in large operational IP networks. So there has been a surgedgferalized to reflect real routing rules more accurately.
interest in inferring traffic matrices from link load statis [N contrast, this paper starts from a regularization foanul
and other more easily measured data [1], [2], [3], [4], [5]. tion of the problem drawn from the field of ill-posed problems

Traffic matrices may be estimated or measured at varyid§d derives a prior distribution that is most appropriaténts
levels of detail [6]: between Points-of-Presence (PoP§) [problem. Our prior assumes source/destination indepe&eden
routers [5], links, or even IP prefixes [7]. The finer grainedntil proven otherwise by measurements. The method then
traffic matrices are generally more useful, for examplehim t Plends measurements with prior information, producing the
analysis of the reliability of a network under a componerconstruction closest to independence, but consistetit wi
failure. During a failure, IP traffic is rerouted to find thethe measured data. The method proceeds by solving an
new path through the network, and one wishes to test gptimization problem that is understandable and intuifive
this would cause a link overload anywhere in the networRPpealing. This approach allows a convenient implemertati
Failure of a link within a PoP may cause traffic to reroute vigSing modern optimization software, with the result that th
alternate links within the PoP without changing the inteRP algorithm is very efficient.
routing. Thus to understand failure loads on the network weAn advantage of the approach used in this paper is that

must measure traffic at a router-to-router level. In gen¢nal it also provides some insight into alternative algorithifer
instance, the simple gravity model of [5] is equivalent to
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multipoint demand matrices. Our method opens up furthkrcal traffic matrices as suggested in [16]. Both result in
opportunities for extensions, given the better understand improvements in accuracy, however, we found in contrast to
of the importance of prior information about network traffi¢4] that the order in which rows of the traffic matrix are
and how it can be incorporated into the process of findingcluded does matter — adding rows in order of the largest
traffic matrices. For instance, an appealing alternativier pr row sum first is better than random ordering.
generation procedure is suggested in [4]. Alternativeyy t Finally, the results of our evaluation of the algorithm for
Bayesian method of [2] can be placed into the optimizatigsoint-to-multipoint demand matrices are interesting imtth
framework here, with a different penalty function, as caillel these estimates are less accurate than the correspondittg po
methods of [1], [3]. to-point results, for the very good reason that this estonat
Our approach also allows us to estimate both point-tBfoblem contains more ambiguity. However, we also show
point traffic matrices and point-to-multipoint demand rieats. I this paper that the results are far more accurate (than
Prior work on estimating traffic matrices from link data hafoint-to-point results) when used in real applicationshsas
concentrated on the point-to-point traffiee., the traffic from link failure analysis. In fact, the point-to-multipointtenates
a single source to a single destination. While point-to-poiRroduce astoundingly accurate link failure estimatesewise,
traffic matrices are of great practical importance, they af [17], we have also demonstrated that the resulting acgura
not always enough for applications (as shown in [7]). Undét Well within the bounds required for another operatioaaks
some failures the traffic may actually change its origin arl@P route optimization.
destination; its network entry and exit points. The point- TO summarize, this paper demonstrates a specific tool
to-point traffic matrix will be altered, because the poinithat works well on large scale point-to-point and point-to-
to-point traffic matrix describes the “carried” load on théﬂU'tipOint traffic matrix estimation. The results show thiat
network between two points. In contrast, tiemand matrix iS important to add appropriate prior information. Our prio
describes the “offered” traffic demands on the IP network afigformation is based on independence-until-proven-otrssr,
is therefore invariant under a much larger class of charigess. Which is plausible, computationally convenient, and ressiri
demand matrix is inherently point-to-multipoint in the sen accurate estimates.
that traffic coming into the network from a customer, may The paper begins in Section Il with some background:
often depart the network via multiple egress points in otder definitions of terminology and descriptions of the types ated
reach its final destination. To understand this, consideckgt available. Section Il describes the regularization appio
entering a backbone ISP through a customer link, destineged here, and our algorithm, followed by Section IV, the
for another backbone ISP’s customer. Large North-Americ&valuation methodology, and Section V, which shows the
backbone providers typically are connected at multipleipge algorithm’s performance on a large set of measurements from
points. Our packet could reach its final destination thromgyy an operational tier-1 ISP. Section VI examines the algorith
of these peering links; the actual decision is made through@bustness to errors in its inputs, and Section VII shows the
combination of Border Gateway Protocol (BGP) and Interidtexibility of the algorithm to incorporate additional infoa-
Gateway Protocol (IGP) routing protocols. If the normaltextion. Section VIII shows the results for point-to-multipoi
link fails, then the routing protocols would choose a difier estimation, and Section IX demonstrates the utility of the
exit point. In a more complicated scenario, the recipierthef point-to-multipoint results in reliability analysis. Wewclude
packet might be multi-homed — that is, connected to motBe paper in Section X.
than one ISP. In this case the packet may exit the first ISP
through multiple sets of peering links. Finally, even sig|
homed customers may sometimes be reached through multiple
inter-AS (Autonomous System) paths. A. Network

We test the estimation algorithm extensively on network an |p network is made up of routers and adjacencies
traffic and topology data from an operational backbone ISf2tween those routers, within a single AS or administrative
(AT&T’s North American IP network). The results show thafjomain. It is natural to think of the network as a set of
the algorithm is fast, and accurate for point-to-pointficaf nodes and links, associated with the routers and adjacencie
matrix estimation. We also test the algorithm on topologiggs shown in Figure 1. We refer to routers and links that are
generated through the Rocketfuel project [13], [14], [15] twholly internal to the network aBackboneRouters (BRs) and
resemble alternative ISPs, providing useful insight inteeve |inks and refer to others @&dgeRouters (ERs) and links.
the algorith_m will wprk w_eII. One interesting side resglt IS One could compute traffic matrices with different levels
that there is a relationship between the network traffic apgd aggregation at the source and destination end-points, fo
topology that is beneficial in this estimation problem. Wgoal instance, at the level of PoP to PoP, or router to router,ndr i
test the sensitivity of the algorithm to measurements 8/rogg |ink [6]. In this paper, we are primarily interested in com
dgmpnstrating that the glgorithm is highly robust to eramd puting router to router traffic matrices, which are apprafei
missing data in the traffic measurements. for a number of network and traffic engineering applicatjons

We further examine some alternative measurement strategged can be used to construct more highly aggregated traffic
that could benefit our estimates. We examine two posséstliti matrices (e.g. PoP to PoP) using topology information [63. W
the first (suggested in [4]) is to make direct measurementgy further specify the traffic matrix to be between BRs, by
of some rows of the traffic matrix, the second is to measuaggregating up to this level.

Il. BACKGROUND
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The problems with the finer time-scale data make time-series
approaches to traffic matrix estimation more difficult.

We use flow level data in this paper for validation purposes.
This data is aggregated by IP source and destination address
and port numbers at each router. This level of granularity is
sufficient to obtain a real traffic matrix [7], and in the fugur
such measurement may provide direct traffic matrix measure-
ments, but at present limitations in vendor implementation
prevent collection of this data from the entire network.

