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Abstract— A recent trend in routing research is to avoid
inefficiencies in network-level routing by allowing hosts to either
choose routes themselves (e.g., source routing) or use overlay
routing networks (e.g., Detour or RON). Such approaches result
in selfish routing, because routing decisions are no longer based
on system-wide criteria but are instead designed to optimize host-
based or overlay-based metrics. A series of theoretical results
showing that selfish routing can result in suboptimal system
behavior have cast doubts on this approach. In this paper, we
use a game-theoretic approach to investigate the performance of
selfish routing in Internet-like environments based on realistic
topologies and traffic demands in our simulations. We show that
in contrast to theoretical worst cases, selfish routing achieves
close to optimal average latency in such environments. However,
such performance benefits come at the expense of significantly
increased congestion on certain links. Moreover, the adaptive
nature of selfish overlays can significantly reduce the effectiveness
of traffic engineering by making network traffic less predictable.

Index Terms— Selfish routing, overlay, game theory, traffic
equilibrium, traffic engineering, optimization, relaxation.

I. I NTRODUCTION

For decades, it has been the responsibility of the network to
route traffic. Recent studies (e.g., [36], [41]) have shown that
there is inherent inefficiency in network-level routing from the
user’s perspective. In response to these observations, we have
seen an emergent trend to allow end hosts to choose routes
themselves by using either source routing (e.g., Nimrod [5])
or overlay routing (e.g., Detour [36] or RON [3]). These
end-to-end route selection schemes are shown to be effective
in addressing some deficiencies in today’s IP routing. For
example, measurements [36] from the Detour project show
that in the Internet, a large percentage of flows can find better
alternative paths by relaying among overlay nodes, thereby
improving their performance. RON [3] also demonstrates the
benefits of overlay routing using real implementation and
deployment.

Such end-to-end route selection schemes are selfish by
nature in that they allow end users to greedily select routes
to optimize their own performance without considering the
system-wide criteria. Recent theoretical results suggestthat in
the worst case selfish routing can result in serious performance
degradation due to lack of cooperation. In particular, Rough-
garden and Tardos prove that theprice of anarchy(i.e., the
worst-case ratio between the total latency of selfish routing and
that of the global optimal) for selfish routing can be unbounded
for general latency functions [35].

Despite much theoretical advance, an open question is how
selfish routing performs in Internet-like environments. This is
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a challenging question because today’s Internet is unique in
the following respects.

First, topologies and traffic demands of the Internet are not
arbitrary but have certain structures. The worst-case results
may not be applicable to realistic topologies and traffic de-
mands. A general open question iswhether selfish routing
results in poor performance in Internet-like environments(i.e.,
under realistic network topologies and traffic demands).

Second, users in overlay networks do not have full flexibility
in specifying their end-to-end paths. Due to limited availability
of source routing support in the routers, the path between any
two network nodes is dictated by the Internet routing protocols,
such as OSPF, MPLS, or BGP. While overlay networks provide
another mechanism to enable users to control their routes
by relaying through overlay nodes, the route between two
overlay nodes is still governed by the underlying routing
protocol. A natural question ishow to model such selfish
overlay routing and whether selfish overlay routing resultsin
poor performance.

Third, even if selfish overlays (i.e., overlays consisting of
selfish traffic) yield good performance, they can be deployed
only incrementally. As a result, background traffic and overlay
traffic will interact with each other. We call such interactions
horizontal interactions. An important question ishow such
selfish traffic affects the remaining traffic routed using the
traditional routing protocols. A related question iswhether
multiple overlays result in poor performance.

Fourth, the way in which selfish users choose their routes
can interact with traffic engineering. We call such interactions
vertical interactions, which can be viewed as the follow-
ing iterative process. First, Internet Service Providers (ISPs)
adjust network-level routing according to traffic demands,
using schemes in [4], [13], [14], [43], to minimizenetwork
cost. Then selfish users adapt to changes in the underlying
default routes by choosing different overlay paths to optimize
their end-to-end performance. Such adaptation changes traffic
demands and triggers traffic engineering to readjust the default
routes, which in turn makes selfish users adapt to new routes.
Given the mismatch between the objectives of selfish routing
and traffic engineering, an interesting question iswhether
selfish routing interacts poorly with traffic engineering.

In this paper, we seek to answer the above questions through
extensive simulations. We take a game-theoretic approach to
compute the traffic equilibria of various routing schemes and
then evaluate their performance. We focus onintra-domain
network environments because recent advances in topology
mapping [38] and traffic estimation [44] allow us to use realis-
tic network topologies and traffic demands for such scenarios.
Understanding selfish routing in inter-domain environments is
also of great interest but is more challenging. First, we do
not have realistic models for inter-domain traffic demands.
Second, despite some recent progress towards understand-



ing autonomous system relationships [16], [39], [28], more
research efforts are needed to develop realistic models for
inter-domain routing policies. Finally, the large size of inter-
domain topologies makes it computationally prohibitive to
derive traffic equilibria. Due to these difficulties, in thispaper
we conduct a preliminary investigation of selfish routing in
inter-domainenvironments. We leave a more thorough study of
selfish routing in inter-domain environments (e.g., considering
a larger-scale network with different types of routing policies
and realistic traffic demands) as future work.

Our key contributions and results can be summarized as
follows. First, we formulate and evaluate selfish routing in
overlay networks. Selfish routing in overlay networks is differ-
ent from traditional selfish source routing in that (i) the route
between any two overlay nodes is dictated by network-level
routing, and (ii) different overlay links may share common
physical links and therefore traditional algorithms to compute
traffic equilibria do not apply. We fill the gap by presenting
algorithms to compute one of (the potentially multiple) traffic
equilibria.

Second, we find that in contrast to theoretical worst cases,
selfish routing in Internet-like environments yields closeto
optimal average latency, which can be much lower than that
of default network-level routing. This is true for both source
routing and overlay routing. Moreover, we show selfish routing
achieves good performance without hurting the traffic that uses
default network-level routing.

Third, we show that an important impact of selfish routing
on Internet-like environments is the fundamental mismatch
between the objectives of selfish routing and traffic engineer-
ing. In particular, our results show that the low latency of
selfish routing is often achieved at the expense of increased
congestion on certain links. Moreover, the adaptive natureof
selfish routing makes traffic demands less predictable, and can
significantly reduce the effectiveness of traffic engineering.

The rest of the paper is organized as follows. In Section II,
we review related work. In Section III, we present our network
model. In Section IV and Section V, we specify the routing
schemes we evaluate and the algorithms we use to compute
traffic equilibria. In Section VI, we describe our evaluation
methodology. We study the performance of selfish source
routing in Section VII and that of selfish overlay routing in
Section VIII. In Section IX and Section X, we investigate
horizontal and vertical interactions, respectively. We examine
the impacts of multi-AS nature of the Internet on routing per-
formance in Section XI. Finally we conclude in Section XII.

II. RELATED WORK

A number of recent studies have reported that network-level
routing is inefficient from the user’s perspective. For example,
Savageet al. [36] use Internet measurements to show that the
default routing path is often suboptimal in terms of latency,
loss rate, and TCP throughput. The suboptimal performance
of network-level routing is inevitable due to routing hierarchy
and policy [41], as well as different routing objectives used
by network operators, whose goal is to avoid high utilization.
Moreover, stability problems with routing protocols, suchas
BGP, could make things even worse. As a result, there has been
a movement to give users more autonomy in choosing their
routes by using source routing (e.g., Nimrod [5]) or overlay
routing networks (e.g., Detour [36] and RON [3]).

