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ABSTRACT

Many basic network engineering tasks (e.g., traffic engineering, ca-
pacity planning, anomaly detection) rely heavily on the availability
and accuracy of traffic matrices. However, in practice it is chal-
lenging to reliably measure traffic matrices. Missing values are
common. This observation brings us into the realm of compressive

sensing, a generic technique for dealing with missing values that
exploits the presence of structure and redundancy in many real-
world systems. Despite much recent progress made in compres-
sive sensing, existing compressive-sensing solutions often perform
poorly for traffic matrix interpolation, because real traffic matrices
rarely satisfy the technical conditions required for these solutions.

To address this problem, we develop a novel spatio-temporal
compressive sensing framework with two key components: (i) a
new technique called SPARSITY REGULARIZED MATRIX FAC-
TORIZATION (SRMF) that leverages the sparse or low-rank nature
of real-world traffic matrices and their spatio-temporal properties,
and (ii) a mechanism for combining low-rank approximations with
local interpolation procedures. We illustrate our new framework
and demonstrate its superior performance in problems involving
interpolation with real traffic matrices where we can successfully
replace up to 98% of the values. Evaluation in applications such
as network tomography, traffic prediction, and anomaly detection
confirms the flexibility and effectiveness of our approach.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network Opera-
tions—Network monitoring

General Terms

Measurement, Performance

Keywords

Compressive Sensing, Traffic Matrix, Interpolation, Tomography,
Prediction, Anomaly Detection

1. INTRODUCTION
Traffic Matrices (TMs), which specify the traffic volumes be-

tween origin and destination pairs in a network, are critical in-
puts to many network engineering tasks, such as traffic engineer-
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ing [11,24], capacity planning, and anomaly detection. Due to their
importance, there is now a substantial body of work on TMs, for
instances see [2] and the references therein. The thrust of much of
this research has been on measurement [10,28] and inference [9,17,
25,27,31–34] of TMs, and more recently on topics such as anomaly
detection [13, 14, 21, 29, 30]. A key challenge that lies at the heart
of many of these problems is how to cope with missing values that
frequently arise in real-world TMs. In this paper, we propose novel
interpolation techniques to accurately reconstruct missing values in
TMs based on partial and/or indirect measurements. In the process,
we provide a unified approach to several common tasks involving
measurement and analysis of traffic matrices; e.g., TM estimation,
prediction, and anomaly detection. Our approach uses the first truly
spatio-temporal model of TMs, borrows ideas from the active area
of compressive sensing, and exploits domain knowledge regarding
TMs that has accumulated over the years.

Motivation: In practice it is challenging to reliably measure TMs
for large networks. First, in many networks the TM is not directly
observable, and can only be estimated through link load measure-
ments. Such measurements, while linearly related to the TM itself,
are not sufficient to unambiguously identify the true TM. Typically,
the problem was posed as an underconstrained linear-inverse prob-
lem, where the solution relied on a prior model of the TM (e.g., the
Poisson model of Vardi [27], the gravity model [31, 33], or the in-
dependent flow model [9]). Second, although many networks now
collect (sampled) flow-level measurements for at least part of their
network, there are still serious impediments to reliable large-scale
collection of TMs: data collection systems can fail, flow collec-
tors often use an unreliable transport protocol, and legacy network
components may not support flow collection or be resource chal-
lenged. Third, scalability requirements may mean that flow-level
collection doesn’t occur at the edge of a network (where we would
wish it for true TM recovery [10]), but often only on some subset
of the routers. Recovery of the actual ingress-egress TM from such
data is non-trivial. Finally, when we find an anomaly in a set of
TMs, we often need to know the non-anomaly-related traffic either
for other network tasks, or just so that we can infer the cause of the
anomaly. The result is that any large set of TM measurements has
some, and quite often, a significant number of missing values.