Peers

Peering Links

IP Network Backbone

Access Links
C. Information Theory
Information theory is of course a standard tool in com-
munications systems [20], but a brief review will set up our
terminology. We begin with basic probabilistic notatione w
In addition, it is helpful for IP networks managed by Internedefine py () to mean the probability that a random variable
Service Providers (ISPs) to further classify the edge linkg is equal tox. We shall typically abuse this notation (where
We categorize the edge links intaccesslinks, connecting it is clear) and simply writep(x) = px (). Suppose thai
customers, andpeering links, which connect other (non-andY are independent random variables, then
customer) ASs. A significant fraction of the traffic in an ISP
is inter-domainand is exchanged between customers and peer p(z,y) = p(x)p(y), (1)

networks. Today traffic to peer networks is largely focusgth. the joint distribution is the product of its marginaFhis

on dedicated peering links, as illustrated in Figure 1. Wndgan be equivalently written using the conditional prokigybil
the typical routing policies implemented by large ISPsyver

little traffic will transit the backbone from one peer to amet p(zly) = p(x). (2)
Transit traffic between peers may reflect a temporary Step )i this paper we shall typically use the sourSeand the
network consolidation following an ISP merger or acquisii yestinationD of a packet (or bit), rather than the standard

but should not occur under normal operations. random variablesX and Y. Thus p(d|s) is the conditional
In large IP networks, distributed routing protocols arems%robability of a packet (bit) exiting the network @ = d,
to build the forwarding tables within each router. It is gbks given that it entered a§ = s, andp(d) is the unconditional
to predict the results of these distributed computatioosfr probability of a packet (bit) going t® = d.
data gathered from router configuration files, or a route MoN-\ne can now define the Discrete Shannon Entropy of a

itor such as [18]. In our investigation, we employ a routingiscrete random variabl& taking valuesz; as
simulator such as in [19] that makes use of this routing infor ’

Customers

Fig. 1. IP network components and terminology

mation to compute a routing matrix (defined in Section IlI- H(X)= —Zp(xi)logg p(x;), 3

A). Note that this simulation includes load balancing asros i

multiple shortest paths. The entropy is a measure of the uncertainty about the value of
X. For instance, ifX = z; with certainty, thend (X) = 0,

B. Traffic Data and H(X) takes its maximum value wheX is uniformly

In IP networks today, link load measurements are rea@Stributed, when the uncertaint'y' about its value is gistate
ily available via the Simple Network Management Protocol Ve can also define the conditional entropy of one random
(SNMP). SNMP is unique in that it is supported by essential§ariableY with respect to anotheX™ by
every device in an IP network. The SNMP data that is available
on aydevice is defined in a abstract data structure known as HY1X)=- Zp(x’) Zp(y,|xj)1og2 plyilzs), )
a Management Information Base (MIB). An SNMpvller ) ’ ' - N
periodically requests the appropriate SNMP MIB data fromhere p(yi|z;) is the probability thaty” = y; conditional
router (or other device). Since every router maintains dicyco" X = zi. H(Y|X) can be thought of as the uncertainty
counter of the number of bytes transmitted and received E#maining abouty” given that we know the outcome of.
each of its interfaces, we can obtain basic traffic statifee Notice that the joint entropy ok’ andY” can be shown to be
the entire net\(vork with little additional infrastructyre. H(X,Y)=H(X)+ H(Y|X). (5)

The properties of data gathered via SNMP are important for
the implementation of a useful algorithm — SNMP data ha#/e can also define the Shannon information
many limitations. Data may be lost in transit (SNMP uses _
unreliable UDP transport; copying to our research archive IY|X) = H{Y) - H(Y]X), ©)
may also introduce loss). Data may be incorrect (througthich therefore represents the decrease in uncertainiyt &bo
poor router vendor implementations). The sampling inteis/a from measurement oX, or the information that we gain about
coarse (in our case 5 minutes). Many of the typical problemsfrom X. The information is symmetrid,(X|Y) = I(Y|X)
in SNMP data may be mitigated by using hourly traffiand so we can refer to this as thautual informationof X
averages (of five minute data), and we shall use this approaghd Y, and write as/(X,Y’). Note that/(X,Y) > 0, with
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equality if and only if X andY are independent — wheR There is extensive experience with ill-posed linear ingers

andY are independenk gives us no additional information problems from fields as diverse as seismology, astrononaly, an
aboutY. The mutual information can be written in a numbemedical imaging [8], [9], [10], [11], [12], all leading to ¢h

of ways, but here we write it conclusion that some sort of side information must be brough
in, producing a reconstruction which may be good or bad

I(X,)Y)= Zp(x,y) log, M = K(psyllps X py), depending on the quality of the prior information. Many such
z,y p(=)p(y) 7 proposals solve the minimization problem
where K (f|lg) = 3, filog(fi/g:) is the Kullback-Leibler min [y — Ax|3 + X2 J(x), (10)

divergence off with respect tog, a well-known measure of . L
g / b J where || - |2 denotes theL, norm, A > 0 is a regularization

distance between probability distributions. " J(x) | lization functional. P Is of
Discrete Entropy is frequently used in coding becaudirameter, an (x) is a penalization functional. Proposals o

the entropy H(X) gives a measure of the number of bitdNis kind have been used in a wide range of fields, with consid-
required to code the values of. That is, if we had a large erable practical and theoretical success when the datdhathtc

numbern of randomly-generated instances;, Xo, ..., X the assumptions leading to the method, and the regulanzati

9’ n H - .
and needed to represent this stream as compactly as possTH'%Ct'onal matched the properties of the estimand. These

we could represent this stream using onlig (X) bits, using are generally calledtrategies for regularization of ill-posed

entropy coding as practiced for example in various standa?zEg]k;lemS(for a more general description of regularization see
commercial compression schemes.

Entropy has also been advocated as a tool in the estimatiﬂ
of probabilities. Simply put, thenaximum entropy principle
states that we should estimate an unknown probabilityidist}h

bution by enumerating all the constraints we know it must. : : . : :
y 9 f.is taken as a Gaussian white noise with variamteThen the

obey on ‘physical’ grounds, and searching for the probab : . . X .
ity gistriburftioyn that gmaximizes the entrop)g/J subject ?0 lhos%o'ca"ed posterior probability densityx|y) has its maximum

constraints. It is well known that the probability distritmns x at the solution of

occurring in many physical situations can be obtained by the min ||y — Ax||% + 2 - 0?log 7(x). (11)
maximum entropy principle. Heuristically, if we had no prio *

information about a random variablé, our uncertainty about Comparing this with (10) we see the penalized least-squares
X is at its peak, and therefore we should choose a distributiBfPblems as giving the most likely reconstructions under a
for X which maximizes this uncertainty, or the entropy. In thgiven model. Thus the method of regularization has a Bagesia
case where we do have information about the variable, ysuditerpretation, assuming Gaussian noise and assuit{irg =

in the form of some set of mathematical constraiitshen the log 7(x). We stress that there should be a good match between
principle states that we should maximize the entrépyx |C) the regularization functional/ and the properties of the
of X conditional on consistency with these constraints. That @stimand — that is, a good choice of prior distribution. The
we choose the solution which maintains the most uncertairgnalization in (10) may be thought of as expressing the fact
while satisfying the constraints. The principle can also BBat reconstructions are very implausible if they have darg

derived directly from some simple axioms which we wish thealues of.J(-).
solution to obey [21]. Regularization can help us understand approaches such as

that of Vardi [1] and Cao et al. [3], which treat this as a
maximum likelihood problem where the are independent
random variables following a particular model. In theseesas