Recently a series of theoretical results show that selfish rout-
ing can result in extremely suboptimal performance in worst
cases. The pioneering work in this area is by Koutsoupias and
Papadimitriou [24], who compare the worst-case Nash equi-
librium with a global optimal solution in minimizing network
congestion in a two-node network. Roughgarden and Tardos
are interested in a different performance metric – latency.
In [35], they prove that the price of anarchy (i.e., the worst-
case ratio between the average latency of a Nash equilibrium
and that of the global optimal) depends on the “steepness”
of the network latency functions. They show that the price of
anarchy is unbounded for a general latency function such as
M/M/1. In contrast to the theoretical studies, our study focuses
on a practical setting by using realistic network topologies
and traffic demands. Different from the measurement studies,
our study considers a more general setting, and investigates
networks with a large amount of selfish traffic under different
network configurations (including both static and dynamic
network control).

The inefficiency of selfish routing motivates researchers to
design strategies to reduce the cost of uncooperation. For
example, Korilis, Lazar, and Orda in [23] and Roughgarden
in [34] study a network with a mixture of selfish traffic and
“centrally controlled” traffic. Roughgarden shows that it is NP-
hard to compute the optimal strategy for “centrally controlled”
traffic (i.e., a Stackelberg strategy), and gives a simple al-
gorithm to approximate the optimal strategy in a network of
parallel links with total latency no more than a constant times
that of the minimum latency [33]. In [26], Kumar and Marathe
give a FPTAS to the Stackelberg scheduling strategies in a
parallel-link setting and also extend the results to slightly more
general topologies. Another way to cope with selfish behavior
is to introduce pricing and taxation. The authors in [7], [20],
[11] develop pricing schemes to minimize total latency under
homogeneous and heterogeneous traffic, assuming that selfish
users are conscious of both latency and taxes.

Although the price of anarchy can be high in the worst-case,
some theoretical studies have also shown that the degradation
is less severe from some other perspectives (e.g., [15]). For
example, Friedman shows that for “most” traffic rate vectors
in a range, the price of anarchy is lower than that of the worst
cases [15]. He also analyzes the effects of TCP rate adaptation
in a parallel-link network and shows that the performance
loss is small. Roughgarden and Tardos [35] show (essentially)
that the performance degradation due to selfish routing can be
compensated by doubling the bandwidth on all links. However,
this is often not a practical option for the Internet at leastin
the short-term.

The interaction between selfish overlay routing and traf-
fic engineering studied in this paper has attracted other re-
searchers to have a more in-depth investigation of the issue.
For example, in [27], Yonget al. formulate the interaction
as a non-cooperative non-zero-sum two-player game. Using
this framework, they identify cases, both analytically and
experimentally, where the Nash equilibrium is not Pareto
efficient [8]. Keralapuraet al. [21] study the dynamics due to
the interaction between overlay routing and traffic engineering.
They show that uncoordinated effort by both entities to recover
from failures may cause performance degradation for both
overlay and non-overlay traffic.

There are also other ways in which end users can selfishly



optimize the performance of their traffic. For example, a user
can greedily inject traffic into a network. A number of papers
(e.g., [1]) consider such a congestion game. In practice, it
is possible to have a hybrid game that consists of a route
selection game and a congestion game, but we defer its study
to future work.

III. N ETWORK MODEL

In this section, we describe our network model, especially
the network-level routing protocols. In the next section, we
describe the schemes of how traffic demands are routed
through the network. In Section VI, we describe the network
topologies, traffic demands, and latency functions that we use
to instantiate our network model.

Physical network: We study the performance of realistic
physical networks. We model a physical network as a directed
graphG = (V,E), whereV is the set of nodes, andE the set
of directed links. We assume that the latency of each physical
link is a function of its load. The exact latency functions we
use will be described in Section VI-C.

Demands: We partition network traffic into demands. A
demand represents a given amount of traffic from a source
to a destination. In particular, we identify a special type
of demands, called infinitesimal demands. A collection of
infinitesimal demands models a large aggregation of inde-
pendent, small transactions such as web transactions, and the
generator of each transaction makes an independent decision.

Overlays: An overlay consists of overlay nodes, directed
overlay links, and a set of demands originated from the overlay
nodes. The overlay nodes agree to forward each other’s traffic
along one or more overlay links. The physical route for an
overlay link is dictated by network-level routing and may
involve multiple physical links. Different overlay links may
share one or more physical links. The overlay nodes and
overlay links form the overlay topology. To limit the parameter
space, we only consider thefully connectedoverlay topology
in this work. That is, we assume that there is an overlay link
between every pair of overlay nodes. We plan to investigate
the effects of different overlay topologies in our future work.

Users: We assume that the network consists of a collection
of users. Each user decides how its traffic should be routed.
The objective of a user is to minimize the average latency
of its traffic. We choose to use latency as the optimization
objective of selfish routing for the following reasons: 1) many
applications such as short Web transfers and IP telephony
require low latency; 2) most previous theoretical analysesare
based on latency, and one of the major objectives of this study
is to investigate whether the theoretical worst-case results
apply to Internet-like environments. We plan to investigate the
effects of alternative routing objectives in our future work.

Route controller: Besides users, we also have a route con-
troller, which controls the network-level routing in the physical
network. (We use network-level routing and physical routing
interchangeably in this paper.) We consider the following
network-level routing: (i) OSPF, which uses shortest-pathwith
equal-weight splitting, and (ii) MPLS, which uses the more
general multi-commodity flow routing. For OSPF routing, we
consider three weight assignments:

• Hop-count OSPF routing, which assigns a unit weight to
each physical link;

• Random-weight OSPF routing, which assigns a random
weight to each physical link;

• Optimized-compliant OSPF routing, which sets OSPF
link weights to minimize network cost [13] (see Sec-
tion VI-D), when all traffic demands are compliant, and
thus follow the routes determined by the network. The
network cost is a piece-wise linear convex function over
all links. This metric has been considered as a good
objective for traffic engineering because it not only avoids
overloading physical links, but also avoids taking very
long paths [13], [14].

We represent network-level routing by a routing matrix
R, whereR[p, e] specifies the fraction of traffic between the
source-destination pairp that goes through the physical link
e. The routing matrixR is computed by the routing protocol
under study.

In our study, the route controller can change network routing
to optimize overall network performance. In other words, itcan
perform traffic engineering. An MPLS-based route controller
can directly adjust the routing matrixR. An OSPF-based
route controller can adjust the weights of the physical links to
influence network routing [13], [14].

IV. ROUTING SCHEMES

For a comprehensive study, we consider the following
five routing schemes: (i) source routing, (ii) optimal routing,
(iii) overlay source routing, (iv) overlay optimal routing,
and (v) compliant routing. Below we describe these routing
schemes in details.

A. Routing on the physical network

The first two routing schemes allow a user to route its traffic
directly through any paths on the physical network.

Source routing: Source routing results in selfish routing,
since the source of the traffic makes an independent decision
about how the traffic should be routed. The selfish routing
scheme studied in most previous theoretical work is source
routing.

Optimal routing: Optimal routing refers tolatencyoptimal
routing. It models a scenario where a single authority makes
the routing decision for all the demands to minimize the
average latency.

