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ABSTRACT

Proximity measures quantify the closeness or similarity between
nodes in a social network and form the basis of a range of appli-
cations in social sciences, business, information technology, com-
puter networks, and cyber security. It is challenging to estimate
proximity measures in online social networks due to their massive
scale (with millions of users) and dynamic nature (with hundreds
of thousands of new nodes and millions of edges added daily). To
address this challenge, we develop two novel methods to efficiently
and accurately approximate a large family of proximity measures.
We also propose a novel incremental update algorithm to enable
near real-time proximity estimation in highly dynamic social net-
works. Evaluation based on a large amount of real data collected
in five popular online social networks shows that our methods are
accurate and can easily scale to networks with millions of nodes.

To demonstrate the practical values of our techniques, we con-
sider a significant application of proximity estimation: link pre-
diction, i.e., predicting which new edges will be added in the near
future based on past snapshots of a social network. Our results re-
veal that (i) the effectiveness of different proximity measures for
link prediction varies significantly across different online social
networks and depends heavily on the fraction of edges contributed
by the highest degree nodes, and (ii) combining multiple proximity
measures consistently yields the best link prediction accuracy.
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H.3.5 [Information Storage and Retrieval]: Online Information
Services—Web-based services; J.4 [Computer Applications]: So-
cial and Behavioral Sciences—Sociology
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1. INTRODUCTION
A social network [53] is a social structure modeled as a graph,

where nodes represent people or other entities embedded in a so-
cial context, and edges represent specific types of interdependency
among entities, e.g., values, visions, ideas, financial exchange, friend-
ship, kinship, dislike, conflict or trade. Understanding the nature
and evolution of social networks has important applications in a
number of fields such as sociology, anthropology, biology, eco-
nomics, information science, and computer science.

Traditionally, studies on social networks often focus on rela-
tively small social networks (e.g., [30, 31] examine co-authorship
networks with about 5000 nodes). Recently, however, social net-
works have gained tremendous popularity in the cyber space. On-
line social networks such as MySpace [40], Facebook [18] and
YouTube [55] have each attracted tens of millions of visitors ev-
ery month [44] and are now among the most popular sites on the
Web [4]. The wide variety of online social networks and the vast
amount of rich information available in these networks represent
an unprecedented research opportunity for understanding the na-
ture and evolution of social networks at massive scale.

A central concept in the computational analysis of social net-
works is proximity measure, which quantifies the closeness or sim-
ilarity between nodes in a social network. Proximity measures form
the basis for a wide range of important applications in social and
natural sciences (e.g., modeling complex networks [6, 13, 25, 42]),
business (e.g., viral marketing [23], fraud detection [11]), informa-
tion technology (e.g., improving Internet search [35], collaborative
filtering [7]), computer networks (e.g., constructing overlay net-
works [45]), and cyber security (e.g., mitigating email spams [22],
defending against Sybil attacks [56]).

Unfortunately, the explosive growth of online social networks
imposes significant challenges on proximity estimation. First, on-
line social networks are typically massive in scale. For example,
MySpace has over 400 million user accounts [41], and Facebook
has reportedly over 120 million active users world wide [19]. As
a result, many proximity measures that are highly effective in rel-
atively small social networks (e.g., the classic Katz measure [26])
become computationally prohibitive in large online social networks
with millions of nodes [48]. Second, online social networks are of-
ten highly dynamic, with hundreds of thousands of new nodes and
millions of edges added daily. In such fast-evolving social net-
works, it is challenging to compute up-to-date proximity measures
in a timely fashion.

Approach and contributions. To address the above challenges,
we develop two novel techniques, proximity sketch and proximity

embedding, for efficient and accurate proximity estimation in large
social networks with millions of nodes. We then augment these
techniques with a novel incremental proximity update algorithm
to enable near real-time proximity estimation in highly dynamic



social networks. Our techniques are applicable to a large family
of commonly used proximity measures, which includes the afore-
mentioned Katz measure [26], as well as rooted PageRank [30, 31]
and escape probability [50]. These proximity measures are known
to be highly effective for many applications [30, 31, 50], but were
previously considered computationally prohibitive for large social
networks [48, 50].

To demonstrate the practical value of our techniques, we con-
sider a significant application of proximity estimation: link pre-

diction, which refers to the task of predicting the edges that will
be added to a social network in the future based on past snap-
shots of the network. As shown in [30, 31], proximity measures
lie right at the heart of link prediction. Understanding which prox-
imity measures lead to the most accurate link predictions provides
valuable insights into the nature of social networks and can serve
as the basis for comparing various network evolution models (e.g.,
[6, 13, 25, 42]). Accurate link prediction also allows online social
networks to automatically make high-quality recommendations on
potential new friends, making it much easier for individual users to
expand their social neighborhood.

We evaluate the effectiveness of our proximity estimation meth-
ods using a large amount of real data collected in five popular online
social networks: Digg [14], Flickr [20], LiveJournal [33], MyS-
pace [40], and YouTube [55]. Our results show that our methods
are accurate and can easily scale to handle large social networks
with millions of nodes and hundreds of millions of edges. We also
conduct extensive experiments to compare the effectiveness of a
variety of proximity measures for link prediction in these online
social networks. Our results uncover two interesting new findings:
(i) the effectiveness of different proximity measures varies signif-
icantly across different networks and depends heavily on the frac-
tion of edges contributed by the highest degree nodes, and (ii) com-
bining multiple proximity measures using an off-the-shelf machine
learning software package consistently yields the best link predic-
tion accuracy.

Paper organization. The rest of the paper is organized as follows.
In Section 2, we develop techniques to efficiently and accurately
approximate a large family of proximity measures in massive, dy-
namic online social networks. In Section 3, we describe link pre-
diction techniques. In Section 4, we evaluate both proximity esti-
mation and link prediction in five popular online social networks.
In Section 5, we review related work. We conclude in Section 6.

2. SCALABLE PROXIMITY ESTIMATION
Proximity measures are the basis for many applications of so-

cial networks. As a result, a variety of proximity measures have
been proposed. The simplest proximity measures are based on ei-
ther the shortest graph distance or the maximum information flow
between two nodes. One can also define proximity measures based
on node neighborhoods (e.g., the number of common neighbors).
Finally, several more sophisticated proximity measures involve in-
finite sums over the ensemble of all paths between two nodes (e.g.,
Katz measure [26], rooted PageRank [30, 31], and escape proba-
bility [50]). Compared with more direct proximity measures such
as shortest graph distances and numbers of shared neighbors, path-
ensemble based proximity measures capture more information about
the underlying social structure and have been shown to be more ef-
fective in social networks with thousands of nodes [30, 31, 50].

Despite the effectiveness of path-ensemble based proximity mea-
sures, it is computationally expensive to summarize the ensemble
of all paths between two nodes. The state of the art in estimat-
ing path-ensemble based proximity measures (e.g., [50]) typically
can only handle social networks with tens of thousands of nodes.
As a result, recent works on proximity estimation in large social

networks (e.g., [48]) either dismiss path-ensemble based proximity
measures due to their prohibitive computational cost or leave it as
future work to compare with these proximity measures.

In this section, we address the above challenge by developing
efficient and accurate techniques to approximate a large family of
path-ensemble based proximity measures. Our techniques can han-
dle social networks with millions of nodes, which are several orders
of magnitude larger than what the state of the art can support. In
addition, our techniques can support near real-time proximity esti-
mation in highly dynamic social networks.

2.1 Problem Formulation
Below we first formally define three commonly used path-ensemble

based proximity measures: (i) Katz measure, (ii) rooted PageRank,
and (iii) escape probability. We then show that all three proxim-
ity measures can be efficiently estimated by solving a common
subproblem, which we term the proximity inversion problem. In
all our discussions below, we model a social network as a graph
G = (V, E), where V is the set of nodes, and E is the set of edges.
G can be either undirected or directed, depending on whether the
social relationship is symmetric.