Many scientific and engineering problems can be posed thgy use the model to form a penalty function which measures
follows. We observe daty which are thought to follow a the distance from the model by considering higher order
system of linear equations moments of the distributions.

y = Ax, 8

hA general approach to deriving such regularization ideas is
e Bayesian approach (such as used in [2]), where we model
e estimandx as being drawn at random from a so-called
rior’ probability distribution with densityr(x) and the noise

D. lll-Posed Linear Inverse Problems

[1l. REGULARIZATION OF THE TRAFFIC ESTIMATION
where then by 1 vectory contains the data, and theby 1 PROBLEM USING MINIMUM MUTUAL INFORMATION
vectorx contains unknowns to be estimated. The mattils ~ The problem of inference of the end-to-end traffic matrix

ann by p matrix. In many cases of interept> n, and so js massively ill-posed because there are so many more routes
there is no unique solution to the equations. Such problees ghan links in a network. In this section, we develop a regular
Calledill-posed linear inverse problemm addition, frequently ization approach using a penalty that seems We"_adapted to
the data are noisy, so that it is more accurate to write. the structure of actual traffic matrices, and which has some

-4 appealing information-theoretic structure. Effectivedynong

y = AX + z. (9) . . . . .
all traffic matrices agreeing with the link measurements, we

In that case any reconstruction procedure needs to remelose the one that minimizes the mutual information batwee
stable under perturbations of the observations. In our,ca#iee source and destination random variables.
y are the SNMP link measurements,is the traffic matrix Under this criterion, absent any information to the comtrar
written as a vector, and is the routing matrix. we assume that the conditional probabilityl|s) that a source
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s sends traffic to a destinatios is the same ag(d), the for all sets of source and destination link3,,Q4, and
probability that the network as a whole sends packets osbywmilarly for the marginal probabilitieps andpp,.

to destinationd. There are strong heuristic reasons why the We let S be the random variable obtained looking at the
largest-volume links in the network should obey this piitei source of a random packet (or bit), and 1Bt denote the
— they are so highly aggregated that they intuitively shouldiestination. Suppose for sake of discussion thaind D are
behave similarly to the network as a whole. independent random variables. Then (2) means that, gian th

On the other hand, as evidence accumulates in the lirkpacket (bit) originates & = s, it is no more likely to go to
level statistics, the conditional probabilities are addpto D = d than would a randomly-chosen packet (bit) originating
be consistent with the link-level statistics in such a way aywhere in the network. For networks containing a few
to minimize the mutual information between the source ar&ktremely high volume links carrying very large fractiorfs o
destination random variables. the packets, the assumption (2) should work well for the very

This Minimum Mutual Information (MMI) criterion is well- largest circuits, since they have been so highly aggreghtd
suited to efficient computation. It can be implemented astleir behavior may be very similar to the network as a whole.
convex optimization problem; in effect one simply adds a Note that the independence of source and destination is
minimum weighted entropy term to the usual least-squareguivalent to the simplgravity model[4], [5], with the form
lack of fit criterion. Thgre are se\{ergl vyidely-available‘tso N(s,d) ~ ConstN (s)N(d) (15)
ware packages for solving this optimization problem, even o
very large scale problems; some of these packages can takereN(s) is the traffic entering at, and N (d) is the traffic
advantages of the sparsity of routing matrices. exiting atd. While there is experience with the gravity model
above and some success in its application, it is also known
that it gives results that are not as accurate as may be ebtain
using additional information [4], [5].

Let N(s,d) denote the traffic volume going from sourge  Section Il suggests that regularization is a way of using
to destinationd in a unit time. Note thatV(s,d) is unknown prior information in conjunction with link measurements to
to us; what can be known is the traffi&(l) on link [. Let help decide which traffic matrices from the set satisfying
A(s,d;1) denote the routing matrix, i.eA(s,d;l) gives the (8) are more plausible. We propose using a regularization
fraction of traffic froms to d which crosses link (and which functional that uses the independence/gravity model asra po
is zero if the traffic on this route does not use this link a} allof departure, but which considers other models as well. Reca

A. Traffic-Matrix Estimation

The link-level traffic counts are from our discussion of information theory that indepenaenc
of source and destination is tantamount to the statement tha
T(l)=> A(s,d;l)N(s,d), V€L, (12)  the mutual information vanishedi(S, D) = 0. Recall also
s,d

that 7(S,D) > 0. It follows that the penalty functional on

whereL is the set of backbone links. We would like to recovelfaffic matricesp(s, ), is given by.J(p) = I(S, D) = 0, with

the traffic matrixV (s, d) from the link measurement&(l), but €quality if and only if.S and D are independent.

this is the same as solving the matrix equation (8), whei® This furl1c't|.onaIJ(~) has an interpretation in terms of the

a vector containing the traffic courl¥(), x is a vectorization COMPpressibility of addresses in IP headers. Suppose we have
of the traffic matrix, andA is the routing matrix.A is a & arge number of IP headers — abstracted to be simply
matrix which is #L by (#S x #D), where there arefL source/destination address pairs,d;), i = 1,...,N. We

link measurementsiS sources, and:D destinations. want to know: what is the minimal number of bits required
(per header) to represent the source destination pairrrstu

out that this is justH(S) + H(D) — I(S,D). Now if we
B. The Independence Model simply applied entropy compression to thgand D; streams
We propose thinking abou¥ (s, d) in probabilistic terms, Separately, we would pay/(5) + H(D) bits per header to
so that if a network carriesV end-to-end packets (or bits)reépresent headers. Hence the functiof@, D) measures the
total within a unit time then the number of packets sent froftimber of bits of additional compression possible beyoed th
sources to destinationd, N(s,d) say, is a random variable S€parate compression o_f source and destination _bas_ethi)n tra
with meanN - p(s, d), with p(s, d) the joint probability that a tional entropy compression. This extra compression isiptess

to d. We consider the marginal probabilities have traffic between certain source/destination pairs than

would have expected by independence. In fact measurements
ps(s) = Zp(s,d), pp(d) = Zp(s,d), (13) of H(S) and H(D) (on real datasets described below) are
d s typically around 5, whileI(S, D) is very small, typically
ﬁ{gund 0.1. This suggests that the independence assumption

network ats, and the chance that a randomly chosen pacRéta reasonable fit to the real data, at least on average. There

(bit) departs atl, respectively. We can expand this notation t§'®Y _b_e some links for WhiCh. it is not, but the MMI method
measure sets: specifically allows for correction to these (see below).