Since many network engineering tasks that require TMs are ei-
ther intolerant or highly sensitive to missing data, it is important to
accurately reconstruct missing values based on partial and/or indi-
rect TM measurements. Interpolation is the mathematical term for
filling in these missing values. Compressive sensing is a generic
methodology for dealing with missing values that leverages the
presence of certain types of structure and redundancy in data from
many real-world systems. Compressive sensing has recently at-
tracted considerable attention in statistics, approximation theory,
information theory, and signal processing. Several effective heuris-
tics have been proposed to exploit the sparse or low-rank nature of



data [5, 6, 8, 19, 20]. Meanwhile, the mathematical theory of com-
pressive sensing has also advanced to the point where the optimality
of many of these heuristics has been proven under certain technical
conditions on the matrices of interest.

Contributions: Despite much recent progress in the area of com-
pressive sensing, our extensive evaluation of the existing compres-
sive sensing algorithms on real TMs shows that they do not per-
form well for TM interpolation, especially under structured, high
data loss (see Section 4). The main reason is that real TMs often
exhibit characteristics that violate the mathematical conditions un-
der which existing compressive sensing algorithms are designed to
operate and are provably optimal. Specifically, the optimality re-
sults for existing compressive sensing algorithms often assume that
(i) the matrix elements are drawn from a Gaussian or Gaussian-like
distribution, (ii) the matrix is exactly low-rank, (iii) data loss is in-
dependent for different matrix elements, and (iv) the measurement
constraints on the matrix satisfy a certain technical conditions (e.g.,
the restricted isometry property [19]). Unfortunately, none of these
conditions are likely to hold for real TMs. Real TM elements often
exhibit a highly skewed distribution, where the largest and smallest
elements often differ in size by several orders of magnitude. More-
over, real TMs are only approximately low-rank, and data loss in
real TMs tends to be highly structured — data may be missing ei-
ther spatially (we may be missing entire rows or columns of the
TM), or temporally (we may be missing matrix elements over en-
tire segments in time), or in some combination. Finally, there is no
guarantee that the constraints arising from real-world TM measure-
ments satisfy the required technical condition.

To address the above challenge, we develop in this paper a novel
spatio-temporal compressive sensing framework for TM interpola-
tion. Our framework has two key components:

• We develop SPARSITY REGULARIZED MATRIX FACTORIZA-
TION (SRMF), which finds sparse, low-rank approximations
of TMs that account for spatial and temporal properties of real
TMs. To the best of our knowledge, SRMF represents the first
genuine spatio-temporal model of TMs. In contrast, most past
approaches can be best described as purely spatial (e.g., [9, 13,
14, 31, 33]) or temporal (e.g., [3, 27]). SRMF is also quite gen-
eral; it includes as special cases many of the existing techniques
(e.g., PCA, Tomo-gravity [31, 33] and independent flows [9]),
but admits a much larger variety of algorithms.

• We augment low-rank approximations of TMs with local inter-
polation. In this way, we can leverage additional local struc-
ture and redundancy that are difficult to capture using strictly
low-rank approximations of a TM. For example, there may not
exist any strictly low-rank approximation that can satisfy all the
linear constraints between the link load measurements and the
original TM. Similarly, a strictly low-rank global structure may
be too inflexible to capture the local similarity between indi-
vidual TM elements. Our strategy is to use the low-rank ap-
proximation obtained by SRMF as a prior and derive a refined
approximation that is no longer strictly low-rank but is close to
the low-rank prior and can also account for existing local struc-
ture and redundancy.

We use real TMs from three operational networks to evaluate
the effectiveness of our approach. Our most successful algorithm,
SPARSITY REGULARIZED MATRIX FACTORIZATION combined
with local interpolation, has many desirable properties. Its perfor-
mance when applied to real TMs is excellent. We can reconstruct
TMs with up to half their data missing with errors of the order of
10%, and even when 98% of the data points are missing our ap-
proach only has an error of the order of 30%. While it may be
surprising that such good reconstructions are possible with so little
data, our results are an indication of the degree of structure present

in real-world TMs. The fact that we can perform such reconstruc-
tions could change the way TMs are collected. Much as sampling
has enabled network-wide flow collection, reconstructions of this
type can enable truly large-scale collections of TM data.