B. Overlay routing

The next two routing schemes are the overlay versions of
source routing and optimal routing.

Overlay source routing: Overlay source routing is selfish
routing through overlay nodes. Similar to source routing, it is
the traffic source that controls the routes.

Overlay optimal routing: Overlay optimal routing refers
to overlaylatencyoptimal routing. It models a scenario where
the demands in the overlay have complete cooperation in
minimizing the average latency.

As mentioned in Section I, overlay routing is different from
routing directly on the physical network. In particular, the
physical route for an overlay link is dictated by network-level
routing and may involve multiple physical links. Moreover,
different overlay links may share common physical links,
and therefore may interfere with each other. As a result, we
cannot apply the traditional linear approximation algorithms
to compute traffic equilibria for such schemes.



We use the following approach to compute traffic equilibria
for overlay routing. For each overlay, we build a logical
network from the physical network. The nodes in the logical
network consist of the union of the nodes in the overlay and
the nodes that are the destinations of nonzero demands in the
overlay. The links in the logical network consist of all the
overlay links, as well as a link from each overlay node to
each node that is the destination of some traffic demands but
does not belong to the overlay.

Given this model, each logical link can be mapped to a
collection of physical links. More specifically, assume that the
logical link p is for the source-destination pairp (we use the
same symbolp to denote the logical linkp and the source-
destination pairp), then the logical link consists of all the
physical linkse such thatR[p, e] > 0. If a demand sendsf
units of traffic through a logical linkp, then each physical
link e will carry f ·R[p, e] amount of traffic for this demand.
Fig. 1 shows an example of a physical network, and the logical
network for an overlay formed by nodes 2, 3, and 5.
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Fig. 1. A physical network and the logical network for the overlay formed
by nodes 2, 3, and 5. Nodes 6 and 7 are not overlay nodes but nodes 2, 3,
and 5 have demands to them. The logical link from node 2 to 5 consists of
two physical paths: 2 to 9 to 5, and 2 to 8 to 5, if hop-count OSPFrouting
is used.

C. Compliant routing

For comparison, we also consider the default network-level
routing, which we term compliant routing.

Compliant routing: Traffic demands using compliant
routing follow the routes determined by the network-level
routing protocol.

V. COMPUTING TRAFFIC EQUILIBRIA

We evaluate each of the preceding selfish routing schemes
by computing its performance at traffic equilibria. Using a
game-theoretic approach, we define a traffic equilibrium as
a state where no user can improve the latency of its traffic
by unilaterally changing the amount of traffic it sends along
different network paths. One possible way of computing traffic
equilibria is through simulation. More specifically, one could
simulate the moves of each individual user and wait until
the system reaches equilibrium. However, given the size of
the network we are considering (see Section VI-A), such
simulation-based approach may take a prohibitively long time
to converge. Instead, we compute traffic equilibria directly
using the following algorithms.

Computing traffic equilibrium for non-overlay traffic: As
shown in [34], the traffic equilibrium for selfish traffic is
achieved when the integral of the latency function over all
traffic is minimized. In comparison, the traffic equilibriumfor
latency optimal routing is achieved when the latency over all

traffic is minimized. For both cases, we use a linear approxi-
mation algorithm (a variant of Frank-Wolfe algorithm) [12]to
compute traffic equilibrium with the corresponding objective
functions. The linear approximation algorithm is a gradi-
ent algorithm for solving non-linear optimization problems.
Specifically, in each iteration we compute shortest paths based
on the current traffic assignment, and use them to construct
the gradient direction. We then move towards that directionby
taking a step size that optimizes the objective function. The
number of iterations is controlled by the stopping condition
from [12]. When the link latency functions satisfy the mono-
tonicity condition, which is the case for our latency functions,
there is a unique equilibrium.

Computing traffic equilibrium for selfish overlay routing:
Using the logical networks we described in Section IV, we can
compute the traffic equilibrium of overlay routing by either
a relaxation algorithm or a modified linear approximation
algorithm.

⊲ Assumele(x) is increasing and convex for any edgee.
⊲ Assumexle(x) is convex for any edgee.
⊲ If the overlay is latency optimal,f =

P

e
xle(x);

⊲ otherwise,f =
H

le(x);

set other overlay’s traffic as background traffic
repeat

assume the current traffic vector on each edge isxt

determine link latency according toxt

use Dijkstra’s algorithm to find all-or-nothing
traffic assignmentyt

use line search to find optimalλ so that
f(xt + λ(yt − xt)) is minimal.

until (best lower bound gap< threshold)

Fig. 2. The linear approximation algorithm to compute the bestresponse of
source routing or overlay routing, when the network is symmetric, assuming
the other overlay’s traffic is background.

Specifically, for an asymmetric logical network (i.e., any
two logical links that share the same physical link send the
same fraction of traffic through the physical link; an example
of a symmetric logical network is OSPF routing without
equal weight splitting), we can formulate the problem as an
optimization problem by using a line integral to replace the
normal summation of cost on each link. As a result, we still
can use the linear approximation algorithm. Fig. 2 specifies
the structure of our algorithm. Note that for overlay networks,
the traffic equilibrium may not be unique [22], [2], and our
algorithm identifies only one equilibrium.

For a logical network that is asymmetric (i.e., there are
two logical links that share the same physical link but send
different fractions of traffic through the physical link), we use
Jacob’s relaxation algorithm on top of Sheffi’s diagonalization
method [37] to determine the traffic equilibrium, since in
this case we cannot formulate the equilibrium problem as an
optimization problem.

Computing traffic equilibrium for multiple overlays:
Guaranteeing convergence poses a major challenge in comput-
ing traffic equilibrium when there are multiple overlays. Tothis
end, we use the relaxation framework proposed in [25], [42]
to ensure convergence to one equilibrium. Fig. 3 shows the
algorithm. The basic structure of the algorithm is that in each
round, each overlay computes its best response by considering
the other’s traffic as background traffic. Then the best response



⊲ N is the number of overlays.
⊲ xt(i) is a vector of overlayi’s traffic at roundt.
⊲ yt(i) is the best response of overlayi at roundt.
⊲ Assume

P

t
αt → ∞; αt → 0 as t → ∞.

repeat
assume the traffic state isxt(i) of overlay i
for eachi

computes its best responseyt(i),
assuming other overlays as background.

for each overlayi
setxt+1(i) ← (1 − αt)xt(i) + αtyt(i).

until (change between round< threshold)

Fig. 3. The relaxation framework to compute the traffic equilibrium of N
overlays.

and the previous state are merged using the relaxation factor
αt. The conditions

∑

t αt → ∞ and αt → 0 as t → ∞

guarantee convergence to one equilibrium.

VI. EVALUATION METHODOLOGY

In this section, we first describe the network topologies,
traffic demands, and link latency functions used in our eval-
uation. Then we discuss the performance metrics that we use
as a basis for comparing the efficiency of different routing
schemes.

A. Network topologies

We use both real and synthetic topologies in our evaluation.
Real topology: We use a real router-level backbone topol-

ogy from an operational tier-1 ISP, referred to asISPTopo,
with on the order of a hundred backbone routers connected
by OC48 (i.e., 2.48 Gbps) and OC192 (i.e., 10 Gbps) links
(the exact numbers are omitted for proprietary reasons). For
each link in the real topology, we use the actual link capacity
in our study. The propagation delay of each link is estimated
using the actual fiber length divided by the speed of light.