Suppose we adopt a Bayesian viewpoint, assigningaan

ps.0(Qs, Qa) = Z Z p(s,d), (14) priori probability w(p) to the traffic matrixp that is pro-
s€0. deay portional to 2=/®), Then we are saying we regard as

the chance that a randomly-chosen packet (bit) enters
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priori implausible those traffic matrices where much highemgineering tasks. A PoP-to-PoP traffic matrix is usefulnvhe
compression is possible based on joint source-destinatidesigning a network from scratch, but typically, in a real
pairs as compared to compression of sources and destisatioatwork changes are incremental, and so we need to see
separately. Each bit saved reduces auriori likelihood by how these changes affect traffic at the router level. We use

about a factorl /2. techniques from [5] to reduce the size of the problem indjtial
by removing redundant information, and a large number of
C. Regularization Method traffic matrix elements that we know to be zero from routing

ri]nformation. This processing does not improve accuracy, bu
foes speed up later computations.
To make the exact formulation explicit, we define

We propose now to reconstruct traffic matrices by adopti
the regularization prescription (10) with the regulariaat
functional J(p) = I(S, D). Translating (10) into traffic-matrix

notation, we seek to solve zr; = N(si,d;), (19)

2 y; = traffic counts =T(l;), (20)

minimize Y~ | T(1) = N> A(s,d; )p(s,d) | +\*I(S, D), 9i = N(s;))N(di), (21)
! 5,d (16) where N

Recalling the Bayesian interpretation of regularizatioe, N = total traffic in network (22)

are saying that we want a traffic matrix which is a tradeoff N(s;) = total traffic originating ats; (23)

between matching the observed link traffic counts and having N(d;) = total traffic departing atl; (24)

a priori plausibility, where our measure of plausibility, as just
explained, involves the ‘anomalous compressibility’ ofise- and we define the column vectogs andy with elementsz;
destination pairs. The traffic matrix obtained as the sofuti and y;, respectively. Note that ifV(s;) = 0 or N(d;) = 0,
to this optimization will be a compromise between two termien bothg; = 0 andz; = 0, so we exclude thesefrom the
based on the size of, which is a proxy for the noise level in penalty function. The problem formulation is then given by
our measurements. Note that

p(s,d) argmin, < ||y — Ax]||? + \? Z —log <>
I1(S,D) = s,d)log ———— = K(p(s,d)||p(s)p(d)), _ N i 2
(S, D) %p( Jog 5oty = K (s A)llp()p()) R p (25)
a7 subject tox; > 0.
where K (-||-) again denotes the Kullback-Leibler divergenc
Herep(s)p(d) represents the gravity model, and||-) can be - iy ions are satisfied by supplementing the routingrima

seen as a distance b_etween pro_bgblhty d's”'b“t'O”S'ﬂMF' and measurements to ensure that they include these coistrai
can see (16) as having an explicit tradeoff between fidelity U 1, henajized least-squares formulation has been used in

the data and deviation from the independence/gravity m°d§6lving many other ill-posed problems, and so there exist

Note also that the KuIIback-Le|bIer_ divergence is the negat publicly available software in Matlab (such as routine MakE

of the relative entropy op(s,d) with respect top(s)p(d), iy per Christian Hansen's Inverse Problems Toolbox [23],

and so this ”.‘ethOd also has an interpretation as a max'mtﬂ]) to solve small-scale variants of such problems. Our

entropy algont_hm. . oblems are, however, large in scale and not suited to such
Both terms in the above tradeoff are convex functionals gésic implementations. The problem of solving such large-

the Ftrfmc. matnxtp._Hednce,t_ fqr et_achfglve.l:}\, they can be scale traffic matrices is only possible if we can exploit ofie o

rewritten in constrained optimization form. the main properties of routing matrices: they are very spars

®rhe additional constraints (normalization, etc.) on thegimeal

minimize K (p(s, d)||p(s)p(d)) subject to the proportion of exact zero entries in each column and row is
' 5 ) (18) overwhelming. Accordingly, we use PDSCO [25], a MATLAB
D(T(M) = N2 q Als, & Dp(s, d))” < X7 package developed by Michael Saunders of Stanford Univer-

Here 2 = x2()\) is chosen appropriately so that the solutioﬁ'ty’ which has been highly optimized to solve problems with

. . . trices. PDSCO has been used (see e.g. [25]) to solve
of this problem and the previous one are the same, at the gl\:;&,\e\rse ma .
value of \. The problem is saying: among all traffic matrice roblems of the order 16,000 by 256,000 efficiently. We have

adequately accounting for the observed link counts, find t %und that its performance is very good (taking no more than
one closest to the gravity model. a few sgcqnds) on the _Iargest problems we conS|d_er here.
additional constraints (as on any probability distribojiacnon- '

. o .. performance is highly insensitive to this parameter.
negativity, normalization, and (13). We leave these iniplic An interesting point is that if one were to have additional

) information such as used in the choice model of [4] then this
D. Algorithm could also be incorporated by conditioning the initial miode
The problem we attack in this paper is the BR-to-BRPs p(s,d) on this information (for an example of this type
traffic matrix. While this problem is an order of magnitudesee Section IlI-E). Alternatively, such information coube
more complex than a PoP-to-PoP traffic matrix, a router-taicluded in the constraints underlying the optimizatiors (a
router traffic matrix is absolutely necessary for many nekwoshown in Section VII).
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E. Inter-domain Routing measurements), the methodology above does not need this,

1) Zero Transit Traffic: The above algorithm assumes thapecause the algorithm above only uses this as a prior, to be
independence of source and destination is a reasonatiegtaicOrected through the use of link (and other) information.
model. However, there are good reasons we may want toTh_e step _requwed t_o gen_erate a point-to-multipoint demand
modify this starting model. In real backbone ISPs, routisig [natnx requires c_:onS|derat|on o_f the (_:ontro_l ISPs have over
typically asymmetric due to hot-potato routing — trafficrfio interdomain routing. Int_erdomam_ routing gives an ISPditt
the customer edge to peers will be sent to the “nearest” ekntrol over where traffic enters its network, so we shall nqt
point, while traffic in peer networks will do likewise resaly Make any changes to (26) for access-to-access, and peering-
in a different pattern for traffic from peering to customerd0-access traffic. However, a provider has considerablé@on
Also there should be no traffic transiting the network frorfVer where traffic will leave their network across the pegrin
peer to peer [5]. Both these factors demand departures fr§fg€- Traffic destined for a particular peer may be sent on any
the gravity/independence model. of the links to that peer. .

Suppose we assume there is zero transit traffic. We suggest "€ result is that we must modify (26) for access-to-peer
thatconditional independenaaf source and destinatiogjven traffic. We do so by not specifying which link in the set of
appropriate side informationwill be more accurate than pure!inks to peeri (i.e. 1) is used for traffic leaving the network
independence. More specifically, suppose we have availaffld*€eri- We can do this formally by not specifying; n (s, d)
as side information, the source and destination class gaccl?’ 5 € A,d € P but ratherps p(s, ;) for all peersi.
or peering). We would then model the probabilities of aMNS Simple point-to-multipoint model can then be used in
packet (bit) arriving ats and departing atl as conditionally the estimation through using
independengiven the class of arrival and destination link ps(s)
Appendix | we prove that this results in the following model. ps.p(s, Pi) = pS(A)pD( i),
Define A and P to be the sets of access and peering link
respectively, then the conditionally-independent moslel i

(27)

?(’)r s € A, in place of the access-to-peering equation from
(26). We do not determine the exit point in the estimates.

ps,p(s,d) = The algorithm can then proceed by minimizing the mutual
ps(s) pp(d) (1 _ o Py _ P)). forsc Ade A information of the final distribution with respect to (26)dan
ps(A) gg((j))< ps(P) —pp(F)), fors € 4, ’ (27). The exit points are implicit in the routing matrix usied
ps(8)yoiay, forsc P.de A, the optimization (25), but are left undetermined in thereate,
;’SS((Z))pD(d), forse A,d € P, and can therefore be fixed when applied to a particular case.
0, for s e P,d € P. We should also note that this is a quite general extension.