The technique has been applied to matrices with over 700 thou-
sand entries, and we can process these in only a few seconds. The
algorithm scales linearly with the size of the data so that much
larger datasets can be analyzed. Moreover, tests of the proposed
approach in applications such as network tomography, traffic pre-
diction, and anomaly detection all confirm its effectiveness and ro-
bustness to real-world measurement issues.

Paper organization: The remainder of the paper is organized as
follows. We provide background on traffic matrices and compres-
sive sensing in Section 2. We describe our spatio-temporal com-
pressive sensing framework in Section 3. We present evaluation
results for TM interpolation in Section 4 and for applications of
TM interpolation in Section 5. We conclude in Section 6.

2. BACKGROUND

2.1 Traffic Matrices
A Traffic Matrix (TM) is a non-negative matrix Z(i, j) that de-

scribes volumes of traffic (in bytes, packets, or flows) between a
source i and a destination j. For a network with N locations the
TM is a square N × N matrix. In practice we need a number of
addenda to this simple definition. First, a TM is typically mea-
sured over some time interval, and the value reported is an average.
So we denote Z(i, j; t) to be the traffic from i to j averaged over
[t, t + ∆t). We call the TM Z(∗, ∗, t) a snapshot despite the fact
that it really represents an interval. Second, although it is common
to speak of “origin-destination” TMs, it is often difficult to accu-
rately map IP addresses present in traffic to the true origin and des-
tination of traffic when we examine a network or Autonomous Sys-
tem (AS). So typically the matrix is aggregated into a router-level
ingress-egress TM, where Z(i, j; t) describes the traffic entering a
network at router i, and leaving at router j.

The TM may be thought of as a 3-dimensional array Z ∈ R
N ×

R
N ×R

m (where there are m time intervals present). It is common
to take a TM snapshot and stack the columns to form a column
vector which we denote xt. We can compile these vectors into
the columns of a larger matrix X ∈ R

n × R
m (where n = N2),

and this form of the TM is often more convenient for algebraic
manipulation than a 3-dimensional array. Note that the columns of
X represent the TM at different times, while the rows represent the
time evolution of a single element of the TM.

One example of how this notation is useful is in TM inference
(the so-called network tomography problem [27]). In this problem
the TM is related to the more easily measured link loads Y by the
following linear matrix equation

Y = AX, (1)

where A is the routing matrix, which expresses which links are
used by which routes1. TM inference involves finding the “best”
solution X̂ to (1) given a set of link-load measurements Y .

More generally, we can combine link measurements with addi-
tional TM measurement strategies, which often yields a better es-
timate of the TM than using each individual type of measurements
by itself [34]. For example, flow-records are typically collected at
ingress routers [10]. In this case, each router sees one row of a
TM snapshot, so over time, router i sees Z(i, ∗, ∗). Missing data

1Typically issues such as changing network topology or routing, or
number of routers are ignored in the mathematical literature, but
such issues have been successfully dealt with in practical instantia-
tions of network tomography algorithms [30, 33].



from a single router means we will be missing a row of Z, or a
group of rows of X. Flow-records could also be collected at egress
or backbone routers. In this case, although it is difficult to unam-
biguously determine the ingress router for the observed traffic, we
can still form a set of linear constraints on where the traffic could
have originated. An alternative measurement strategy [28, 33] is to
collect local TMs at each router, which can again be represented as
linear constraints on the global TM. In combination we have a set
of linear constraints on the TM, i.e.,

A(X) = B, (2)

where A(·) is a linear operator, and the matrix B contains the mea-
surements. The operator expresses the information available in our
measurements. Note that the presence of missing data is implicit in
(2); for instance, the operator A could include TM measurements at
ingress routers with no measurement errors (but with missing data),
by writing (2) as

M. ∗ X = M. ∗ D, (3)

where D(i, j) contains the direct measurements (where available)
and M is a N2 × m matrix given by

M(i, j) =



0, if X(i, j) is missing.
1, otherwise. (4)

and .∗ denotes an element-wise product, i.e., A = C. ∗ B means
A(i, j) = B(i, j)C(i, j). When both link measurements and di-
rect measurements are available, then constraints (3) will (typi-
cally) be incorporated into (2) to simplify notation.