Rocketfuel topologies:Rocketfuel applies several effective
techniques to obtain fairly complete ISP maps [38]. We use the
POP-level maps published by the authors, shown in Table I,
as part of our topologies. For each Rocketfuel topology, we
use two bandwidth settings: all links are either OC3 (i.e., 155
Mbps) or OC48 (i.e., 2.48 Gbps). The propagation delay of
each link is approximated using geographical distance divided
by the speed of light.

#Non-leaf
ISP Loc. #Nodes Nodes #Edges
ATT US 108 30 282

Abovenet US 22 13 160
Exodus US 22 17 102
Level3 US 53 37 912
Sprint US 44 21 212
Verio US 122 82 620

EBONE Intl. 28 25 132
Telstra Intl. 58 8 120
Tiscali Intl. 51 38 258

TABLE I

ISP TOPOLOGIES AS MEASURED BYROCKETFUEL.

Random topologies: In addition to real topologies, for
diversity we also randomly generate power-law topologies
using BRITE [29], since a number of papers (e.g., [9], [40])
have shown that the power-law captures the Internet structure
quite well. We generate 100-node router-level topologies with

edge density (i.e., the number of neighboring nodes that each
new node connects to) varying from2 to 10. In the following
sections, we use PowerDn to denote a power-law topology
with edge densityn. For each power-law topology, we use
two bandwidth settings: all links are either OC3 or OC48. The
propagation delay of each link is drawn uniformly between
0 − 10 ms.

B. Traffic demands

We use both real and synthetic traffic demands in our
evaluation.

Real traffic demands: Our real traffic demands are
estimated from SNMP link data using thetomogravity
method [44], which has been shown to yield accurate estimates
especially for large traffic matrix elements. We use the back-
bone router to backbone router traffic matrices during three
randomly chosen hours in November 2002.

Synthetic traffic demands: The real traffic demands are
only available forISPTopo. For the other topologies, we
generate synthetic traffic demands as follows. For a Rocketfuel
topology, we generate synthetic traffic by randomly mapping
POPs inISPTopo to non-leaf nodes in the Rocketfuel topol-
ogy, using several different random seeds. Specifically, let
m(.) denote a random mapping from the cities inISPTopo to
those in a Rocketfuel topology. LetT (s, d) denote the traffic
demand from citys to city d in ISPTopo. Then the traffic
demand from citym(s) to city m(d) in the topology under
study is set toT (s, d). For synthetic power-law topologies,
we perform similar mappings at the router level to derive
demands.

Load scale factor:To control system load, we scale up the
demands so that when all the traffic is compliant and routed
based onshortest hop-count, the maximum link utilization
is 100 · F%, where F is a load scale factor(sometimes
abbreviated asLSF ).

C. Link latency functions

As shown in [34], link latency functions play an important
role in determining the effectiveness of selfish routing. In
our evaluations, we use five representative latency functions:
M/M/1, M/D/1 [17], P/M/1, P/D/1 [18], and BPR [6]. We
also implement piecewise-linear, increasing, convex functions
to approximate any other latency functions. In all latency func-
tions, we include a term for propagation delay (Section VI-A
shows how we determine its value for each physical link).

Our first two latency functions belong to the general M/G/1
class of latency functions: M/M/1 and M/D/1. For a M/G/1
queue, the latency can be expressed asl(x) = 1

µ
+ x·(1+σ2µ2)

2µ(µ−x) +
prop, wherex is the traffic load,µ the link capacity,σ the
standard deviation of the service time, andprop the propaga-
tion delay. The M/M/1 latency function is M/G/1 withσ = 1

µ
;

thereforel(x) = 1
µ−x

+ prop. The M/D/1 latency function
is M/G/1 with σ = 0; thereforel(x) = 0.5

µ−x
+ 0.5

µ
+ prop.

To avoid the discontinuity when the load approaches capacity,
we approximate the M/M/1 or M/D/1 function with a linear
function beyond99% utilization. To test sensitivity to the
threshold, we also try90% and99.9%. The results are similar,1

1We can construct scenarios where different thresholds can yield sig-
nificantly different results. However, our interest is in typical Internet-like
environments.



and in the interest of brevity we present the results using99%
as the threshold.

Our next two latency functions, P/M/1 and P/D/1, have
heavy-tail inter-arrival times. Here P stands for Pareto. We set
the shape parameterβ = 1.5 so that the resulting distribution
has infinite variance. Since there is no closed-form expression
for either P/M/1 or P/D/1, we approximate each of them using
a piecewise-linear, increasing, convex function. We use the
results in [18] to approximate P/M/1. For P/D/1, we derive a
linear approximation of its shape using ns-2 [30] simulations.
Specifically, we generate Pareto traffic to compete for a single
bottleneck link with a large FIFO drop-tail queue and observe
the latency as we vary the load.

For comparison purposes, we also run some experiments
with the latency function BPR [6], which is used as a standard
latency function in transportation networks. The expression for
this latency function isl(x) = prop·

[

1 + 0.15 (x
µ
)4

]

. Table II
summarizes the above five latency functions.

Notation Latency function
M/M/1 l(x) = 1

µ−x
+ prop

M/D/1 l(x) = 0.5

µ−x
+ 0.5

µ
+ prop

P/M/1 approx. with Paretoβ = 1.5, see [18]
P/D/1 approx. with Paretoβ = 1.5

BPR l(x) = prop ·

h

1 + 0.15 ( x

µ
)4

i

TABLE II

L INK LATENCY FUNCTIONS.

D. Performance metrics

We use the following performance metrics to evaluate rout-
ing efficiency: (i) average latency, (ii) maximum link utiliza-
tion, and (iii) network cost. The first metric reflects end-to-end
user performance, while the next two reflect the perspective
of network operators, who aim to avoid link overloads in
their networks. These performance metrics are computed from
traffic equilibria, as we discussed in the previous section.

The utilization (or traffic intensity) of a link is the amount
of traffic on the link divided by its capacity. When a link’s
utilization is beyond 100%, the link is overloaded. The maxi-
mum link utilization is the maximum utilization over all links
in a network.

The maximum link utilization is an intuitive metric; how-
ever, it is dominated by a single bottleneck, as pointed out in
[13]. To get a more complete picture, we also adopt a metric
to capture the overall network cost. According to [13], [14],
the cost of a link can be modeled using a piecewise-linear,
increasing, convex function with slopes specified as follows:

ue(x/c) =



























1 : x/c ∈ [0, 1/3)
3 : x/c ∈ [1/3, 2/3)

10 : x/c ∈ [2/3, 9/10)
70 : x/c ∈ [9/10, 1)

500 : x/c ∈ [1, 11/10)
5000 : x/c ∈ [11/10,∞),

wherex is the load on linke, andc its capacity. We refer to the
points at which the slope changes (e.g., 1/3 and 2/3) as the
cut-points. The overall network cost is the sum of all links’
costs. In [13], Fortz, Rexford, and Thorup show that OSPF
weights derived from one set of cut-points and slopes also
tend to give good performance for other sets of cut-points and
slopes. Therefore the above cost function is a general metric
to consider. For all three metrics, lower values are preferred.