(26) We use it here on sets of peering links, but in a network
with different policies, we can partition the peering links
to which we can naturally adapt the algorithm above (byome different fashion (even through a non-disjoint partjt
modifying g;). to reflect some particular idiosyncrasies in routing policy
2) Point to Multipoint: As noted in the introduction a
point—tg-point traffic matrix.is not suit.ablle for all appiin'on_s. F. Relationship to Previous Algorithms
Sometimes we need a point-to-multipoint demand matrix, for o o
instance, when we want to answer questions about the impacl "€ work in this paper presents a general framework, within
of link failures outside the backbone, e.g. “would a peeringghich we can place a number of alternative methods for
link failure cause an overload on any backbone links?” Is thgStimating IP traffic matrices. For instance, by taking @ain
case, traffic would reroute to an alternate exit point, ciapg @PProximation to the log function in the Kullback-Leibler
the point-to-point traffic matrix in an unknown way. Howeyverinformation distance information and exploiting the facatt
the point-to-multipoint demand matrix would remain consta >_.[f(2) — g(z)] = 0 we get
Ideally such a matrix would be at the prefix level, but ) — alx
a number of operational realities make an approximation t& (fllg) =~ > _ f() [W} =Y [f(@) - g()]
router level useful for many engineering tasks. The firshsuc T g =

reality is that backbone networks that exchange large draffi f(x) —g(2)
volumes are connected by private peering links as opposed to = Z 4@) (28)
Internet Exchange Points. This allows us to see the praporti z g

of traffic going to each individual peer using only SNMP linkFrom this we can see that the MMI solution may be approx-

measurements, so we can partition traffic per peer. The decamated by using a quadratic distance metric with square root
such reality is that the BGP policies across a set of peerimgeights. This explains the success of the approach in [5], as
links to a single peer are typically the same. Therefore, theell as why square root weights give the best performance
decision as to which peering link to use as the exit poifivhich was unknown in [5]). The conditional independence

is made on the basis of shortest IGP distance. This distaredeSection IlI-E explains the use of the generalized gravity

is computed at the link level, as opposed to BGP policiesyodel as an initial condition in [5].

which can act at the prefix level. While we cannot test that The quadratic optimization is convenient, because it can
this property is true for all large ISPs (and in general it ibe simply solved using the Singular Value Decomposition

not always true even on the network from which we hay&VD) [5], with non-negativity enforced by a second step
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using Iterative Proportional Fitting (IPF) [3]. In this papwe on an arbitrary topology, for instance a simulated network
will compare the performance of the pure MMI approach, itsuch as a star, or a measured topology such as those produced
guadratic approximation, and the method of [5] (referred toy Rocketfuel [13], [14]. Thus we can gain insight into the
here as SVD-IPF), and we see that the approximation worgBect of different topologies on the performance of theoalg
well in the cases considered. We defer the comparison wiithm. We may also introduce controlled measurement errors
maximum likelihood approaches [1], [3], [4] to future workto assess the algorithm’s robustness, or simulate alteenat
because scaling these methods to the size of problem dedcrimeasurements to see their impact in a rigorous manner.
here requires additional techniques (for instance seeg [28])
that have only recently been developed. B. Performance Metrics

The point of intere:_st h‘?fe Is that the MMI princip_le above In this paper we use two basic methods for assessing and
produces (an approximation of) the algorithm previously d%o

ved f initial i del soluti H in th mparing the results. The first method is to estimate the
rived from an iniial gravity model sotution. HOWEvVer in Me€q 4 e error (that is, the average of the absolute value of
case of the MMI solution, the principle precedes practice

. - i X 7~ the errors, relative to the average traffic matrix element).
that is, the decision to regularize with respect to a priards

bit decision. but a standard step in il " The second method is to plot the Cumulative Distribution
an arbitrary decision, but a standard step Inll-posearesion g .., (CDF) of the errors relative to the average traffic
problems. The close approximation has a practical impact

that the fact that I5] already d trated that atrix element. However, many elements of a router to router
at we can use the fact that [S] already demonstrate al tthtfic matrix are zero due to routing constraints, and these

fr:)ndltlonalllrtldgpzndenge of S?/(\:/tlon ”I'tlﬁ.tofbetibettgorp”constrained elements are easy to estimate. This results in
an complete independence. WWe use tnis fact here by usg]qarge number of entries to the traffic matrix with near

(26) and (27) in the remainder of the paper. zero error. To more accurately indicate the errors on the
positive elements we separate the zero and non-zero element
IV. EVALUATION METHODOLOGY and compute their errors separately. The errors on the zero
In this paper, we apply the traffic matrix benchmarkinglements are very small (99% of the errors are below 1%),
methodology developed in [5], [28] to real Internet data tand so we shall not display these separately here. We shall
validate different algorithms. One major advantage of theport the relative errors of the positive elements.
methodology is that it can provide @nsistentdata set that
is as realistic as practically possible. Below we provide an V. PERFORMANCE
overview of this methodology, followed by a summary of the, Sensitivity to the Choice of

erformance metrics we use. . . .
P The choice of the parametardetermines how much weight

o is given to independence, versus the routing constraina-equ

A. Validation Methodology tions. One typically wants to find & such that||Ax — y| <

In [5] sampled flow-level data were used, as well as topalfjy||, wheree specifies the desired level of accuracy to which
ogy and routing information as derived in [19]. Flow levetala the linear constraintslx = y should be satisfied. This can be
contains details of numbers of packets and bytes transferaone by applying a line search process exploiting the faat th
between source and destination IP addresses, and also givesare optimizing with respect to a unimodal function.
information such as the interface at which the traffic emtere In our experiments, however, we find that the algorithm’s
our network. Combining these datasets one may derive ectrafferformance is not sensitive to the choice\ofigure 2 shows
matrix [7]. the relative error in the estimates for varying Figure 2 (a)

The resulting traffic matrix in our experiments coverand (b) show the results for the quadratic and MMI algorithms
around 80% of the real network traffic (including all theespectively, for a single-hour data set given differentle
peering traffic) on the real topology of a large operationalf error in the input measurements (see below for details of
tier-1 ISP. Following [5], we compute the traffic matriceshe introduced measurement errors). Figure 2 (c) and (dy sho
on one hour time scales to deal with the limitations of thihe average results over a month of data.
measurements. Given these traffic matrices and the networlMost notably, in each graph there is a distinct region where
topology and routing information, we only need a consistettie curves are all quite flat, and that this region is largkdy t
set of link load measurements to proceed. same regardless of the error level. Thus the choice df

[5] solves the problem of providing a consistent set of trafasensitive to the level of noise in the measurements, aisd it
fic, topology and link measurement data as follows. Simulagasy to choose a good value. We choose a fixed value from the
the network routing using the available topology and rautinmiddle of the insensitive range, = 0.01 throughout the rest
information. From this we may compute a routing matdx of the paper, with a result that is at worst only a few percent
and then derive a set of link measurementdom (8). Thus off that for the optimal choice oA.
the traffic matrixx, the routing matrixA and the measured ) )
link loads y are all consistent. We can then perform th8- Comparison of Algorithms
estimation procedure to computethe traffic matrix estimate. We now compare the three algorithms described above

The validation approach allows us to work with a problerMMI, quadratic optimization, and SVD-IPF) applied to the
for which we know the “ground truth” — the real traffic problem of computing a BR-to-BR traffic matrix. The results
matrix. It can also be extended in several different ways. Fbelow are based on 506 data sets from AT&T’s North Amer-
example, it allows one to take a traffic matrix and apply itan IP network, representing the majority of June 2002, and
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(a) quadratic optimization (specific case)
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(c) quadratic optimization (average over all data)
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Fig. 2. The relative errors for the quadratic and MMI alduamis for a given value oA.