In addition to the above concerns we note that all data sources
contain errors. Flow-level collection usually involves sampling, of-
ten at quite high rates, and the Simple Network Management Pro-
tocol (SNMP) used for collecting link measurements is often noisy.

We seek an estimated TM X̂ that satisfies the conditions im-
posed by the set of measurements. However, as is the case in
many such linear-inverse problems, there may not be enough in-
formation to unambiguously determine X. We call these undercon-

strained linear-inverse problems (in the case of TM estimation from
link data, the problem is very highly underconstrained). To solve
such problems, we can use side information about the nature of the
TM being considered, for instance the gravity model of [31, 33] or
independent-flows model of [9]. Regularization is a process used to
solve such problems in which we “regularize” towards some prior
model of the data in question. The low-rank model we will propose
here is motivated by the recent literature on compressive sensing.

2.2 Compressive Sensing
We have seen that interpolation is necessary because of missing

values in the data we collect. In addition, we can set up missing
data problems deliberately as part of the design of scalable mea-
surement systems. As networks grow, it becomes more difficult
to maintain the associated measurement infrastructure. Methods to
reduce the required infrastructure have started to appear, the most
common of which is sampling. A new idea in signal processing
is that of compressive sensing [6, 8]. The main idea behind com-
pressive sensing is that since many real-world signals or datasets
exhibit some structure or redundancy (i.e., they are not pure noise),
one should be able to utilize this prior knowledge for both acquisi-
tion and reconstruction of the signal or dataset at hand.

Structure and redundancy in data are often synonymous with
sparsity. A sparse vector is simply a vector that has only a few
non-zero elements. Often our vectors of interest might have only a
few large elements, and many small elements. We call such a vector
compressible, in the sense that most of its information is carried in
the larger elements. Note that the majority of work on compressive
sensing has concerned vectors of data, so a naive approach to TMs

might be to compile these into vectors and then apply vector tech-
niques. However, some of the structure of a TM is inherent in the
matrix itself, so there is value in treating our matrix X as a genuine
matrix. In the context of matrices, low rank is analogous to sparsity,
because the spectrum formed by the singular values of a low-rank
matrix is sparse (see below). It is now well known that TMs may
be approximated by matrices of low rank [13, 14], and so this con-
cept fits well here. We explicitly use this type of sparsity as our
approach to resolve the underconstrained nature of the measure-
ment problems we face. In the following section we draw on the
recent matrix compressive-sensing literature [5, 19, 20] to explain
how such “sparsity regularized” algorithms can be constructed.

2.3 Singular Value Decomposition
A basic tool for creating low-rank matrix approximations is the

Singular Value Decomposition (SVD). Simply stated, any n × m
real matrix X can be decomposed into three matrices such that

X = UΣV T , (5)

where V T is the transpose of V , and U is a n × n unitary matrix
(i.e., UT U = UUT = I), and V is a m × m unitary matrix (i.e.,
V T V = V V T = I), and Σ is a n × m diagonal matrix contain-
ing the singular values σi of X. Typically the singular values are
arranged so that σi ≥ σi+1. The rank of a matrix is the number of
linearly independent rows or columns, which equals the number of
non-zero singular values.

To understand the SVD’s use in matrix approximations, consider
the following interpretation of the SVD. The matrix Σ is diagonal,
so the SVD of a matrix X can be rewritten as:

X = UΣV T =

min(n,m)
X

i=1

σiuiv
T
i =

min(n,m)
X

i=1

σiAi, (6)

where ui and vi are the ith columns of U and V respectively, and
the matrices Ai are (by construction) rank-1. We can then create
a rank-r approximation X̃ from the SVD by keeping only the r
largest singular values in the summation and dropping the others:

X̃ =

r
X

i=1

σiAi. (7)

The above X̃ is known to be the best rank-r approximation with
respect to the Frobenius norm || · ||F of the approximation errors,

where ||Z||F △

=
q

P

i,j Z(i, j)2 for any matrix Z. That is, trun-

cation of the SVD provides the natural solution to:

minimize ||X − X̃||F ,

subject to rank(X̃) ≤ r.
(8)

In Internet measurement, the SVD has most commonly appeared
in the form of the Principal Components Analysis (PCA), which
has been used, for instance in anomaly detection [13, 14]. PCA is
directly related to SVD by the fact that the columns of U form the
principal axes of the PCA coordinate transform.