Katz measure. The Katz measure [26] is a classic path-ensemble
based proximity measure. It is designed to capture the following
simple intuition: the more paths there are between two nodes and
the shorter these paths are the stronger the relationship is (because
there are more opportunities for the two nodes to discover and in-
teract with each other in the social network). Given two nodes
x, y ∈ V , the Katz measure Katz[x, y] is a weighted sum of the
number of paths from x to y, exponentially damped by length to
count short paths more heavily. Formally, we have

Katz[x, y] =

∞
X

ℓ=1

βℓ
Katz · |paths

〈ℓ〉
x,y| (1)

where paths〈ℓ〉x,y is the set of length-ℓ paths from x to y, and β
Katz

is a damping factor.
Let A be the adjacency matrix of graph G, where

A[x, y] =



1, if 〈x, y〉 ∈ E,
0, otherwise.

(2)

As shown in [31], the Katz measures between all pairs of nodes
(represented as a matrix Katz) can be derived as a function of the
adjacency matrix A and the damping factor β

Katz
as follows:

Katz =

∞
X

ℓ=1

βℓ

Katz
Aℓ = (I − β

Katz
A)−1 − I (3)

where I is the identity matrix. Thus, in order to compute Katz, we
just need to compute the matrix inverse (I − β

Katz
A)−1.

Rooted PageRank. The rooted PageRank [30, 31] is a special
instance of personalized PageRank [8,12]. It defines a random walk
on the underlying graph G = (V, E) to capture the probability for
two nodes to run into each other and uses this probability as an
indicator of the node-to-node proximity. Specifically, given two
nodes x, y ∈ V , the rooted PageRank RPR[x, y] is defined as the
stationary probability of y under the following random walk: (i)
with probability 1−β

RPR
, jump to node x, and (ii) with probability

β
RPR

, move to a random neighbor of current node.
The rooted PageRank between all node pairs (represented as a

matrix RPR) can be derived as follows. Let D be a diagonal ma-
trix with D[i, i] =

P

j
A[i, j]. Let T = D−1A be the adjacency

matrix with row sums normalized to 1. We then have:

RPR = (1 − β
RPR

)(I − β
RPR

T )−1
(4)



Therefore, to compute RPR, we just need to compute the matrix
inverse (I −β

RPR
T )−1. Also note that the standard PageRank can

be computed simply as the average of all the columns of RPR.

Escape probability. The escape probability [50] is another path-
ensemble based proximity measure. Given two nodes x, y ∈ V ,
the escape probability EP[x, y] from x to y is defined as the prob-
ability that a random walk which starts from node x will visit node
y before it returns to node x [16]. The escape probability EP[x, y]
can be directly derived from the rooted PageRank as follows.

EP[x, y] =
Q[x, y]

Q[x, x]Q[y, y] − Q[x, y]Q[y, x]
(5)

where matrix Q = RPR/(1 − β
RPR

) = (I − β
RPR

T )−1.
As shown in [16], when the underlying graph G = (V, E) is

undirected, the escape probability EP is also closely related to sev-
eral other random walk induced proximity or distance measures:
effective conductance EC, effective resistance ER, and commute
time CT. Specifically, we have:

EC[x, y] = |N(x)| · EP[x, y] (6)

ER[x, y] = 1/EC[x, y] (7)

CT[x, y] = 2 · |E| · ER[x, y] (8)

The common subproblem: proximity inversion. From the above
discussions, it is evident that the key to estimating all three path-
ensemble based proximity measures is to efficiently compute ele-
ments of the following matrix inverse:

P
△

= (I − βM)−1 =

∞
X

ℓ=0

βℓM ℓ
(9)

where M is a sparse nonnegative matrix with millions of rows and
columns, I is an identity matrix of the same size, and β ≥ 0 is a
damping factor. We term this common subproblem the proximity

inversion problem.

2.2 Scalable Proximity Inversion
The key challenge in solving the proximity inversion problem

(i.e., computing elements of matrix P = (I − βM)−1) is that
while M is a sparse matrix, P is a dense matrix with millions of
rows and columns. It is thus computationally prohibitive to com-
pute and/or store the entire P matrix. To address the challenge,
we first develop two novel dimensionality reduction techniques to
approximate elements of P = (I −βM)−1 based on a static snap-
shot of M : proximity sketch and proximity embedding. We then
develop an incremental proximity update algorithm to approximate
elements of P in an online setting when M continuously evolves.

2.2.1 Preparation

We first present an algorithm to approximate the sum of a subset
of rows or columns of P = (I−βM)−1 efficiently and accurately.
We use this algorithm as a basic building block in both proximity
sketch and proximity embedding.

Algorithm. Suppose we want to compute the sum of a subset of
columns:

P

i∈S
P [∗, i], where S is a set of column indices. We

first construct an indicator column vector v such that v[i] = 1
for ∀i ∈ S and v[j] = 0 for ∀j 6∈ S. The sum of columns
P

i∈S
P [∗, i] is simply P v and can be approximated as:

P v = (I − βM)−1 v =
∞

X

ℓ=0

βℓM ℓ v ≈
ℓmax
X

ℓ=0

βℓM ℓ v (10)

where ℓmax bounds the maximum length of the paths over which
the summation is performed.

Estimate P[x,y] by taking the min upper bound in all H hash tables
k

S [x,g (y)]k
+=P[x,y]

So S  [x,g (y)] gives an upper bound on P[x,y]

P[x,y]

P[x,y] is hashed into entry S  [x,g (y)] in each hash table S  (k=1, ..., H)

Sk

k

m x mP

k

k

k

k

Figure 1: Proximity sketch

Similarly, to compute the sum of a subset of rows
P

i∈S
P [i, ∗],

we first construct an indicator row vector u such that u[i] = 1 for
∀i ∈ S and u[j] = 0 for ∀j 6∈ S. We then approximate the sum of
rows

P

i∈S
P [i, ∗] = u P as:

u P = u (I − βM)−1 =
∞

X

ℓ=0

βℓu M ℓ ≈
ℓmax
X

ℓ=0

βℓu M ℓ
(11)

In one extreme where S contains all the column indices, we can
compute the sum of all columns in P . This is useful for computing
the PageRank (which is the average of all columns in the RPR ma-
trix). In the other extreme where S contains only one element, we
can efficiently approximate a single row or column of P .

Complexity. Suppose M is an m-by-m matrix with n non-zeros.
Computing the product of sparse matrix M and a dense vector v
takes O(n) time by exploiting the sparseness of M . So it takes
O(n · ℓmax) time to compute {M ℓv | ℓ = 1, . . . , ℓmax} and ap-
proximate Pv. Note that the time complexity is independent of the
size of the subset S. The complexity for computing uP is identical.

Note however that the above approximation algorithm is not effi-
cient for estimating individual elements of P . In particular, even if
we only want a single element P [x, y], we have to compute either a
complete row P [x, ∗] or a complete column P [∗, y] in order to ob-
tain an estimate of P [x, y]. So we only apply the above technique
for preprocessing. We will develop several techniques in the rest of
this section to estimate individual elements of P efficiently.

Benefits of truncation. We achieve two key benefits by trun-
cating the infinite expansion

P∞
ℓ=0 βℓM ℓ to form a finite expan-

sion
Pℓmax

ℓ=0 βℓM ℓ. First, we completely eliminate the influence of
paths with length above ℓmax on the resulting sums. This is desir-
able because as pointed out in [30,31], proximity measures that are
unable to limit the influence of overly lengthy paths tend to perform

poorly for link prediction. Second, we ensure that
Pℓmax

ℓ=0 βℓM ℓ is

always finite, whereas elements of
P∞

ℓ=0 βℓM ℓ may reach infinity
when the damping factor β is not small enough.

2.2.2 Proximity Sketch

Our first dimensionality reduction technique, proximity sketch,
exploits the mice-elephant phenomenon that frequently arises in
matrix P in practice, i.e., most elements in P are tiny (i.e., mice)
but few elements are huge (i.e., elephants).