100

has been an effort underway recently to measure ISP topolo-
gies via a tool called Rocketfuel [13], [14], [15]. Using the
topological information provides us a means of examining
the impact of other topologies on our algorithm. In this
section, we investigate the impact of different topologieghe
performance of the algorithm using Rocketfuel and simudlate
topologies. Since we also need IGP weights, we use the maps
for three North American networks (Sprint, Abovenet, and
Exodus), for which the IGP weights have been estimated by
Rocketfuel. Note that these are not real weights from the
20l 1 networks of interest, but a set consistent with observetingu

90F

80r

701

60

50

40

30

percentage of demands

ol — MM Nor are these the real networks, as Rocketfuel maps are
o ;Y;;;ZE unlikely to be perfectly accurate. Furthermore, the Rdclett
% 20 20 50 30 100 data do not contain the peering relationships of a network,

relative error and so we are limited to using the same initial conditional

independence assumptions in our exploration of topology.
These issues are not a big problem here because we are
covering all days of the week, and times of day. Figure gimarily concerned with the impact of varying the internal
shows the CDF of the relative errors for the three methodsetwork topology on the estimates, and as such we only need
We can see that their performance is almost identical. Thealistic networks, rather than exact maps of other netsiork
mean relative error is 11.3%. Furthermore, note that moTge results should, howevarpt be used in ISP comparisons.
than 80% of the traffic matrix elements have errors less thanThe approach for testing the impact of topology is as fol-
20%. The CDFs for individual data sets are very similar, bugws. We map locations (origins and destination in the oggi
generally less smooth. All three algorithms are remarkabfetwork) to locations (in the Rocketfuel network) at the PoP
fast, delivering the traffic matrix in under six seconds. Th@veL and map (26) and (27) to this new network, assuming the
fastest algorithm is SVD-IPF, which is about twice as fast aame peering relationships, thus removing dependencetan da
MMI, the slowest one. We also compare the three algorithmag don’t have access to. More specifically, Jet : A — B

for robustness. The results are very similar, and are othittgenote a mapping from the original set of locations A

here in the interest of brevity. to a set of Rocketfuel locationse B. Then the mapping of

Note also that [5] showed a number of additional perfostemands from one network to another is accomplished by
mance metrics for the SVD-IPF algorithm (which we can

see has very similar performance to the MMI algorithm). xf = Z z#, Vje B,
Those results indicated that not only are the errors on the M(i)=j

flows reasonable, but also that the errors on the largest flows o .
are small, and that the errors are stable over time, whichd8d we map they; from (21) similarly. We consider two

important if the results are to be used to detect networktever"@PPings, the first based on geographical location, which is
provided in the Rocketfuel dataset. Geographical infoiomat

does not provide any way of mapping from router to router

in the new network, so we perform our mapping at the PoP
While traffic data is generally considered highly proprigtar level, and therefore also perform the estimation at thigllev

and is therefore hard to obtain from network operators,ethesind compare to AT&T data likewise aggregated to PoP level.

Fig. 3. A comparison of the relative errors for the methods.

(29)

C. Topological Impact
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The second mapping is a random permutation that destr@mout the corresponding row of the traffic matrix, and thence
the dependency between the traffic and the network topologybetter estimate of this row. Good estimates of the larger
Figure 4 shows a summary of the results (detailed resukements make it easier to estimate other elements elsewher
can be found in [28]). The figure shows (as squares), tire the network, and so we get a better overall result. This
results for the Rocketfuel networks where the mapping fromaturally leads to better estimates when the traffic is tated
location to location is done on the basis of nearest geographto the network degree, but when we perform the random
equivalent, i.e., mapping, the correlation no longer holds. We shall see later
) ) . . that this property has an impact on the design of network
M(i) = j, whered(i,j) < d(i,k) Vk € B, (30) \yaacyrement infrastructure to further improve traffic imatr
whered(i, j) is the geographic distance between PoRsd estimates: it is better to put measurement infrastructutée
j. The figure also shows PoP level results for AT&T, and twBodes with the largest traffic volume.

simple simulated networks (a star and a clique with 20 nodes)
VI. ROBUSTNESS

2 OStar A critical requirement for any algorithm that will be applie
to real network data is robustness. In general this refers to
20 o o 8 the sensitivity of an algorithm to violations of the algbrit’s
assumptions (implicit and explicit). In the MMI method, the
assumptions are that the MMI criteria constitute a reasenab
;{;15’ 1 approach (verified above) and that the input data are correct
5 ORocketfuel: Exodus Network data are often error prone, and there can be missing
S10 OAT&T ] data, and so we must consider how robust the algorithm is to
ORocketfuel: Sprint such errors. In the following sections we consider the irhpac
of incorrect or missing link data, and incorrect routing alat
oS ORocketfuel: Abovenet ’ on the MMI algorithm. Only the latter form of incorrect input
O geographic data has an important impact on the results of the algorithm.
or OClique O random H
0 5 4 6 8 10 12 A. Incorrect Link Data

unknowns per link measurement All measurements, including network data, contain errors.

Fig. 4. Results on Rocketfuel, and simulated topologies. Therefore, we shall introduce a range of errors, and study

The most obvious thing to note in Figure 4 is that there [§€ir impact. Comparisons with flow level data have shown
a direct correlation between the ratio of number of unknowri@at errors in either source are not generally large, and the
to number of measurements, and the accuracy of the resy@irces of such errors lead one to believe that they will not
The star and clique form extreme examples where we eitd Strongly correlated. Hence we shall introduce independe
have complete data (in the clique we measure each origf@ussian errors to the measuremen@nd compare with the
destination demand directly) and thus almost no measurem@&fi© €rror case. More specifically, take the relative emor i
error; or almost no additional data (in the star the link med2€ traffic of link i to be ¢, ~ N(0,0), where N(0,0) is
surements tell us no more than the total volumes entering #fi§ normal distribution with mean 0 and standard deviation
exiting at a location) and therefore the most inaccurateltes 7+ e varyo from 0 to 0.1, with the latter corresponding to
This illustrates the basis for the MMI method. It will workgte 9Uite large (aroune: 20%) relative errors in the measurements
where either the conditionally independent estimate isdgo§€member the 95th percentiles of the normal distributien |
to start with, or the topology has sufficiently diverse link&t £1.960.) L .
to allow for the results to be accurately refined. The network AISO note that errors on access and peering links will have
measured by Rocketfuel appear to have such diversity, as tHginimal impact on a BR to BR traffic matrix because the
results are of similar or better quality than those for AT&T, data from access links is aggregated across many links (to

However, there is more to the problem than this. In tadprm the traffic volumes ente_nng and exiting t_he network at a
it appears that there is a relationship between the netwdfi!ter) and so we only consider here errors in the backbone-

traffic, and the network topology that benefits the perfomnIink.measurements. . ) .