Sparsity Regularized SVD: Many matrix interpolation techniques
try to create a SVD-like factorization of a matrix X, though it is
common to write this in the equivalent form

X = UΣV T = LRT , (9)

where L = UΣ1/2 and R = V Σ1/2, and so we will subsequently
use this form for consistency.

Now SVD by itself is not an interpolation algorithm. Typical
algorithms for calculating the SVD assume that X is completely
known. Instead we look for a factorization that satisfies the mea-
surement equations, i.e., A(LRT ) = B. Previous studies have



suggested that typical TMs inhabit a relatively low-dimensional
subspace [13, 14], so an intuitive approach for finding such a fac-
torization is to solve the following rank minimization problem:

minimize rank(LRT ),
subject to A(LRT ) = B.

(10)

Rank minimization has a non-convex objective and is thus diffi-
cult to solve. A key insight from the matrix compressive-sensing
literature [5, 19, 20] is that under certain conditions, we can solve
a simpler problem instead and obtain equivalent results. Specif-
ically, when a certain technical condition (the restricted isometry
property [19]) holds on A(·), then a heuristic — minimizing the
nuclear norm — can perform rank minimization exactly for a ma-
trix of low enough rank. Further, if the rank of X is less than the
rank of LRT then (10) is equivalent to

minimize ||L||2F + ||R||2F ,
subject to A(LRT ) = B.

(11)

In TM interpolation, looking for a low-rank solution that strictly
satisfies the measurement equations is likely to fail, because (i) the
real TM X is often only approximately low-rank, and (ii) the mea-
surements often contain errors. So instead we solve the following

minimize ||A(LRT ) − B||2F + λ
“

||L||2F + ||R||2F
”

. (12)

This solution regularizes towards the low-rank approximation but
does not strictly enforce the measurement equations. The regular-
ization parameter λ allows a tunable tradeoff between a precise fit
to the measured data and the goal of achieving low rank.

We derive L and R from (12) using an alternating least squares
procedure. We initialize L and R randomly. We then solve the
above optimization taking one of L and R to be fixed and the other
to be the optimization variable (which is a standard linear least
squares problem). We then swap their roles, and continue alternat-
ing towards a solution till convergence. Our implementation of the
alternating least squares procedure in Matlab further utilizes sparse
matrix operations to minimize memory requirement and maximize
speed (details are omitted due to space restriction, but we will sup-
ply Matlab code on request). The above approach will be referred
to as Sparsity Regularized SVD (SRSVD) interpolation.

2.4 Other Interpolation Algorithms
There are a number of approaches that have been proposed in

the recent literature for matrix interpolation besides SVD. These
algorithms can be classified as either low-rank approximation al-
gorithms or local interpolation algorithms, depending on whether
they exploit the global low-rank structure or the local structure and
redundancy. We describe them here for completeness and for com-
parison with our approach detailed in Section 3.

2.4.1 Low-Rank Approximation Algorithms

Baseline Approximation: Many techniques (for instance PCA)
implicitly assume that the data has zero mean. So our first step for
dealing with network matrices might be to “center” them. How-
ever, centering the matrices where we do not have all the data also
requires interpolation. Our baseline approximation algorithm im-
plicitly constructs such an interpolation matrix Xbase to compute
row and column means of the matrix. For instance, if we knew
all elements of the input X, then the row and column sums of
X − Xbase would all equal zero. Apart from its use in zeroing
the mean, it also forms an interpolation in its own right, and so we
will compare its performance below.