Algorithm. Figure 1 shows the data structure for our proximity
sketch, which consists of H hash tables: S1, · · · , SH . Each Sk

is a 2-dimensional array with m rows and c ≪ m columns. A
column hash function gk : {1, · · · , m} → {1, · · · , c} is used to
hash each element in Pm×m (P [x, y]) into an element in S

k m×c

(Sk[x, gk(y)]). We ensure that different hash functions gk(·) (k =
1, · · · , H) are two-wise independent. In each Sk, each element
P [x, y] is added to entry Sk[x, gk(y)]. Thus,

Sk[a, b] =
X

y: gk(y)=b

P [a, y] (12)



Note that each column of Sk: Sk[∗, b] =
P

y:gk(y)=b
P [∗, y] can

be computed efficiently as described in Section 2.2.1.
Since P is a nonnegative matrix, for any x, y ∈ V and any k ∈

[1, H ], Sk[x, gk(y)] is an upper bound for P [x, y] according to
Eq. 12. We can therefore estimate P [x, y] by taking the minimum
upper bound in all H hash tables in O(H) time. That is:

P̂ [x, y] = min
k

Sk[x, gk(y)] (13)

Probabilistic accuracy guarantee. Our proximity sketch effec-
tively summarizes each row of P : P [x, ∗] using a count-min sketch

[10]: {Sk[x, ∗] | k = 1, · · · , H}. As a result, we provide the same
probabilistic accuracy guarantee as the count-min sketch, which is
summarized in the following theorem (see [10] for detailed proof).

THEOREM 1. With H = ⌈ln 1
δ
⌉ hash tables, each with c = ⌈ e

ǫ
⌉

columns, the estimate P̂ [x, y] guarantees: (i) P [x, y] ≤ P̂ [x, y];

and (ii) with probability at least 1 − δ, P̂ [x, y] ≤ P [x, y] + ǫ ·
P

z
P [x, z].

Therefore, as long as P [x, y] is much larger than ǫ ·
P

z
P [x, z],

the relative error of P̂ [x, y] is small with high probability.

Extension. If desired, we can further reduce the space requirement
of proximity sketch by aggregating the rows of Sk (at the cost of
lower accuracy). Specifically, we associate each Sk with a row hash
function fk(·). We then compute

Rk[a, b] =
X

x: fk(x)=a

Sk[x, b] (14)

and store {Rk} (instead of {Sk}) as the final proximity sketch.
Clearly, we have Rk[a, b] =

P

x: fk(x)=a

P

y: gk(y)=b
P [x, y]. For

any x, y ∈ V , we can then estimate P [x, y] as

P̂ [x, y] = min
k

Rk[fk(x), gk(y)] (15)

2.2.3 Proximity Embedding

Our second dimensionality reduction technique, proximity em-

bedding, applies matrix factorization to approximate P as the prod-
uct of two rank-r factor matrices U and V :

Pm×m ≈ Um×r · Vr×m (16)

In this way, with O(2 mr) total state for factor matrices U and V ,
we can approximate any P [x, y] in O(r) time as:

P̂ [x, y] =
r

X

k=1

U [x, k] · V [k, y] (17)

Our technique is motivated by recent research on embedding net-
work distance (e.g., end-to-end round-trip time) into low-dimensional
space (e.g., [32, 34, 43, 49]). Note however that proximity is the
opposite of distance — the lower the distance the higher the prox-
imity. As a result, techniques effective for distance embedding do
not necessarily work well for proximity embedding.

Algorithm. As shown in Figure 2(a), our goal is to derive the
two rank-r factor matrices U and V based on only a subset of rows
P [L, ∗] and columns P [∗, L], where L is a set of indices (which
we term the landmark set). We achieve this goal by taking the
following five steps:

1. Randomly select a subset of ℓ nodes as the landmark set L. The
probability for a node i to be included in L is proportional to
the PageRank of node i in the underlying graph1. Note that

1We also consider uniform landmark selection, but it yields worse
accuracy than PageRank based landmark selection (see Section 4).