VII. SELFISH SOURCEROUTING

We first investigate the performance of selfish source rout-
ing; that is, all the demands are infinitesimal and the selfish
traffic can use any routes in the physical network. This is the
type of selfish routing scheme analyzed in most theoretical
studies. As shown in [34], the worst-case latency degradation
of selfish source routing compared with optimal routing can
be unbounded due to lack of cooperation. In this section, we
aim to answer the following question: how does selfish routing
perform in Internet-like environments?

A. Are Internet-like environments among the worst cases?

Effects of network load: We begin our investigation of
selfish routing by varying network load. Fig. 4 shows the
latency for three representative topologies, as we vary the
network load scale factor from0.2 to 2.

We make the following observations. First, under various
loads, selfish routing yields lower latency than compliant rout-
ing, which is based on optimized-compliant OSPF weights.
This result complements the previous findings, such as De-
tour [36] and RON [3], and shows that the performance
benefits of selfish routing over compliant routing exist evenin
a single AS network; moreover such benefits do not disappear
even if all traffic is selfish (as opposed to just having a small
portion of selfish traffic in RON). It is not surprising that
compliant routing results in higher latency, because the OSPF
weights are optimized mainly to avoid link overloads rather
than minimize end-to-end user latency. As we will see later,the
lower latency of selfish routing comes at the cost of increased
congestion on certain links.

Second, compared with optimal routing, selfish routing
yields similar average latency—the difference is close to 0 in
most cases and is always within 30%. In other words, unlike
the theoretical worst cases, the price of anarchy in Internet-
like environments is close to 1. There are two main reasons for
this. First, the worst-case result arises when there is mismatch
between link bandwidth and link propagation delay (e.g., when
there are two parallel links between the source and destination,
where one link has high propagation delay but large bandwidth
whereas the other link has low propagation delay but small
bandwidth). Such mismatch is not common in current Internet-
like topologies. Second, under realistic network topologies and
realistic traffic demands, traffic is spread across the network
and only a few links get congested even with selfish routing.
This is because real networks are designed so that even under
common failures the network can still carry all of the traffic
(often without having to reconfigure the routing). Moreover,
the topology is constrained by the coarse resolution we have
for link capacities: there are only a small number of available
link capacities,e.g., OC3, OC48, OC192. The net result is that
there is considerable redundant bandwidth in the network. So
capacities rarely match the traffic we are expected to carry
other than a few bottleneck links, and there are only a small
number of local hot spots. The above two factors make selfish
routing perform close to optimal.

Effects of network topologies:Next we examine the effects
of network topologies on the latency of selfish routing. Fig.5
compares the latency of different routing schemes when the
link latency function is M/M/1, the load scale factor is1.0, and
the links’ bandwidth in random topologies is OC48. The links’
bandwidth inISPTopo is according to the actual topology.
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(c) PowerD10 from BRITE
Fig. 4. Selfish source routing: comparison of user latency using M/M/1 link latency under various network loads.
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Fig. 5. User latency for all topologies with the M/M/1 latency function and
load scale factor 1. Selfish stands for selfish source routing; optimal stands
for optimal routing; compliant stands for optimized-compliantOSPF routing.
The other figures in this section use the same notation.

As Fig. 5 shows, network topologies have a pronounced
effect on the relative performance of selfish and compliant
routing. For example, in the Abovenet and power-law topolo-
gies, the latency achieved by selfish routing is less than half
of that incurred by compliant routing. A detailed look at these
two topologies shows that these two topologies have mesh-
like connectivity. Therefore selfish routing is likely to find
more paths, and achieves much lower latency. However, in all
topologies, we observe that selfish routing consistently yields
close to optimal latency. Similar results are observed whenthe
links’ bandwidth in random topologies is changed to OC3.

Effects of latency functions:Finally, we study how differ-
ent latency functions affect the latency of selfish routing.From
Fig. 6, we observe similar latency across different latency
functions. When comparing the latency achieved by different
routing schemes, we see that the performance of selfish routing
is close to that of optimal routing and noticeably better than
that of compliant routing.
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Fig. 6. User latency forISPTopo under various latency functions.

B. What is the system-wide cost for selfish source routing?

The previous subsection shows that unlike theoretical worst
cases, selfish source routing in Internet-like environments

incurs low latency. A natural question is whether the low
latency comes at the expense of increased system-wide cost.
We examine this issue by comparing different routing schemes
based on two metrics: (i) maximum link utilization and (ii)
network cost, both defined in Section VI-D.

Effects of network load: We start by examining the
impact of network load. Fig. 7 shows the maximum link
utilization for the same network configurations as those in
Fig. 4. From Fig. 7, we observe that in compliant routing,
maximum link utilization increases linearly with offered load.
This is expected since we use the same set of weights to scale
the traffic (see Section VI-B). In comparison, both optimal
routing and selfish routing can cause high link utilization even
when the overall offered load is low. For example, in both
ISPTopo and PowerD10 topologies, at a load factor of 0.2,
the maximum link utilization of optimal routing is close to
90% and that of selfish routing is close to 100%. This result
occurs because both optimal routing and selfish routing aim
to choose shortest paths; thus they are more likely to cause
congestion there, whereas compliant routing more uniformly
spreads traffic across the entire network to avoid link overloads
at the cost of longer end-to-end paths. The high network
utilization is undesirable, since many backbone networks are
kept at a load well below 50% so that there are enough backup
paths during link or router failures [19].

Effects of network topologies:Next we verify the above
observations by varying the network topologies. As shown in
Fig. 8, selfish routing consistently yields the highest maximum
link utilization and network cost in all topologies. For example,
in the Exodus network, the maximum link utilization achieved
by selfish routing is 40% higher than that of optimal routing
and 80% higher than that of compliant routing. For the
same network, the network cost of selfish routing is over
an order of magnitude higher than that of optimal routing
or compliant routing. Similar results are observed when the
links’ bandwidth in random topologies is changed from OC48
to OC3.

Effects of latency functions: The results based on other
latency functions are qualitatively the same, as shown in
Fig. 9. Since both latency and network cost/utilization arenot
very sensitive to latency functions for the topologies thatwe
consider, in the following sections we focus on the M/M/1
latency function. Moreover, we show only the maximum link
utilization, since it is more intuitive and it gives consistent
results as network cost.

C. Summary

To summarize, in this section we compare the performance
of different routing schemes using realistic network topolo-
gies and traffic demands. Our results show that unlike the
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Fig. 7. Selfish source routing: comparison of maximum link utilization using M/M/1 link latency under various network loads.
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Fig. 8. Selfish source routing: comparison of maximum link utilization and
network cost using M/M/1 link latency across different network topologies.
The links’ bandwidth in random topologies is OC48, and the bandwidth in
ISPTopo is based on the actual setting.

theoretical worst cases, selfish source routing in Internet-like
environments is effective in choosing shortest paths, and yields
close to optimal average latency. On the other hand, this
may come at the cost of overloading links on the shortest
paths, which suggests that selfish routing may potentially
have a negative impact on traffic engineering. We will further
investigate the issue in Section X.

VIII. S ELFISH OVERLAY ROUTING

The previous evaluations consider selfish source routing.
However, as we discussed in Section I, in practice, end
users often do not have complete routing control. We initially
expected that reducing routing flexibility would increase both
latency and link utilization, since users lose fine-grained
control over routing. However, as we will see, this is often
not the case.
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Fig. 9. Selfish source routing: comparison of maximum link utilization and
network cost across different latency functions.