To compute Xbase, we use the variables described in Table 1. In
matrix form, we can represent Xbase as a rank-2 approximation
to X: Xbase = X̄ + Xrow1

T + 1XT
col, where 1 is a column

variable description

X̄ an estimate of the mean of X over all i and j.
Xrow a vector of length m such that

Xrow(i) = an estimate of
P

j(X(i, j) − X̄)/n.
Xcol a vector of length n such that

Xcol(j) = an estimate of
P

i(X(i, j) − X̄)/m.
Xbase the baseline estimate for X given by

Xbase(i, j) = X̄ + Xrow(i) + Xcol(j).

Table 1: Outputs of baseline estimation.

vector consisting of all ones. We use the regularized least-squares
algorithm from [4] to compute X̄, Xrow , Xcol from input A(·) and
B. That is, we solve the following

minimize ||A(X̄ + Xrow1
T + 1XT

col) − B||2F
+ λ

`

X̄2 + ||Xrow ||2F + ||Xcol ||2F
´

,
(13)

where λ is a regularization parameter. The first term in this formu-
lation minimizes the Frobenius norm of the difference A(Xbase)−
B, and the second regularization term helps avoid overfitting.

SRSVD-base: Techniques like PCA implicitly assume that the
data has zero mean, but in TM interpolation we do not know the
true mean. Instead we use Xbase as an estimate. It is not obvious
whether such centering is necessary or desirable in interpolation,
so we include results for both SRSVD applied to X and SRSVD
applied to (X − Xbase). We refer to the latter as SRSVD-base.

Nonnegative Matrix Factorization: Nonnegative Matrix Fac-
torization (NMF) [15, 16] tries to find nonnegative factor matri-
ces L and R that minimize the Frobenius norm2 of the difference
A(LRT ) − B over the observations. The approach is very similar
to the SVD, except for the insistence on non-negative factor matri-
ces. We avoid overfitting by regularizing in the same manner that
we do for SVD, i.e., we solve (12) but with the additional constraint
of non-negativity. We implement the two most common algorithms
for NMF: multiplicative update [15] and alternating nonnegative
least squares. Both algorithms are designed for the case where the
matrix X is completely known. So we extend them to further cope
with measurement equations (2). The two algorithms give similar
interpolation performance, but multiplicative update is more effi-
cient. So our results are based on this algorithm.

2.4.2 Local Interpolation Algorithms

K-Nearest Neighbors: We also test one completely different
approach: k-Nearest Neighbors (KNN). Simple nearest neighbors
directly uses the nearest neighbor of a missing value for interpo-
lation. KNN extends this by using a weighted average of the k
nearest-neighbors’ values. For TMs, it is more difficult to apply
KNN because the rows are ordered arbitrarily (for instance based
on the names of routers). So the nearest elements in the matrix X
may have little correspondence. Hence we need to derive a good
distance metric between matrix elements.

We use the approach described in [4]. We can perform the algo-
rithm on either rows or columns of X, but let us start with rows.
If two rows are similar (i.e., two TM elements exhibit similar be-
havior), then it is natural to assume that one might provide a good
interpolant of the other. Hence, we base our distance metric on the
similarity between rows, i.e., the more similar two rows are, the
closer together we consider them. Following [4], we measure the
similarity by an approximation to the correlation coefficient of the
two rows based on only those directly observed TM elements. To

2There is nothing intrinsically special about the Frobenius norm for
this approach. The Kullback-Leibler divergence [15] has also been
suggested but our experiments found that the performance of this
approach was much worse, and it is not presented here.



form this coefficient, we would ideally first subtract the mean, but
as the mean is unknown we use our proxy Xbase. The weights used
in the k averaged neighbors are proportional to the similarities [4].

3. OUR SOLUTION: SPATIO-TEMPORAL

COMPRESSIVE SENSING
The KNN approach is intrinsically different from the other meth-

ods described above. It explicitly targets local structure in a TM,
whereas the low-rank methods look for global structure. This dif-
ference is one of the key motivations for developing a novel spatio-
temporal compressive sensing framework that seeks to capture both
global and local structure. It consists of two key components: (i)
SPARSITY REGULARIZED MATRIX FACTORIZATION (SRMF) for
incorporating global spatio-temporal properties, and (ii) a mecha-
nism for incorporating local interpolation.