~

~~~~ *
~~ *P[L,L]

U
[L

,*
]

V[*,L] P[*,L]
V[*,L]

P U

V

U

P[L,*] ~~ *

U
[L

,*
]

V

(b) factorize P[L,L] to get U[L,*], V[*,L]

(c) obtain U from P[*,L] and V[*,L]

(d) obtain V from P[L,*] and U[L,*]

     by only computing a subset of rows P[L,*] and columns P[*,L]
(a) goal: approximate P as the product of two rank−r matrices U, V

*U
[L

,*
]

V[*,L]~
P[L,L] P[L,*]

P[*,L]

Figure 2: Proximity embedding

the PageRank for all the nodes can be precomputed efficiently
using the finite expansion method in Section 2.2.1.

2. Compute sub-matrices P [L, ∗] and P [∗, L] efficiently by com-
puting each row P [i, ∗] and each column P [∗, i] (i ∈ L) sepa-
rately as described in Section 2.2.1.

3. As shown in Figure 2(b), apply singular value decomposition
(SVD) to obtain the best rank-r approximation of P [L, L]:

P [L, L] ≈ U [L, ∗] · V [∗, L] (18)

4. Our goal is to find U and V such that U · V is a good approx-
imation of P . As a result, U · V [∗, L] should be a good ap-
proximation of P [∗, L]. We can therefore find U such that U ·
V [∗, L] best approximates sub-matrix P [∗, L] in least-squares
sense (shown in Figure 2(c)). Given the use of SVD in step 3,
the best U is simply

U = P [∗, L] · V [∗, L]T · (V [∗, L] · V [∗, L]T )−1
(19)

5. Similarly, find V such that U [L, ∗] · V best approximates sub-
matrix P [L, ∗] in least-squares sense (shown in Figure 2(d)),
which is simply

V = (U [L, ∗]T · U [L, ∗])−1 · U [L, ∗]T · P [L, ∗] (20)

Accuracy. Unlike proximity sketch, proximity embedding does
not provide any provable data-independent accuracy guarantee. How-
ever, as a data-adaptive dimensionality reduction technique, when
matrix P is in fact low-rank (i.e., having good low-rank approxima-
tions), proximity embedding has the potential to achieve even better
accuracy than proximity sketch. Our empirical results in Section 4
suggest that this is indeed the case for the Katz measure.

2.2.4 Incremental Proximity Update

To enable online proximity estimation, we periodically check-
point M and use the above dimensionality reduction techniques to
approximate P for the last checkpoint of M . Between two check-
points, we apply an incremental update algorithm to approximate
P ′ = (I − β · M ′)−1, where M ′ = M + ∆ is the current matrix.
Our algorithm is based on the second-order approximation of P ′:

P ′ = [I − β(M + ∆)]−1

≈ (I − βM)−1 + β ∆ + β2 (∆M + M∆ + ∆2) (21)



The second-order approximation works well as long as ∆ has
only few non-zero elements and β is small, making higher order
terms negligible.

To estimate an individual element P ′[x, y], we simply use:

P ′[x, y] ≈ P [x, y] + β∆[x, y] +
X

k:∆[x,k] 6=0

β2∆[x, k]M [k, y]+

X

k: ∆[k,y] 6=0

β2M [x, k]∆[k, y] +
X

k: ∆[x,k] 6=0

β2∆[x, k]∆[k, y] (22)

If we checkpoint M frequently enough, the difference between
the last checkpoint M and the current matrix M ′ will be quite
small. In other words, the difference matrix ∆ is likely to be sparse.
As a result, we expect row ∆[x, ∗] and column ∆[∗, y] to have few
non-zero elements. By leveraging such sparseness, we can effi-
ciently compute Eq. 22 in an online fashion. We demonstrate the
efficiency and accuracy of our incremental proximity update algo-
rithm in Section 4.2.3.

3. LINK PREDICTION TECHNIQUES
We use link prediction as a significant application of our proxim-

ity estimation methods. Our goal is to understand (i) the effective-
ness of various proximity measures in the context of link prediction,
and (ii) the benefit of combining multiple proximity measures. In
this section, we summarize the link predictors and the proximity
measures we use.

3.1 Link Predictors
We consider two types of link predictors: (i) basic link predic-

tor that uses a single proximity measure, and (ii) composite link

predictor that uses multiple proximity measures.

Basic link predictors. A basic link predictor consists of a prox-
imity measure prox[∗, ∗], and a threshold T . Given an input graph
G = (V, E) (which models a past snapshot of a given social net-
work), a node pair 〈x, y〉 6∈ E is predicted to form an edge in the
future if and only if the proximity between x and y is sufficiently
large, i.e., prox[x, y] ≥ T .

Composite link predictors. A composite link predictor uses ma-
chine learning techniques to make link predictions based on multi-
ple proximity measures. We use the WEKA machine learning pack-
age [21] to automatically generate composite link predictors using
a number of machine learning algorithms, including the REPtree
decision tree learner, J48 decision tree learner, JRip rule learner,
support vector machine (SVM) learner, and Adaboost learner. The
results are consistent across different learners we use. So we only
report the results of the REPtree decision tree learner. REPtree is
a variant of the commonly used C4.5 decision tree learning algo-
rithm [46]. It builds a decision tree using information gain and
prunes it using reduced error pruning. It allows direct control on
the depth of the learned decision tree, making it easy to visualize
and interpret the resulting composite link predictor.

3.2 Proximity Measures
We consider three classes of proximity measures summarized in

Table 1, which are based on (i) graph distance, (ii) node neighbor-
hood, and (iii) ensemble of paths, respectively.

Notations. We model a social network as a graph G = (V, E),
where V is the set of nodes, and E is the set of edges. G can be ei-
ther directed or undirected. For a node x, let N(x) = {y|〈x, y〉 ∈
E} be the set of neighbors x has in G. Similarly, let N−1(x) =
{y|〈y, x〉 ∈ E} be the set of inverse neighbors x has in G (i.e.,
nodes that have x as their neighbors). Let A be the adjacency ma-
trix for G (defined in Eq. 2). Let T = D−1A be the adjacency

graph distance GD[x, y] = negated distance of the shortest
path from x to y

common neighbors CN[x, y] = |N(x) ∩ N(y)|

Adamic/Adar AA[x, y] =
P

z∈N(x)∩N(y)
1

log |N(z)|

preferential attachment PA[x, y] = |N(x)| · |N(y)|
PageRank product PRP[x, y] = PR(x) · PR(y), where

PR(x) = 1−d
|V |

+ d
P

z∈N−1(x)
PR(z)
|N(x)|

Katz Katz[x, y] =
P∞

ℓ=1 βℓ · |paths
〈ℓ〉
x,y|

we have: Katz = (I − βA)−1 − I

Table 1: Summary of proximity measures

matrix with row sums normalized to 1, where D is a diagonal ma-
trix with D[i, i] =

P

j
A[i, j].

Graph distance based proximity measure. Perhaps the most di-
rect metric for quantifying how close two nodes are is the graph

distance. We thus define a proximity measure GD[x, y] as the neg-
ative of the shortest-path distance from x to y. Note that the use of
negated (instead of original) shortest-path distance ensures that the
proximity measure GD[x, y] increases as x and y get closer.

Note that it is inefficient to apply Dijkstra’s algorithm to com-
pute shortest path distance from x to y when G has millions of
nodes. Instead, we exploit the small-world property [27] of the so-
cial network and apply expanded ring search to compute the short-
est path distance from x to y. Specifically, we initialize S = {x}
and D = {y}. In each step we either expand set S to include its
members’ neighbors (i.e., S = S ∪ {v|〈u, v〉 ∈ E ∧ u ∈ S})
or expand set D to include its members’ inverse neighbors (i.e.,
D = D∪{u|〈u, v〉 ∈ E∧v ∈ D}). We stop whenever S ∩D 6= ∅
— the number of steps taken so far gives the shortest path distance.
For efficiency, we always expand the smaller set between S and D
in each step. We also stop when a maximum number of steps is
reached (set to 6 in our evaluation).

Node neighborhood based proximity measures. We define four
proximity measures based on node neighborhood.

• Common neighbors. For two nodes x and y, they are more
likely to become friends when the overlap of their neighbor-
hoods is large. The simplest form of this approach is to count
the size of the intersection: CN[x, y] = |N(x) ∩ N(y)|.

• Adamic/Adar. Like common neighbors, Adamic/Adar [1] also
tries to measure the size of the intersection of two neighbor-
hoods. However, Adamic/Adar also takes ”rareness” into ac-
count, giving more weights to the common node with smaller
number of friends: AA[x, y] =

P

z∈N(x)∩N(y)
1

log |N(z)|
.

• Preferential attachment. The preferential attachment is based
on the idea that having a new neighbor is proportional to the
size of the current neighborhood. Moreover, the probability of
two users becoming friends is proportional to the product of the
number of the current friends. We therefore define a proximity
measure: PA[x, y] = |N(x)| · |N(y)|.

• PageRank product. PageRank is developed to analyze the hy-
perlink structure of Web pages by treating a hyperlink as a vote.
The PageRank of a node depends on the count of inbound links
and the PageRank of outbound neighbors. Formally, the PageR-
ank of a node x, denoted as PR(x), is defined recursively on
G = (V, E) as

PR(x) =
1 − d

|V |
+ d

X

z∈N−1(x)

PR(z)

|N(x)|
(23)

where d is a damping factor. We define the PageRank product
of two nodes x and y as the product of two PageRank values:
PRP[x, y] = PR(x) · PR(y).



Path-ensemble based proximity measures. We use the Katz
measure (Katz[x, y]) as a path-ensemble based proximity measure
(described in Section 2.1). We use the Katz measure as the repre-
sentative of path-ensemble based proximity measures for two main