A. Does selfish overlay routing perform well when every node
is in the overlay?

We first consider an overlay that consists of all network
nodes. Note that even if the overlay includes all network
nodes, routing on an overlay is still different from routing
on the physical network in that the latter has access to all
network resources, but this may not be the case for the former.
For example, the network-level routing can easily prevent
any overlay traffic from using a particular link by setting its
corresponding column in the routing matrix to 0 (in OSPF this
can be achieved by assigning a large weight to the link). As a
result, certain physical routes cannot be implemented by any
overlay routing schemes.

In our evaluation, we use the same network setting as before,
except that the routes between any pair of overlay nodes are
no longer determined by end users, but by the network-level
routing. We adopt OSPF for network-level routing and use the
three OSPF weight assignments as described in Section III.

Fig. 10 shows the performance of overlay source routing
for the ISPTopo network, as we vary network load. In
both figures, three of the four curves overlap, namely source
routing, overlay source routing when the network-level routing
uses optimized-compliant OSPF weights, and overlay source



routing when the network-level routing uses hop count. This
suggests that routing constraints, whether based on hop-count
or optimized-compliant weights, have little effect on user
latency or system-wide cost. This result came as quite a
surprise since our initial conjecture was that routing constraints
would degrade performance. In contrast, when the network-
level routing uses random weights, we observe much higher
delay and link utilization.

As we explained in [31], when an overlay covers all network
nodes and link weights satisfy triangular inequality, routing on
the overlay has as much routing flexibility as directly routing
on the underlying physical network. Since hop-count-based
OSPF weights satisfy triangular inequality and optimized-
compliant OSPF weights satisfy triangular inequality to a large
extent, they both perform well. When triangular inequality is
violated, this essentially prunes out the link with the highest
weight in the triangle. This reduces the network resources
available to the selfish overlay and can result in higher latency
and link utilization. With random OSPF weights, violationsof
triangular inequality are common and therefore the network
resources available to the overlay are significantly reduced.
This explains why we see substantially higher latency and
maximum link utilization with random OSPF weights. We will
show later in Section X that selfish overlay routing interacts
poorly with OSPF optimizer for exactly the same reason.
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Fig. 10. Selfish overlay routing: comparison of user latency and maximum
link utilization for theISPTopo topology.

We further verify the above observations by using different
network topologies; the results are shown in Fig. 11. As before,
random OSPF weights continue to yield substantially higher
delay and maximum link utilization, while the performance
of the other three is close to each other. This confirms our
previous findings. When comparing the performance across
different routing schemes, we observe that selfish routing con-
tinues to result in close to optimal average latency. Moreover,
it yields noticeably lower latency than compliant routing in
most cases. However, this lower latency often comes at the
cost of higher maximum link utilization.

B. Does selfish overlay routing perform well when only some
nodes are in the overlay?

The previous evaluation includes all of the network nodes
in an overlay. In practice, an overlay may only havepartial
coverage, i.e., only a fraction of the nodes are in the overlay.
In such a case, the routing choice is further constrained, which
may have an impact on the performance. Below we investigate
this issue in detail.

Effects of only covering edge nodes:In our first exper-
iment, we form an overlay from all of the edge nodes in
ISPTopo, and route all demands among these edge nodes
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Fig. 11. Selfish overlay routing: comparison of user latency and maximum
link utilization for different network topologies.

through the overlay. We then compare the performance with
what we achieve when the same set of demands is routed
through an overlay that includes all of the network nodes. As
shown in Fig. 12, the curves of full overlay coverage almost
completely overlap with those of partial coverage, in terms
of both latency and maximum link utilization. These results
are likely due to the fact that the Internet backbone is fairly
well-connected and well-provisioned; therefore, even though
end users can only forward traffic through edge nodes, they
do not lose much flexibility in controlling their routes.
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Fig. 12. Effects of partial coverage ion the performance of selfish overlay
routing. Here edge nodes inISPTopo belong to an overlay, and OSPF
weights are set according to hop count.

Effects of random partial coverage: In our second ex-
periment, we uniformly choose a fraction of network nodes
to form an overlay. We observe that the latency is similar
as the overlay coverage changes from 20% to 100%. On the
other hand, as shown in Fig. 13, full overlay coverage incursa
slightly higher maximum link utilization than partial coverage,
because as more nodes and links are included, it becomes
more likely that the overlay has popular shortcuts that get
overloaded.

C. Summary

To summarize, in this section we investigate the effects
of overlay routing constraints. We show that if the physical
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Fig. 13. Effects of partial coverage inISPTopo with random node selection
on maximum link utilization.

network uses a routing scheme that satisfies triangular in-
equality, the overlay has full control over how its traffic is
routed through the physical network. In the context of OSPF,
the only way in which OSPF can affect overlay traffic is
by violating triangular inequality, which effectively reduces
network resources and may therefore degrade both user and
system-wide performance. We also show that like source
routing, overlay source routing reduces latency at the expense
of higher network cost. Finally, we observe that the effects
due to partial coverage are small in backbone topologies.

IX. I NTERACTIONS AMONGCOMPETING OVERLAYS

So far we have only considered either a large number of
independent, small users using source routing (Section VII)
or a single selfish overlay (Section VIII). In practice, it is
possible that multiple overlays and background traffic will
share the same physical network, and different traffic will
compete against one another for the shared network resources.
We call such interactionshorizontal interactions.

A. What is the relative competitiveness of two routing
schemes?

We start by looking at the interactions between any two
types of traffic. The objective of this subsection is to evaluate
the “friendliness” of different types of routing schemes. We
useR1/R2 to denote that the routing scheme of the foreground
traffic is R1, and that of the background isR2. Here Ri

is either overlay source routing, overlay optimal routing,or
compliant routing.

We study how traffic using two different routing schemes
compete against each other in different topologies. In thisset
of experiments, we put the competing demands at the same
nodes, and we set both the foreground and background traffic
to be 50%. In other words, the two types of competing traffic
have the same amount of traffic and the same set of overlay
nodes. Fig. 14 shows the results. We make two observations.
First, the performance difference between compliant routing
and the competing overlay routing scheme varies across dif-
ferent topologies. For example, the performance difference
is larger in the Abovenet and power-law topologies. This is
consistent with Fig. 5 and can again be explained by the
better connectivity of these topologies (see Section VII-A
for details). Comparing the results in Fig. 14 with those in
Fig. 5, we observe that the latency of the compliant traffic
is not substantially increased, which indicates that selfish
routing does not hurt the performance of compliant routing
in this environment. Second, overlay source routing achieves
similar performance compared to overlay optimal routing. This

suggests that the performance gain of cooperative overlay
optimal routing over uncooperative overlay source routingis
not significant.
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Fig. 14. Coexistence of two routing schemes: varying networktopologies.

We also explored the impact of network-level routing
schemes on the horizontal interactions as follows. We set both
the foreground and background traffic inISPTopo to be 50%,
and we vary how OSPF weights are set. We found that the
foreground and background traffic experience similar latency
in most cases, except when OSPF weights are set randomly.
When OSPF weights are set randomly, compliant traffic incurs
about twice as much delay as that of the competing overlay
source routing or overlay optimal routing. This indicates that
inappropriate OSPF weights can significantly degrade the
performance of compliant traffic. In comparison, a selfish
overlay is able to reduce the latency of its traffic, as it looks for
better alternative paths. Interestingly, this also has a positive
side effect: it helps to reduce the load on the links used by
the competing compliant traffic, thereby cutting the latency of
the latter by half. When the network-level routing scheme is
configured reasonably, different overlay routing schemes can
coexist well.