of the algorithm. Figure 4 also shows the result of mappin Figure 5 shows Fhe _CDF of the results given different noise

the locations in AT&T’s network to the Rocketfuel ISPs usin ve.ls. Clearly noise impacts the results, but note that the

a random permutation (the figure is based on 100 rand ditional errors in the measurements are actually sm@der

permutations of 24 data sets drawn from one day in June). THg Most part) than the introduced errors in the measurement

performance under a random mapping is worse than undef S iS likely due to the redundant link constraints, which

geographical mapping. provide an averaging effect to reduce the impact of indiaidu
This is interesting because, typically in large network§Mors. The first row of Table | presents a summary.

regions of the network with higher demand tend to have more )

connections to the other PoPs (in the measured network feMissing Link Data

correlation coefficient between node degree and trafficraelu  We next consider the impact of missing data, for instance

was 0.7). A higher degree at a node results in more informatimissing because a link was not polled over an extended
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100 to changing many elements of the matrix from 1 (in the
9ot absence of load sharing) to zero and visa versa. However, as
8ol in all other reports on traffic matrix estimation, we assuhe t

" routing matrix input is accurate. This assumption is reabtm
=} o . .. .
e because there are good methods for reliably obtainingrrguti
§ 60f information (for instance see [18]).
S sof /"
g ol VIl. ADDITIONAL INFORMATION
g |
% 30l | One major benefit of adopting the information theoretic ap-
< _ proach describe here is that it provides a natural framefarrk
20 T nosem0.00 1] including additional information. In this section, we exam
10t -~ noise=0.05 { the impact of two sources of information: (i) flow level data a
0 ; ; ; noise=0.10 some locations, and (ii) the local traffic matrix at a routss][
0 20 40 60 80 100
relative error
Fig. 5. Relative errors for MMI given measurement noise. A. Flow Level Data

In this section we consider the impact of having flow level
interval. A few missing data points can be replaced usingata at some locations, which gives the rows of the traffic
interpolation; trading missing data for data with some erromatrix for those locations. This inclusion was explored in
Furthermore, ERs are typically connected very simply to tha] in a simulation. They showed that the methods of [2],
backbone (typically by sets of redundant links), and almogi] provided improvements to traffic matrix estimates roygh
all (> 99%) of ER traffic is between the backbone and thg proportion to the number of rows measured, but that it

edge. Thus if data are missing from a single edge link Wfd not matter whether one selected the rows to be measured
may estimate the corresponding traffic using measureméntgghdomly, or in order of largest row sum.

the traffic between the ER and the backbone. Thus, except ifFjow level information can be included in our algorithm

the rare case where we miss multiple edge links, we need oBly simply including additional constraint equations. Ressu
consider missing backbone link data. are presented for three separate days of data, each cogsisti

Figure 6 shows the effect of missing the tdp backbone of twenty four, one-hour data sets. We compare the error in
links (rated in terms of traffic on those links). The resultghe estimates as we include a variable number of known rows
are shown for the 24 data sets from each of three daysgfithe traffic matrix, both in row sum order, and randomly.
June. The results show that despite loosing the links wigh thigure 7 shows the results. In the random-ordering case,
largest traffic, the results are hardly impacted at all (pk@® \ye see an approximately linear improvement as additional
one case). This suggests that there is often enough redunggfrmation is included, but in contrast to the results of [4
information in the network to compensate for the missin@datow sum order is significantly better. In fact, once 10 rows
are included, the error for the row sum case is about half that
of the random ordered case, and this ratio improves until we

have included around half of the rows, when the error for
the row sum ordered case becomes negligible. One possible
oF S reason why these results do not agree with [4] is that thédraf
matrices used in the simulation were not as skewed as those
observed in real networks.

The result is a clear win for measuring flow, or packet
level data. Such data on a fraction of the network may
provide a disproportionate improvement in the estimatég T
results were similar even when errors were added to the flow
level measurements, and so sampled flows may also provide

2t —— 20020608 } practical improvements.
---2002 06 12

- - 200206 24
5 5 10 15 20 > 20 B. Local Traffic Matrices
number of missing link measurements Another appealing alternative to collect additional imhar-
Fig. 6. ‘The impact of missing data on the relative errors foegtdays (each tion with minimal cost is to collect local router traffic mats.
comprising 24 data sets). That is, for the router to keep a table of traffic from in-irfiéee
) to out-interface. As shown in [16], the collection of locadffic
C. Incorrect Routing Data matrices only requires minimal changes to router hardware,
A third source of data in which we may find errors is thand can be included in our algorithm as constraints. Figure 8
routing matrix. Errors in this matrix can have a large impashows the CDF including local traffic matrices, and Table |
on the performance of estimation methods, because if wiBows a summary of the results in comparison to those without
have errors in a significant number of routes, this corredporiocal traffic information. Notice that the results with a &bc
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VIII. POINT-TO-MULTIPOINT

Up to this point we have only considered the performance
of our algorithm for estimating PTP traffic matrices. We
now test the algorithms performance on Point-To-MultiPoin
(PTMP) traffic demands. Figure 9 shows an example of PTMP
estimation results. In each of the figures we compare the
estimated results with their true value — if the estimatesewe
perfectly accurate the points would all line up along thedsol
diagonal lines. The dashed lines shav20%. Figure 9 (a)
shows the results for Point-To-Point (PTP) estimates. Gme c
see that although there are errors, the results are cldstere
reasonably closely around the diagonal, particularly foe t
important larger traffic matrix elements. See [5], [28] fouch
more extensive assessment of the quality of the PTP essmate
— for instance, on a large data set the average errors in the
PTP estimates were 11.26%, which is well within the bounds
for operational usefulness

largest row sum ordering, and solid show random order. Thegeover 60

rows in the traffic matrix.

Figure 9 (b) shows the results of the PTMP estimates, which
are still reasonably accurate, but not as good as the PTP
estimates. The results are more spread, and there areaiméce

100 —
I outliers well outside the:20% bounds.

%0 , We have tested both PTP and PTMP estimates on consider-

80 /7 ably larger data sets and these results appear to be cosiste
B 70}, For instance, Figure 10 shows average errors of the resudts o
g § the course of one day (June 6th 2003) for the PTMP estimates,
§ 60 and compares them to the previously estimated errors for PTP
§ 50 estimates. One sees immediately that the PTMP estimates
£ sof have errors around the 25% mark — more than twice those
3 30' of the PTP estimates. We examine the reasons for this worse
g8 — noise=0.00 performance below.

20F - -- noise=0.01

- - noise=0.05
10f noise=0.10 _ A. Why PTMP estimates are less accurate
. link measurements (zero noise) .
% 5 m ™ %0 100 In order to understand why PTMP estimates are less accu-

relative error rate, consider that given two different point-to-point deds,
the underlying routes are guaranteed to be different, Isecau
either the source or the destination is different. For ptnt

multipoint demands, however, this is no longer the caset Tha

Fig. 8. The result of including local traffic matrices, for yaug error levels.
Also included as a baseline is the zero noise case from Figure

noise level &) 0 0.01 0.05 0.10 is, it is possible for different point-to-multipoint dendshto
ot e | S| Sama ‘Saw| “rw|  vse exacly ihe same route.
. 0 B (1] . (] . 0 e
Specifically, letD; = A — R, and Dy, = A — R, be the
TABLE |

demands fromA to peerP; and P, respectively, wherer;

are the sets of possible egress routers for pe@r= 1,2).