reasons. First, as shown in [30, 31], the Katz measure is the more
effective than other path-ensemble based proximity measures such
as the rooted PageRank. Second, our results in Section 4 show that
the accuracy of our proximity estimation methods is the highest for
the Katz measure.

4. EVALUATION

4.1 Dataset Description

Snapshot # of Conn- # of # of Added Asymmetric
Network Date ected Nodes Links Links Link Fraction

Digg 9/15/2008 535,071 4,432,726 –
10/25/2008 567,771 4,813,668 656,478 58.3%
11/10/2008 567,771 4,941,401 175,958

Flickr 3/01/2007 1,932,735 26,702,209 –
4/15/2007 2,172,692 30,393,940 3,691,731 37.8%
5/18/2007 2,172,692 32,399,243 2,005,303

Live- 11/13/2008 1,769,493 61,488,262 –
Journal 12/05/2008 1,769,543 61,921,736 1,566,059 28.3%

1/30/2009 1,769,543 62,843,995 3,093,064
MySpace 12/11/2008 2,128,945 89,138,628 –

1/11/2009 2,137,773 90,629,452 1,845,898 0%
2/14/2009 2,137,773 89,341,780 696,016

YouTube 4/30/2007 2,012,280 9,762,825 –
6/15/2007 2,532,050 13,017,064 3,254,239 0%
7/23/2007 2,532,050 15,337,226 2,320,162

Wikipedia 9/30/2006 1,636,961 28,950,137 –
12/31/2006 1,758,323 33,974,708 5,024,571 83.1%
4/06/2007 1,758,323 38,349,329 4,374,621

Table 2: Dataset summary

We carry out our evaluation on five popular online social net-
works: Digg [14], Flickr [20], LiveJournal [33], MySpace [40],
and YouTube [55]. For comparison, we also examine the hyperlink
structure of Wikipedia [54]. For each network, we conduct three
crawls and make three snapshots of the network. Table 2 summa-
rizes the characteristics of the three snapshots for each of the net-
works. Note that, for the purpose of link prediction, we only use
connected nodes (i.e., nodes with at least one incoming or outgoing
friendship link), rather than considering all the crawled nodes. An-
other point to note is that since link prediction implies that based
on one snapshot of the network, we predict the new links that are
formed in the next snapshot, the same set of users should appear
in two consecutive snapshots. Hence, for a growing network, the
number of users appearing in the last snapshot that we create may
be less than the total number of users (to match the previous snap-
shot). Lastly, although there can be both link additions and dele-
tions between two snapshots, since the goal of link prediction is
to predict those that get added, we explicitly show the number of
added links between two consecutive snapshots in Table 2.

Digg [14] is a website for users to share interesting Web content by
posting a link to it. The posted link can be voted as either positive
(“digg”) or negative (“bury”) by other users. Digg allows a user to
become a “fan” of other users, which we consider as a friendship
relation. All the friendship links together form a directed social
graph. Overall, 58.3% directly connected user pairs in Digg have
asymmetric friendship (i.e., friendship link only exists in one direc-
tion between two users). We obtained the entire list of 1.9 million
users in September 2008. We crawled friendship links among these
users using the Digg API [15] in September 2008, October 2008,
and November 2008. The resulting snapshots contain more than

500,000 connected users (i.e., users with at least one incoming or
outgoing friendship link) out of 1.9 million crawled users.

Flickr [20] is a popular photo-sharing website. Flickr allows users
to add other people as “contacts” to form a directed social link. We
use the Flickr dataset collected by [36], which represents a breadth
first search on the graph from a set of seed users. The dataset gives
the growth of Flickr for 104 days and contains 33 million links
among 2.3 million users. We treat the first 25 days as the boot-
strap period to ensure that the crawl has sufficiently stabilized. We
then partition the remaining dataset into three snapshots separated
approximately by 40 days each. Note that, the third snapshot of
Flickr contains links for the same 2.17 million users that appear in
the second snapshot (and not the entire 2.3 million users).

LiveJournal [33] is a Web community that allows its users to
post entries to personal journals. LiveJournal also acts as a so-
cial networking site, where a user can become a “fan” of another
LiveJournal user. We consider this “fan” relationship as a directed
friendship link in the social graph. Since LiveJournal does not pro-
vide a complete list of users, we obtained a list of active users who
have published posts by analyzing periodic RSS announcements of
recently updated journals starting from July 2008. We then used
the LiveJournal API to gather friendship information of 2.2 mil-
lion active users in November 2008, December 2008, and January
2009. The resulting snapshots have about 1.8 million connected
users who have non-zero friendship links.

MySpace [40] is a social networking site where users can inter-
act with each other by personalizing pages, commenting on others’
photos and videos, and making friends. For two MySpace users to
become friends, both parties have to agree. Therefore, the social
links in MySpace are undirected and thus symmetric. We crawled
10 million MySpace users out of over 400 million users by taking
the first 10 million user IDs in December 2008, January 2009, and
February 2009. After discarding all the inactive, deleted, private,
and solitary MySpace IDs, we get information for approximately
2.1 million users in each resulting snapshot.

YouTube [55] is a popular video-sharing website. Registered users
can connect with others by creating friendship links. We use the
undirected version of the social graph collected by [36], which cov-
ers the growth of YouTube for 165 days with 18 million added links
among 3.2 million users. We divide the dataset into three snapshots
separated by 45 days each. Note that the third snapshot of YouTube
in Table 2 contains links for 2.5 million users that also appear in the
second snapshot (and not the entire 3.2 million users).

Wikipedia [54] is an online encyclopedia which takes users’ col-
laboration to build content. Different wiki pages are connected
through hyperlinks. We compare Wikipedia’s hyperlink structure
against social graphs of users from the previous five online social
networks. Similar to general Web pages, most links in Wikipedia
are asymmetric. We use the data collected by [36] over a six-year
period from 2001 to 2007, which contains 38 million links con-
necting 1.8 million pages. We extract three snapshots separated
approximately by 90 days each.

4.2 Proximity Estimation Algorithms
In this section, we evaluate the accuracy and scalability of our

proximity estimation methods using the above six datasets. We
present results for Katz and RPR (defined in Section 2). The ac-
curacy for escape probability (EP) is similar to RPR (due to their
close relationship in Eq. 5) and is omitted in the interest of brevity.

Accuracy metrics. We quantify the estimation error using three
different metrics: (i) Normalized Absolute Error (NAE) (defined

as
|esti−actuali|
meani(actuali)

), (ii) Normalized Mean Absolute Error (NMAE)

(defined as
P

i
|esti−actuali|
P

i
actuali

), and (iii) Relative Error (defined as



Network PageRank based selection Uniform selection

Digg 0.00015 0.00023
Flickr 0.00010 0.00238
LiveJournal 0.01222 0.07322
MySpace 0.00016 0.00032
YouTube 0.02115 0.05410
Wikipedia 0.00266 0.00328

Table 3: NMAE of different landmark selection schemes.

|esti−actuali|
actuali

), where esti and actuali denote the estimated and

actual values of the proximity measure for node pair i, respectively.
Since it is expensive to compute the actual proximity measures

over all the data points, we randomly sample 100,000 data points
by first randomly selecting 200 rows from the proximity matrix
and then selecting 500 elements from each of these rows. We then
compute errors for these 100,000 data points.

4.2.1 Proximity Embedding

We first evaluate the accuracy of proximity embedding. We aim
to answer the following questions: (i) How accurate is proximity
embedding in estimating Katz and RPR? (ii) How many dimen-
sions and landmarks are required to achieve high accuracy? (iii)
How does the landmark selection algorithm affect accuracy?

Parameter settings. Throughout our evaluation, we use a damp-
ing factor of β = 0.05, ℓmax = 6, and 1600 landmarks unless
otherwise specified. We also vary these parameters to understand
their impact. By default, we select landmarks based on the PageR-
ank of each node. Specifically, we first compute PageRank for each
node and normalize the sum of PageRank of all nodes to 1. We then
use the normalized PageRank as the probability of assigning a node
as a landmark. In this way, nodes with high PageRank values are
more likely to become landmarks. For comparison, we also exam-
ine the performance of uniform landmark selection, which selects
landmarks uniformly at random.

Varying the number of dimensions. Figure 3 plots the CDF of
normalized absolute errors in approximating the Katz measure as
we vary the number of dimensions from 5 to 60. We make the fol-
lowing two key observations. First, for all six datasets the normal-
ized absolute error is small: in more than 95% cases the normal-
ized absolute error is within 0.05 and NMAE is within 0.05 except
YouTube. The error in YouTube is higher because its “intrinsic” di-