B. Can many overlays coexist well?

Next we study horizontal interactions by varying the num-
ber of overlays. Each overlay uses overlay optimal routing
and covers all network nodes. Fig. 15 shows the result for
ISPTopo, when the number of overlays is changed in the
following ways: (i) one overlay, which includes all the de-
mands; (ii) overlay per source, where each overlay includes
all demands originated from a source; (iii) overlay per source-
destination pair, where each overlay includes all demands
between a source and destination pair; (iv) an infinite number
of overlays, where each overlay has infinitesimal demands. We
use the relaxation framework to compute the traffic equilibria
for (ii) and (iii). For (iv), we note that having an infinite
number of overlays with infinitesimal demands is equivalent
to having all the infinitesimal demands on a single overlay,
each of which tries to minimize its own latency. In other
words, (iv) is equivalent to having a single overlay using
overlay source routing. Thus we do not need to use the
relaxation framework. From Fig. 15, we observe that there
is only a slight difference in user latency due to variationsin
the number of overlays. Results from other topologies confirm
this finding, which suggests that performance degradation due
to competition among overlays is not significant.

C. Summary

To summarize, with reasonable OSPF weights (e.g., hop-
count), different routing schemes can share network resources
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Fig. 15. Coexistence of multiple overlays inISPTopo.

reasonably well without hurting each other; with bad OSPF
weights, selfish overlays improve performance both for them-
selves and for compliant traffic.

X. SELFISH ROUTING VS. TRAFFIC ENGINEERING

So far all of our experiments assume that the network-
level routing is fixed. We find that while selfish routing can
achieve close to optimal latency, it often increases maximum
link utilization and network cost. In practice, the network-level
routing may be constantly changing since one principal goal
of traffic engineering is to reduce network cost by adapting
the network-level routing in response to varying traffic pat-
terns. This motivates us to examine the interactions between
selfish routing and traffic engineering, which we termvertical
interactions. This vertical interaction can be considered as an
iterative game played between overlay networks and traffic
engineering. More specifically, we ask the following basic
question:Will the system reach a state with both low latency
and low network cost, as selfish routing and traffic engineering
each tries to minimize its own cost function by adapting to the
other process?

Below we evaluate vertical interactions in the context of
OSPF and MPLS route optimization. As we will see, OSPF
route optimization provides little control over selfish traffic.
As a result, the system performance, both in terms of user
latency and network cost, is no better than using hop-count-
based OSPF routing. In contrast, MPLS provides fine-grained
control and can potentially lead to better performance.

A. Specification of vertical interactions

We specify vertical interactions as an iterative process be-
tween the two players: traffic engineering and selfish overlays.

Traffic engineering adjusts physical routing based on net-
work traffic patterns, which are usually in the form of a traffic
matrix. More specifically, letTt denote the estimated traffic
matrix for time slott, thenTt(s, d) represents the total traffic
from sources to destinationd during the time slott. Traffic
engineering takesTt as input, and computes a routing matrix
Rt to optimize network performance. In our study, we assume
Tt is given. In reality,Tt can either be obtained through direct
measurements [10] or be estimated based on link loads [44].

Selfish routing interferes with traffic engineering by chang-
ing the traffic matrix. More specifically, after traffic engi-
neering installs the routing matrixRt to the network, selfish
routing will respond and redistribute traffic through overlay
nodes, which leads to a new traffic matrixTt+1. This process
repeats.

Fig. 16 specifies the process of vertical interactions. We also
add a relaxation option in the hope of improving stability.
However, our results show that it does not yield significant
performance improvement. Thus, in the interest of brevity,

below we only present the results of traffic engineering without
relaxation.

⊲ Tt is the estimated traffic matrix at timet.
⊲ T ∗

t is the real traffic matrix at timet.
⊲ Rt is the routing matrix at timet.
⊲ Assume

P

t
αt → ∞; αt → 0 as t → ∞.

T ∗

t = Traffic matrix when routing matrix isRt−1

if (relaxation)
Tt = (1 − αt)Tt−1 + αtT

∗

t

else
Tt = T ∗

t

Rt = OptimizedRoutingMatrix(Tt)
Traffic engineering installsRt to network
Selfish routing redistributes traffic to formT ∗

t+1

Fig. 16. One round during vertical interaction.

B. Does selfish routing work well with OSPF optimizer?

We first evaluate vertical interactions when the route con-
troller uses OSPF. In all of our experiments, the traffic
engineering process uses an OSPF optimizer to optimize link
weights as described in [13], and the starting routing matrix
of the interactions is computed using hop-count-based OSPF.
We choose this starting point to model a scenario in which
selfish routing initially has full control over the routing of its
traffic in the physical network (see Section VIII), and then the
network decides to start using traffic engineering.
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Fig. 17. Vertical interaction with OSPF optimization for theSprint topology.

Fig. 17 shows the dynamics of vertical interactions for
the Sprint topology. The results indicate that the responseof
OSPF traffic engineering could yield considerably worse per-
formance than compliant routing using optimized-compliant
OSPF weights (i.e., traffic engineering without selfish traffic),
and worse than overlay source routing on top of hop-count-
based OSPF (i.e., selfish routing without traffic engineering).
We observe qualitatively similar results as we vary network
topologies, the fractions of selfish traffic, and the sizes of
selfish overlays.

These results suggest that the interactions between the two
separate routing control processes is so ineffective that each
individual control process, when applied alone, can yield better
performance than having such interactions.

Such inefficiency is partly due to the fact that the adaptive
nature of selfish traffic creates considerable variability in
traffic demands and therefore makes it harder to do traffic
engineering. Another important reason is the limited control
of OSPF over selfish overlay traffic. Recall in Section VIII we
have shown that when all network nodes belong to an overlay,
the only way in which OSPF can affect the selfish overlay
traffic is by violating triangular inequality, which effectively
reduces available network resources. As a result, both latency



and network cost could be worse than those of hop-count-
based OSPF, which gives the overlay full access to all available
network resources.

C. Does selfish routing work well with MPLS optimizer?

The poor interactions between selfish routing and the OSPF
optimizer motivates us to look for alternative solutions. In
this subsection, we examine vertical interactions between
selfish routing and the MPLS optimizer, which allows one to
implement general multi-commodity routing. Given a traffic
matrix and a piece-wise linear, increasing, convex network
cost function, the MPLS optimizer can find the optimal routing
matrix R that minimizes the network cost by solving a linear
programming problem.
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Fig. 18. Vertical interaction with MPLS optimization for theSprint topology.

Fig. 18 shows the average latency and maximum link
utilization for the Sprint topology. We observe that the routing
performance is noticeably better than that of OSPF. It allows
the system to reach a state in which the network cost is close to
that of optimal traffic engineering without selfish routing,and
the average latency is only marginally higher than what selfish
routing can achieve in the absence of traffic engineering. This
is important because the traffic engineering process can choose
to stop at any moment and settle on a routing matrix that gives
a satisfactory result. That is, the traffic engineering process
can be considered as a type of Stackelberg game. We observe
similar results from other topologies.