Assume that the BGP routing policies are the same Hor

and P,. If the router closest tol in R, [ JR» also belongs to

traffic matrix, are not only better, but also less sensitve tz, Rz, thenD; and D, will use the same egress point and

measurement errors. therefore the same route. Figure 11 gives such an example
The star topology illustrates why a local traffic matrix felp where R, = {R;, R} and Ry = {Ry, R3, R4}, and R is

In that case, a local traffic matrix at the hub router provides the closest egress point fros within both R, and R,. As

traffic matrix directly. In reality the network is not a stag a result, bothD; and D, use the route that exits the network

a large amount of additional information is redundant. Im ot R,.

problem, the number of constraints is of the order of a factor Demands with the same routes manifest themselves as equal

of 20 times the simple link measurement constraints, but thelumns in the routing matrix. This means the constraints

number of independent constraints is only roughly doubledn link loads (8) impose restrictions on the sum of such

However, this redundant information is still useful be@its demands instead of each individual demand. As a result, we

makes the algorithm more robust to noise in the measureme$gect the estimated sum to be accurate. However, the yjualit

as seen in Table I. of the splitting among different demands largely depends on
These results show that it is quite practical to improve thhe conditional independence assumption, which is only an

estimates above by incorporating additional information. approximation to reality. Therefore, we expect the estadat

THE RELATIVE ERRORS GIVEN A PARTICULAR NOISE LEVEL WITH AND
WITHOUT LOCAL TRAFFIC MATRIX DATA .
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Fig. 11. An example of different point-to-multipoint demandsng the same

A comparison of the different methods for estimatiorerothe

course of 24 hours. Each data point represents the averemys &r a one
hour data set. The solid line shows the errors for PTMP estispdite dashed
line those for PTP estimates and the dot-dash line shows fhosggregated
PTMP estimates (for customer to peer traffic)).

route. There are two point-to-multipoint demands here: theafel from A

to peerP;: D1 = A — {R1, R2}, and the demand fromi to peer Px:
Dy = A — {R2,R3,R4}. Among {R1, R2, R3, R4}, R2 is the closes
egress point fromA. As a result, bothD; and D> use the route that exits

the network atRs.

actual matrix element

(c) PTMP aggregated (customer to peering
traffic).

individual demands to be less accurate. Note that PTP estima
tion problem is also ill-posed and so the problem of ambjguit
exists there also, but it is compounded in PTMP case, with a
corresponding impact on the performance.

For some applications, it may be possible to avoid such
inaccuracy by mergingd; and D into a single demand and
only estimate the surfv, +D5. Figure 9 (c) shows an example
of such aggregation. The figure shows the point-to-multipoi
traffic elements (those from customers to peers) aggregated
by summing where we have identical columns in the routing
matrix. We can see that the results are once again good —
in fact they are very similar to (though not exactly the same
as) the PTP results. Figure 10 also shows the errors over the
course of one day, and we can see that these errors are now
very close to those of the PTP estimation technique.

However, for many applications like reliability analysige
cannot simply merge them. The two demargisand D, may
use the same route during normal operations, but not under
failure conditions. For example, if routét, in Figure 11 fails,

D, will exit the network atRR;, whereasD, will now exit at
either R3 or R, depending on which one is closer

Given that the estimates for individual PTMP demands are
less accurate it is tempting to say “the MMI method is intrins
cally limited in that it can not accurately distinguish éifént
demands using the same route; we need better information
(for instance from NetFlow [7]) in order to perform accu-
rate reliability analysis.” Surprisingly, we find in SeatidX
that the PTMP traffic matrices obtained using MMI work
remarkably well for reliability analysis. In addition, §h&vork
considerably better than the estimated PTP traffic mafrices
which highlights the importance of using PTMP matrices.

IX. RELIABILITY ANALYSIS RESULTS

In [17] the authors found that there is not a simple relation-
ship between error statistics such as those considerece abov
and the operational usefulness of a set of estimates. InHact
performance of an estimate in route optimization was noheve
monotonic in the average magnitude of its errors. So here, we
shall consider how well the PTMP estimates perform in the
task for which we required them in the first place: reliajilit

. analysis, in particular of the peering edge of the network.

To do this, we simulate the failure of edge nodes of the
AT&T backbone, and consider the resulting loads on links
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in the network. Under such failures traffic is rerouted, ancbnnections. Figure 13 shows these results, and we can see
may result in an overload on the network unless it is carngfulthat the errors from the PTMP estimates remain negligille (i
planned. We could also simulate single peering link fadurepractice one typically uses such estimates to predict éutur
but such failures are a subset of the node failures, and so tedfic, and the prediction errors are generally greaten tha

less demanding. Under the failure, the PTMP traffic demandstimation errors found here), while the PTP estimatedtresu
will reroute to alternative exit points, as determined by tlew in average errors up to 8%, but note that in the worst case the
shortest IGP distance. However, the PTP traffic to the nodeRTP estimates result in substantial underestimates ofirike |
question is simply lost, as we have no way of rerouting thisads under the failures (under-estimation is a more sgriou

traffic accurately.
In Figure 12 we compare the link loads on the simulated
network as produced by the estimated, and true traffic matrix 9
Figure 12 (a) shows the results for the PTP traffic matrices.
The results are reasonable for many links, because many are

unaffected, or affected only in a minor way by the routing 7t

changes. However, as might be expected, there are a significa _
number of links for which the loads are underestimated, £

because the traffic to the failed edge node has been dropped 85}
rather than rerouted. In comparison, Figure 12 (b), the same ;4_

picture for the PTMP demands, shows remarkably accurate

problem here than over-estimation).

8t
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results. This is in direct contrast to the larger value of the &3}
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Fig. 13. A comparison between the average errors in the iiyaéinalysis
using PTP (solid line), and PTMP estimates (dashed line).

One natural explanation for the quality of the results lies i
the insight above that sums of the traffic that use the same
routes will be accurately estimated. If such aggregates are
simultaneously moved to the same alternate route, then the
resulting link loads will be accurately estimated. The hssu
above suggests that it is often the case that such aggregates
are shifted to new routes as aggregates, or at least thasthis
a reasonable approximation. In effect the errors are suah th
they mostly cancel, when the estimates are used in this way.
While such a property is not necessarily guaranteed in genera
IP networks, it does appear to be the case on AT&T’s North
American backbone network, and intuition supplied by [29]
supports the idea that this is also the case on other networks

X. CONCLUSION

To summarize, we present a new approach to traffic matrix
estimation for IP networks. We demonstrate on real data
that the method has excellent properties: it is fast, ateura
flexible, and robust. In addition, this paper provides some
insight into the problem of traffic matrix estimation itseli
particular, by testing the method on Rocketfuel topologies
provide some measure of what aspects of a network make the
problem easier or harder: estimates on more highly meshed
networks were more accurate. Further, we found that the
relationship between the traffic volumes and the topology
played a significant role in the accuracy of the estimatesriAp
from this, the method also provides additional insight iato
broad range of approaches to traffic matrix estimation.

To extend these results we consider the failures of 14There is still considerable work to do in this area: for
different edge nodes: those with the largest number of pgeriinstance, the choice of priors is interesting. It is knowatth
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understanding why the methods are so insensitive to thevalu  pp. 1-35, 1994.

; ; ; 5] S.S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decositpn
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