mensionality is higher as analyzed in Figure 6 (see below). Second,
as we would expect, the error decreases with the number of dimen-
sions. The reduction is more significant in the YouTube dataset,
because the other datasets have very low “intrinsic” dimensional-
ity and using only 5 dimensions already gives low approximation
error, whereas YouTube has higher “intrinsic” dimensionality and
increasing the number of dimensions is more helpful.

Relative errors. Figure 4 further plots the CDF of relative errors
using 60 dimensions. We take top 1%, 5%, and 10% of the ran-
domly selected data points and generate the CDF for each of the
selections. In all datasets, we observe that the relative errors are
smaller for elements with larger values. This is desirable because
larger elements play a more important role in many applications
and are thus more important to estimate accurately.

Uniform landmark selection. Table 3 compares the NMAE of
PageRank based landmark selection and uniform selection. PageR-
ank based selection yields higher accuracy than uniform selection.
It reduces NMAE by 35% for Digg, 95.8% for Flickr, 83.3% for
LiveJournal, 50% for MySpace, 61% for YouTube, and 19% for
Wikipedia. The reason is that high-PageRank nodes are well con-
nected, and it is less likely for nodes to be far away from all such
landmarks, thereby improving the estimation accuracy.

Threshold for Large Katz Values
Network 1% row sum 0.1% row sum 0% row sum

Digg 0.0562 0.0650 0.0002
Flickr 0.2177 0.2505 0.0001
LiveJournal 0.9872 0.2516 0.0122
MySpace 0.0532 0.0650 0.0002
YouTube 0.0074 0.0054 0.0212
Wikipedia 0.0039 0.0001 0.0027

(a) NMAE of proximity embedding

Threshold for Large Katz Values
Network 1% row sum 0.1% row sum 0% row sum

Digg 0.0001 0.3209 211.5
Flickr 0.0048 0.0293 1116.3
LiveJournal 0.0012 0.0113 1383.2
MySpace 0.0041 0.0360 1451.1
YouTube 0.0495 0.3769 1141.3
Wikipedia 0.0114 0.2645 647.3

(b) NMAE of proximity sketch

Table 4: Comparing proximity embedding and proximity

sketch in estimating large Katz values.

Threshold for Large RPR Values
Network 1% row sum 0.1% row sum 0% row sum

Digg 0.6662 2.0008 0.7933
Flickr 0.7285 1.6385 1.0000
LiveJournal 1.4491 7.2752 0.9980
MySpace 1.0916 6.6324 0.9984
YouTube 0.7068 1.1952 1.0635
Wikipedia 1.4429 5.7987 0.7208

(a) NMAE of proximity embedding

Threshold for Large RPR Values
Network 1% row sum 0.1% row sum 0% row sum

Digg 0.0031 0.0247 131.8
Flickr 0.0006 0.0019 717.6
LiveJournal 0.0042 0.0296 500.2
MySpace 0.0038 0.0269 853.0
YouTube 0.0019 0.0110 486.3
Wikipedia 0.0046 0.0265 619.7

(b) NMAE of proximity sketch

Table 5: Comparing proximity embedding and proximity

sketch in estimating large RPR values.

Varying the number of landmarks. Figure 5 shows the NMAE
as we vary the number of landmarks. As before, we use PageRank
based landmark selection. For all the datasets that we use, NMAE
values decrease with the number of landmarks. The decrease is
sharp when the number of landmarks is small, and then tapers off
as the number of landmarks reaches 100-200. In all cases, 1600
landmarks are large enough and further increasing the value yields
only marginal benefit if any.

Estimating large Katz values. Table 4(a) shows the accuracy
of proximity embedding in estimating Katz values larger than 1%,
0.1% and 0% of their corresponding row sums in the Katz matrix.
As we can see, for elements larger than 0, the NMAE is low (the
largest one is 0.0212 for YouTube). In comparison, for elements
larger than 1% and 0.1% of the row sums, the NMAE is often larger
(e.g., the corresponding values for LiveJournal are 0.98 and 0.25).
Manual inspection suggests that many Katz values larger than 1%
of row sum involve a direct link between two nodes in an isolated
island of the network that cannot reach any landmarks. For such
node pairs, the proximity embedding yields an estimate of 0, thus
seriously inflating the NMAE. Fortunately, large Katz values are
quite rare in each row. As a result, the NMAE is low when we
consider all elements in the Katz matrix.

Estimating large Rooted PageRank values. Table 5(a) shows the
accuracy of proximity embedding in estimating Rooted PageRank
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(d) MySpace

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  0.1  0.2  0.3  0.4  0.5

C
D

F

Normalized Absolute Errors

5 Dims (NMAE=0.77)
10 Dims (NMAE=0.43)
20 Dims (NMAE=0.24)
30 Dims (NMAE=0.10)
60 Dims (NMAE=0.02)

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  0.1  0.2  0.3  0.4  0.5

 

 

 
 
 
 
 

(e) YouTube
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(f) Wikipedia

Figure 3: Normalized absolute errors with a varying number of dimensions (Katz measure, β = 0.05, and 1600 landmarks).
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(d) MySpace
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(e) YouTube
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Figure 4: Relative errors for top 1%, 5%, and 10% largest values (Katz measure, β = 0.05, 1600 landmarks, and 60 dimensions).

values larger than 1%, 0.1%, and 0% of their corresponding row
sums in the RPR matrix. We observe that the NMAE for RPR is
much larger than the NMAE for Katz.

To understand why proximity embedding performs well on Katz
but not on RPR, we plot the fraction of total variance captured by
the best rank-k approximation to the inter-landmark proximity ma-
trices Katz[L, L] and RPR[L, L] in Figure 6, where L is the set of
landmarks. Note that the best rank-k approximation to a matrix can
be easily computed through the use of singular value decomposi-
tion (SVD). The smaller the number of dimensions (i.e., k) it takes
to capture most variance of the matrix, the lower the “intrinsic” di-
mensionality the matrix has. As we can see, for LiveJournal, even

3 dimensions can capture over 99% variance for Katz, whereas it
takes 1580 dimensions to achieve similar approximation accuracy
for rooted PageRank. This indicates that the RPR matrix is not low-
rank, whereas the Katz matrix exhibits low-rank property, which
makes proximity embedding work well.

4.2.2 Proximity Sketch

Now we evaluate the accuracy of proximity sketch. We use H =
3 hash tables and c = 1600 columns in each table.

Estimating large Katz values. Table 4(b) shows the NMAE of
proximity sketch in estimating Katz values larger than 1%, 0.1%,
and 0% of row sum. Comparing Table 4(a) and (b), we observe
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Figure 5: NMAE comparison of different number of landmarks under PageRank based landmark selection.
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(f) Wikipedia

Figure 6: Fraction of total variance captured by the best rank-k approximation to inter-landmark proximity matrices Katz[L, L]
and RPR[L, L].

that proximity sketch generally performs better than proximity em-
bedding for large values (i.e., greater than 1% of row sums), and
performs worse for small values (i.e., greater than 0.1% and 0 of
row sums). This is consistent with our expectation, since prox-
imity sketch is designed to approximate large elements. This also
suggests that the two algorithms are complimentary and we can po-
tentially have a hybrid algorithm that chooses the results among the
two algorithms based on the magnitude of the estimated values.

Estimating large Rooted PageRank values. Table 5(b) shows
the NMAE of proximity sketch in estimating RPR. As for Katz,
proximity sketch yields lower error than proximity embedding for
large elements (i.e., larger than 1%, and 0.1% of row sums) and
higher error for small elements (i.e., larger than 0). This confirms
that proximity sketch is effective in estimating large elements.

4.2.3 Incremental Proximity Update

Next, we evaluate the accuracy of our incremental proximity up-
date algorithm. We use two checkpoints of crawl data that differ
by one day: May 17–18, 2007 for Flickr, July 22–23, 2007 for
YouTube, and April 5–6, 2007 for Wikipedia. The one-day gap
between two checkpoints yields 0.3%, 0.5%, and 0.05% difference
between M and M ′ for Flickr, YouTube, and Wikipedia, respec-

tively. We do not use LiveJournal, MySpace, and Digg, since we
have no checkpoints that are one day apart for these sites.

Figure 7 plots the CDF of normalized absolute errors and relative
errors for the Katz measure using the incremental update algorithm
in conjunction with proximity embedding (denoted as “Embed +
inc. updates”). For comparison, we also plot the errors of using
proximity embedding alone (denoted as “Prox. embedding only”).
As we can see, the curves corresponding to incremental update are
very close to those of proximity embedding. This indicates that
we can use the incremental algorithm to efficiently and accurately
update the proximity matrix as M changes dynamically and only
re-compute the proximity matrix periodically over multiple days.

4.2.4 Scalability

Table 6 shows the computation time for proximity embedding,
proximity sketch, incremental proximity embedding, common neigh-
bor, and shortest path computation. The measurements are taken on
an Intel Core 2 Duo 2.33GHz machine with 4GB memory running
Ubuntu Linux kernel v2.6.24. We explicitly distinguish the query
time for positive and negative samples – A node pair 〈A,B〉 is con-