These results indicate that MPLS-based traffic engineering
can interact much more effectively with selfish routing. This
is likely due to the fact that MPLS has much more fine-
grained control over selfish overlay traffic. Specifically, unlike
OSPF, MPLS can adjust the routing matrixR without having
to reduce available network resources.

Despite the encouraging results, however, we note that
there are a number of practical challenges in applying MPLS-
based traffic engineering, or traffic engineering in general, in
the presence of selfish traffic. In our evaluation we assume
that we know the perfect traffic matrices, which need to be
estimated in practice. The adaptive nature of selfish traffic
can make it difficult to accurately estimate traffic matrices.
Another challenge is that MPLS-based traffic engineering
requires solving a large linear programming problem. For large
networks, the problem may contain millions of unknowns,
which is infeasible to solve using software available today.
A thorough exploration of these subjects is outside the scope
of this paper, so we defer it to future work.

D. Summary

To summarize, in this section we examine the interactions
between selfish routing and traffic engineering. We find that
OSPF route optimization interacts ineffectively with selfish

routing, largely due to its limited control over selfish traffic.
In contrast, MPLS route optimization has more fine-grained
control, and therefore interacts with selfish traffic more effec-
tively. However, further research is required to investigate such
interactions in more detail.

XI. EFFECTS OFMULTI -AS

In this section, we conduct a preliminary investigation on
whether the multi-AS structure of the Internet affects the
routing performance. We start by describing our evaluation
methodology, and then present the performance results.

A. Evaluation methodology

We evaluate the effects of multi-AS nature based on inter-
domain traffic traces and an inter-domain topology. We obtain
Abilene traces, which contain netflow data from a number of
universities and enterprises on the Internet-2 during October
2003. We select traffic traces from the organizations, shown
in Table III, for our evaluations. To speed up our evaluations,
during each 5-minute interval, we use only the 2000 destina-
tion prefixes with the largest volumes. We call these prefixes
top prefixes. Note that in different time intervals, the sets of
top prefixes are different, but they always account for over
90% of the total traffic in an interval.

AS Organization Traffic Rate (Mbps)

3582 University of Oregon 215.576 (202.527)
3 MIT Gateways 64.598 (64.587)
52 UCLA 52.245 (52.234)
59 University of Wisconsin, Madison 33.333 (33.253)
237 NSF (MERIT-AS-14) 117.366 (108.621)
6629 NOAA Silver Springs Lab 62.340 (62.335)
70 National Library of Medicine 72.810 (72.691)

1701 NASA/GSFC
(Goddard Space Flight Center) 37.451 (37.448)

22753 Red Hat Inc. 33.241 (33.238)
Anonymized Commercial Web Server 156.231 (64.124)

TABLE III

TRAFFIC TRACES USED IN OUR EVALUATION, WHERE THE LAST COLUMN

SHOWS THE ORIGINAL TRAFFIC RATES AVERAGED OVER91 DAYS, AND

THE TRAFFIC RATES AFTER FILTERING, WHICH ARE SHOWN IN

PARENTHESES.

We construct an inter-domain topology using the Rocketfuel
data [32]. To make our simulations scalable, we select 6 ASes
in the United States from the Rocketfuel data to construct
a network topology of over 363 nodes and 1639 edges. For
each intra-domain link, we use the inferred OSPF weight and
propagation delay from the data; and for each peering link,
we use the estimated propagation delay from the data. Since
most of the ASes for which we have traffic traces do not have
corresponding topology data, we randomly map the ASes in
Abilene traces to the ASes in the Rocketfuel topology. We
compare compliant routing with overlay routing. In compliant
routing, the network chooses the inter-domain route based on
the shortest AS hop count, and chooses intra-domain route
based on the shortest OSPF path. Overlay routing allows a user
to select an overlay path; meanwhile the network determines
the route between two consecutive overlay nodes based on the
same hierarchical routing strategy. Since the Rocketfuel data
do not contain link bandwidth, we set the peering links to be
OC3 (i.e., 155 Mbps) and intra-domain links to be OC12 (i.e.,
622 Mbps). We use the M/M/1 latency function for all links in
the network to capture the effect of traffic load on link latency.



B. Effects of network load

First we examine the impact of varying network load on
routing performance. In all cases, the overlay consists of all
the peering points in the inter-domain topology. Figure 19
compares compliant routing with overlay routing, where the
number of overlays is varied in the following way: (i) one
overlay, which includes all traffic (This corresponds to coop-
erative routing, since traffic is routed to minimize the overall
latency), (ii) overlay per AS, where each overlay contains
traffic from the same AS in Abilene traces, and (iii) an infinite
number of overlays, where each overlay contains infinitesimal
amount of traffic. As we can see, overlay routing yields
similar performance as we vary the number of overlays.
In addition, overlay routing performs better than compliant
routing, especially under heavy load.
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Fig. 19. Comparison of average latency between overlay routing and
compliant routing using the Abilene traffic trace during the first 5-minute
time window on Oct. 8, 2003, where the number of overlays variesfrom one
overlay to an infinite number of overlays, and the load varies such that the
max-utilization under compliant routing changes from 0.2 to 1.

C. Varying time windows

Next we repeat the previous experiment by varying the
time window. Fig. 20 shows the results for the 288 time
windows, each lasting 5 minutes, on Oct. 8, 2003. As before,
different types of overlay routings yield similar performance,
all significantly out-performing compliant routing.
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D. Effects of overlay coverage

Finally we examine the impact of overlay coverage on
routing performance. Fig. 21 shows the results as we randomly
pick a fraction of nodes in the topology as overlay nodes; and
Fig. 22 shows the results as we randomly pick a fraction of
peering points in the topology as overlay nodes. In both cases,
we observe that overlay routing, regardless of the number of
overlays, yields similar performance as the overlay coverage
varies from 0.1 to 1. Moreover it consistently out-performs
compliant routing.
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Fig. 21. Comparison of average latency between overlay routing and
compliant routing using the Abilene traffic trace during the first 5-minute
time window on Oct. 8, 2003, where the number of overlays variesfrom one
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Fig. 22. Comparison of average latency between overlay routing and
compliant routing using the Abilene traffic trace during the first 5-minute
time window on Oct. 8, 2003, where the number of overlays variesfrom one
overlay to an infinite number of overlays, and the fraction of peering points
in an overlay varies from 0.1 to 1.

E. Summary

In this section, we observe that as in the intra-domain,
overlay routing in inter-domain out-performs compliant rout-
ing. Moreover the performance degradation due to competition
among overlays is not significant.

XII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we use a game-theoretic approach to study the
performance of selfish routing in Internet-like environments.
Our results show that unlike the theoretical worst case, selfish
routing in such environments achieves close to optimal average
latency, when the network-level routing is static. Moreover,
compared with compliant routing, selfish routing yields lower
latency. This is true for both intra-domain and inter-domain
scenarios. On the other hand, such performance often comes
at the cost of overloading certain links. Moreover, when selfish
routing and traffic engineering each tries to minimize its own
cost by adapting to the other process, the resulted performance
could be considerably worse.

There are a number of avenues for future work,e.g., a better
understanding and improving the interactions between selfish
routing and traffic engineering; investigating the dynamics of
selfish routing,i.e., how equilibria are reached; and evaluating
the performance of selfish routing under alternative perfor-
mance metrics, such as loss and throughput.
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