sidered a positive sample if there is a friendship link from A to B;
otherwise it is considered a negative sample.
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(d) YouTube, relative errors, top 10%

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  0.02  0.04  0.06  0.08  0.1

C
D

F

Normalized Absolute Errors

Embed. + Inc. update (NMAE=0.00)
Prox. embedding only (NMAE=0.00)

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  0.02  0.04  0.06  0.08  0.1

 

 

 
 

(e) Wikipedia, normalized absolute error

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0  0.1  0.2  0.3  0.4  0.5

C
D

F

Relative Errors

Embed. + Inc. update
Prox. embedding only

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0  0.1  0.2  0.3  0.4  0.5

 

 

 
 

(f) Wikipedia, relative errors, top 10%

Figure 7: Normalized absolute errors and relative errors of incremental update algorithm, Katz measure.

We make several observations. First, the query time for both
proximity embedding and proximity sketch is small, even smaller
than common neighbor and shortest path computation, which are
traditionally considered much cheaper operations than computing
Katz measure. Second, the preprocessing time of proximity sketch
and proximity embedding increases linearly with the number of
links in the dataset. As preprocessing can be done in parallel, we
use the Condor system [17] for datasets with a large number of
links. Running preprocessing step simultaneously from 150 ma-
chines, we observe that the total preprocessing time goes down to
less than 30 minutes, even for large networks such as MySpace
and LiveJournal. Furthermore, the pre-processing only needs to
be done periodically (e.g., once every few days). For symmet-
ric networks, such as MySpace and YouTube, proximity embed-
ding only needs to compute either P [L, ∗] or P [∗, L], reducing the
preparation time to half of that of proximity sketch. Finally, the in-
cremental proximity update algorithm eliminates pre-computation
time at the cost of increased query time. However, even the in-
creased query time is much smaller than shortest path computation.
These results demonstrate the scalability of our approaches.

4.2.5 Summary

To summarize, our evaluation shows that proximity embedding
and proximity sketch are complementary: the former is more accu-
rate in estimating random samples, whereas the latter is more effec-
tive in estimating large elements. Comparing Katz and RPR, prox-
imity embedding yields much more accurate estimation for Katz
than for RPR due to the low-rank property in the Katz matrix. In
particular, proximity embedding yields highly accurate Katz esti-
mation for random samples (achieving NMAE of within 0.02).

Note that for the purpose of link prediction, it is insufficient to
only estimate few large Katz values because (i) more than 15% of
node pairs having Katz measure greater than 0.1% of row sums
already have friendship (i.e., links) and (ii) for the remaining 85%
node pairs, which are not already friends, the probability of node-
pairs with the large Katz values becoming friends is only 0.21%,
whereas the average probability of random node-pairs becoming
friends is 10.57%. So we use proximity embedding for estimating
Katz for link prediction in Section 4.3.

4.3 Link Prediction Evaluation

4.3.1 Evaluation Methodology

In the friendship link prediction problem, we construct the pos-
itive set as the set of user pairs that were not friends in the first
snapshot, but become friends in the second snapshot. The negative
set consists of user pairs that are friends in neither snapshots.

Metrics. We measure link prediction accuracy in terms of false

negative rate (FN), and false positive rate (FP):

FN =
#of missed friend links

#of new-friend links

FP =
#of incorrectly predicted friend links

#of non-friend links

We also observe that not all proximity measures are applicable to
all node pairs. For example, common neighbor is applicable only
when nodes are two hops away. Thus we introduce another metric,
called applicable ratio (AR), which quantifies the fraction of node
pairs for which a given proximity measure is non-zero.

Training and testing datasets. As shown earlier, we create three
snapshots of friendship networks (S1, S2, and S3) for each net-
work in Table 2. We train link predictors by analyzing the differ-
ences in link relations of between S1 and S2, and predict who will
likely make friendship relations in S3. Therefore, the training set is
based on the period from S1 to S2, and the testing set is based on
the period from S2 to S3. Note that we only consider the common
users of the two snapshots when we count the new friendship links.
Since friendship relations in our datasets are very sparse, we sam-
ple about 50,000 positives and 200,000 negatives for both training
and testing purposes.

Link predictors. We evaluate basic link predictors based on the
following three classes of proximity measures.

• Distance based predictor: graph distance (GD).

• Node neighborhood based predictors: common neighbors (CN),
Adamic/Adar (AA), preferential attachment (PA), and PageR-
ank product (PRP).

• Path-ensemble based predictor: Katz (Katz).



Dataset proximity embedding proximity sketch Incremental update Common neighbor Shortest path distance
Job type Preprocess Query Preprocess Query Query Query Query
Sample type Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg

Digg 1.08hrs 0.1µs 0.1µs 1.16hrs 0.3µs 0.2µs 70.3µs 21.1µs 15.0µs 12.0µs 149.2µs 132.5µs
Flickr 4.26hrs 47.9µs 11.8µs 4.88hrs 45.2µs 32.5µs 1061.4µs 457.7µs 478.9µs 118.0µs 3111.1µs 1720.4µs
LiveJournal 8.29hrs 14.6µs 13.7µs 8.71hrs 15.1µs 13.4µs 2528.7µs 734.1µs 546.2µs 137.5µs 9976.8µs 2416.7µs
MySpace 4.92hrs 58.8µs 84.1µs 9.85hrs 62.0µs 88.5µs 6923.7µs 1605.5µs 1588.1µs 841.8µs 50273.3µs 41473.2µs
YouTube 2.27hrs 25.1µs 20.6µs 4.67hrs 32.4µs 35.6µs 1681.5µs 596.8µs 251.6µs 206.4µs 3727.5µs 1029.9µs
Wikipedia 3.30hrs 0.5µs 0.2µs 3.75hrs 0.6µs 0.2µs 104.0µs 46.5µs 54.0µs 24.0µs 1377.9µs 374.6µs

Table 6: Computation time of proximity sketch, proximity embedding, common neighbor and shortest path distance.

PA PRP CN AA Katz GD

positive 90.8% 100% 32.4% 32.1% 56.6% 46.5%
Digg negative 2.7% 100% 1.2% 1.1% 29.9% 35.6%

all 4.8% 100% 11.2% 11.1% 37.8% 39.2%
positive 100% 67.5% 63.3% 63.1% 97.8% 97.3%

Flickr negative 100% 80.1% 0.1% 0.1% 96.0% 69.9%
all 100% 77.5% 12.8% 12.8% 96.4% 75.4%

positive 99.4% 100% 27.5% 27.5% 74.7% 98.6%
LiveJournal negative 93.1% 100% 0.2% 0.03% 91.8% 93.1%

all 94.5% 100% 5.7% 5.6% 88.3% 94.5%
positive 100% 100% 72.8% 72.8% 100% 100%

MySpace negative 100% 100% 1.5% 1.5% 100% 95.0%
all 100% 100% 15.3% 15.3% 100% 95.9%

positive 100% 100% 31.8% 31.9% 99.1% 100%
YouTube negative 100% 100% 0.3% 0.2% 91.2% 100%

all 100% 100% 7.3% 7.1% 93.6% 100%
positive 73.2% 100% 44.7% 44.6% 74.5% 74.4%

Wikipedia negative 88.9% 100% 4.3% 4.3% 82.9% 80.7%
all 85.1% 100% 14.3% 14.3% 80.9% 79.1%

Table 7: Applicable ratio of basic link predictors (fraction of

positive/negative/all samples with non-zero proximity values)

For composite link predictor, we present the results using the
REPtree decision tree learner in WEKA machine learning pack-
age [21]. As noted in Section 3.1, REPtree is easy to control, vi-
sualize, and interpret. It also achieves accuracy similar to other
machine learning algorithms.

4.3.2 Evaluation of Basic Link Predictors

We calculate the trade-off curves of false positives and false neg-
atives for each basic link predictor as shown in Figure 8. In addition
to accuracy, we compute the fraction of node pairs with non-zero
proximity values for each proximity measure in Table 7.

Variation across predictors and datasets. In Figure 8, we ob-
serve significant variation in link prediction accuracy both across
different datasets and across different link predictors:

• Neighborhood based proximity measures. The common neighbor
(denoted as CN) and the Adamic Adar (denoted as AA) perform
well in LiveJournal, MySpace, and Flickr. But in terms of AR,
both CN and AA could cover only two-hop relations, resulting in
the worst AR. As a result, only about 30% of samples are non-zero
in LiveJournal, Digg, and YouTube datasets (shown in Table 7). In
comparison, both preferential attachment (PA) and PageRank prod-
uct (PRP) yield much higher AR. PRP performs best in YouTube
and Wikipedia datasets (in Figure 8(c,f)), but performs worst in
LiveJournal and Flickr datasets (in Figure 8(b,d)). These results
suggest that each individual measure has its own merits and limita-
tions. None of them performs universally well over all the datasets.

• Path-ensemble based proximity measure. We evaluate using two
different damping factors β = 0.05 and 0.005. The results of using
these two different damping factors are similar, and we only report
the results using β = 0.05 in the interest of brevity. Katz achieves
both low false negative rate and low false positive rate. Katz is the
best in Digg and MySpace datasets, and the second best in Live-
Journal and Flickr. In YouTube dataset, Katz does not give a good

Network # of high deg. links # of total links % of high deg. links

Digg 1,860,703 4,813,668 38.6%
Flickr 23,535,630 30,393,940 77.4%
LiveJournal 60,058,439 61,921,736 96.9%
MySpace 43,877,840 90,629,452 48.4%
YouTube 9,392,367 13,017,064 72.1%
Wikipedia 18,936,865 33,974,708 55.7%

Table 8: Proportion of links connected to top 0.1% highest de-

gree nodes in each network.

trade-off curve. In Wikipedia dataset, Katz performs slightly worse
than PRP, which is optimized for predicting hyperlink structures.
We will further investigate the reason behind the performance of
Katz later in this section.

• Graph distance based proximity measure. The graph distance
(denoted as GD) achieves high accuracy in Digg, LiveJournal, MyS-
pace, Flickr and Wikipedia. But it has several important limi-
tations. First, shortest path distance is determined solely by the
shortest path and takes only integer values. This means that it has
coarse granularity and introduces many ties. Second, the compu-
tation of shortest path distance is much more expensive in large
networks [51] (also shown in Table 6).

• Effect of link symmetry. To understand the effect of link asym-
metry, we make the friendship relation as reciprocal by adding re-
verse link in all existing node pairs. Table 2 shows the fraction of
asymmetric links in our dataset. Figure 9 shows how the symmet-
ric predictors performs in asymmetric datasets. In Wikipedia and
Digg datasets, adding reverse edges improves the accuracy. But
adding reverse edges does not always help; it stays almost the same
in Flickr or a bit worse in LiveJournal.

A good empirical performance indicator. Despite the significant
variation, we find that the ranking between sophisticated predictors
such as Katz versus simple predictors such as common neighbors
and Adamic/Adar can be qualitatively predicted based on the frac-
tion of edges contributed by the highest degree nodes as follows.

Table 8 shows the number of links incoming and outgoing from
the highest degree nodes, the number of links in the entire network
and their proportion, where a node is considered a high degree node
if its node degree (combining incoming and outgoing degrees) is
among the top 0.1% highest node degrees. Ranking different net-
works based on the percentage of links connected to such highest
degree nodes (in decreasing order), we obtain:

LiveJournal > F lickr > Y ouTube

≫ Wikipedia > MySpace > Digg

which is consistent with the ranking between direct proximity mea-
sures and sophisticated measures shown in Figure 8 and Figure 9.
The ranking shows that as the high degree node’s coverage in-
creases, direct proximity measures (such as the number of common
neighbors and shortest path distances) perform better than Katz and
vice versa.
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Figure 8: Link prediction accuracy for different online social networks

4.3.3 Evaluation of Composite Link Predictor

Next we combine multiple proximity measures to improve link
prediction accuracy. When building a decision tree, at each node,
REPtree chooses the best attribute (e.g., proximity measure) which
splits samples into different classes (e.g., positive and negative) in
the most effective way using information gain as criterion. To draw
the entire accuracy trade-off curve, we vary the weights of positive
and negative samples in the training set. When the weights of pos-
itive samples are large, the learner focuses more on positive sam-
ples in classification and tries to minimize false negatives; when
the weights of negative samples are large, the learner focuses more
on negative samples and tries to minimize false positives.

Figure 10 depicts examples of decision trees in Digg, Flickr,
and Wikipedia (where the weights of positive:negative samples are
1:100, 1:10, and 1:100, respectively). The decision process starts
from the root node, it drills down by examining the corresponding
metric value until reaching one of leaf nodes.

Figure 8 shows the performance of decision tree in different on-
line social networks. We observe that REPtree consistently achieves
the best accuracy. Specifically, REPtree outperforms the best basic
link predictors in Flickr, YouTube, and Wikipedia dataset. In Fig-
ure 8 (b) and (c), while the overall accuracy trade-off curve for
REPtree is very close to the curve for shortest path distance, the
composite link predictor provides much better resolution and fills
in the intermediate points missed by the shortest path predictor.
This is useful when we want to further classify possible friendship
candidates with the same shortest path distance. Since the shortest
path distance is integer-valued and is typically very small in social
networks (due to the small-world effect [27]), it yields only coarse-
grained control (e.g., depending on whether the threshold is 2 or 3
hops, a large number of node pairs will be classified as positive or
negative at the same time).

5. RELATED WORK

Social networks. Traditional social networks have been widely
studied by sociologists. Refer to [52] for a detailed review. Social
networks have also found a wide range of applications in business

(e.g., viral marketing [23], fraud detection [11]), information tech-
nology (e.g., improving Internet search [35]), computer networks
(e.g., overlay network construction [45]), and cyber security (e.g.,
email spam mitigation [22], identity verification [56]).

The explosive growth of online social networks has attracted
significant attention [2, 3, 5, 37]. In particular, [3, 37] have con-
ducted in-depth measurement-based studies of several online so-
cial networks and report the power-law, small-world, and scale-free
properties of online social networks. Different from these studies,
which analyze the general network topological structure, we focus
on scalable proximity estimation and link prediction in online so-
cial networks.

Proximity measures. There is a rich body of literature on proxim-
ity measures (e.g., [1,26,28,30,31,38,47,48,50]). For example, [50]
proposes escape probability as a useful measure of direction-aware
proximity, which is closely related the rooted PageRank we con-
sider. But their technique for computing escape probability can
only scale to networks with tens of thousands of nodes. Recent
works on proximity measures (e.g., [28, 48]) either dismiss path-
ensemble based proximity measures due to their high computa-
tional cost or leave it as future work to compare with them.

Link prediction. [30, 31] first define the link prediction problem
for social networks. To predict links, they calculate ten proximity
measures between node pairs of the graph. The nodes are ranked
based on their scores, where node pairs with higher score are more
likely to form a link. They measure the effectiveness of the dif-
ferent proximity measures in predicting links in five co-authorship
networks. However, they are limited to relatively small networks
with only about 5000 nodes. Moreover, they do not combine dif-
ferent measures to gain better link prediction accuracy.

Dimensionality reduction. A variety of dimensionality reduction
techniques have been developed in the area of data stream compu-

tation (see [39] for a detailed survey). One powerful technique is
sketch [9, 10, 24, 29], a probabilistic summary technique proposed
for analyzing large streaming datasets. Sketches achieves dimen-
sionality reduction using projections along random vectors. Our
proximity sketch is closely related to the count-min sketch [10].
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Figure 9: Link prediction accuracy with undirected edges. Note that edges in MySpace and YouTube are already undirected.
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Figure 10: Examples of decision trees for link prediction

In computer networking, Ng and Zhang [43] propose the first
network embedding technique, called Global Network Positioning
(GNP), to infer end-to-end delay by embedding network delay in
a low-dimensional Euclidean space. Several enhancements have
been proposed since then [32, 34, 49]. In particular, [34] applies
matrix factorization and can handle path asymmetry and violation
of triangulation. To our knowledge, all these techniques have only
been applied to networks with a few thousand nodes. Moreover,
proximity is the opposite of distance — the lower the distance the
higher the proximity. Thus, techniques for network distance em-
bedding may not work well for proximity embedding.

6. CONCLUSIONS
In this paper, we develop several novel techniques to approxi-

mate a large family of proximity measures in massive, highly dy-
namic online social networks. Our techniques are accurate and can
easily handle networks with millions of nodes, which are several
orders of magnitude larger than what existing methods can sup-

port. We then conduct extensive experiments on the effectiveness
of a variety of proximity measures for predicting links in five pop-
ular online social networks. Our key new findings include: (i) the
effectiveness of different proximity measures varies significantly
across different networks and heavily depends on the fraction of
edges contributed by the highest degree nodes, and (ii) combining
multiple proximity measures consistently yields the best accuracy.
In the future, we plan to leverage the insights we gain in this paper
to design better proximity measures and more accurate link predic-
tion algorithms.
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