3.1 Sparsity Regularized Matrix Factorization
The SRSVD approach starts with (12) to find global low-rank

structure in the TM. On the other hand, we may a priori know
that the matrix has additional spatio-temporal structure, e.g., TM
rows or columns close to each other (in some sense) are often close
in value. We seek to exploit this insight in the new technique we
propose here. We propose to solve the following

minimize ||A(LRT ) − B||2F + λ
`

||L||2F + ||R||2F
´

+ ||S(LRT )||2F + ||(LRT )T T ||2F ,
(14)

where S and T are the spatial and temporal constraint matrices,
respectively. Matrices S and T express our knowledge about the
spatio-temporal structure of the TM (e.g., temporally nearby TM
elements have similar values). We solve the above optimization
problem again using alternating least squares. We call the result-
ing algorithm Sparsity Regularized Matrix Factorization (SRMF).
It has the advantages of SRSVD, but is more general, allowing us
to express other objectives in our TM approximation/interpolation
algorithm through different choices of S and T .

Below we discuss how to choose S and T . To better illustrate the
idea and benefit of SRMF, we intentionally use relatively simple
choices of S and T . In our future work, we will develop techniques
to better tailor S and T to dataset characteristics and application
requirements. Both SRSVD and SRMF also require specification
of the input rank of L and R. Our evaluation in Section 4 shows
that SRMF is not sensitive to the input rank parameter.

Choice of T : The temporal constraint matrix T captures the tem-
poral smoothness of the TM. A simple choice for the temporal
constraint matrix is T = Toeplitz(0, 1,−1), which denotes the
Toeplitz matrix with central diagonal given by ones, and the first
upper diagonal given by negative ones, i.e.,

T =

2

6

6

6

6

6

4

1 −1 0 . . .

0 1 −1
. . .

0 0 1
. . .

...
. . .

. . .
. . .

3

7

7

7

7

7

5

(15)

This temporal constraint matrix intuitively expresses the fact that
TMs at adjacent points in time are often similar. For instance XT T

is just the matrix of differences between temporally adjacent ele-
ments of X. By minimizing ||(LRT )T T ||2F we seek an approxi-
mation that also has the property of having similar temporally ad-
jacent values. We use this simple choice for anomaly detection in
Section 5.3 to make comparisons with other anomaly detection al-
gorithms easier. A more sophisticated choice taking into account
domain knowledge (say knowledge of the periodicity in traffic data)

might result in some improvements. We give such an example for
traffic prediction in Section 5.2. In general, it is not difficult to
develop such temporal models of TMs.
Choice of S: The spatial constraint matrix S can be used to ex-
press which rows of a TM are close to each other, but due to the
arbitrary ordering of rows in the TM, a simple matrix of the above
form is not appropriate. We find S by first obtaining an initial TM
estimate X̊ using a simple interpolation algorithm, and then choos-
ing S based on the similarity between rows of X̊ (which approxi-
mates the similarity between rows of X).

1. Computing X̊. In our current implementation, we take X̊ =
Xbase.∗(1−M)+D.∗M , where M is defined in (4) and spec-
ifies which TM elements are directly measured, and D contains
the direct measurements. That is, we use direct measurements
where available, and interpolate using Xbase at other points.

2. Choosing S based on X̊. There are many possible methods for
choosing S based on X̊. For example, one general method is to
(i) construct a weighted graph G, where each node represents
a row of X̊ and each edge weight represents certain similar-
ity measure between two rows of X̊ , and (ii) set S to be the
normalized Laplacian matrix [7] of graph G, which acts as a
differencing operator on G and induces sparsity by eliminating
redundancy between similar nodes of G (i.e., rows of X̊).

We have experimented with several of these methods. The fol-
lowing method for choosing S based on KNN and linear regres-
sion consistently yields good performance in our tests, which
we will use in our evaluation. For each row i of X̊ , we find the
K most similar rows jk 6= i (k = 1, . . . , K). We perform lin-
ear regression to find a set of weights w(k) such that the linear
combination of rows jk best approximates row i: X̊(i, ∗) ≈
PK

k=1 w(k)X̊(jk, ∗). Assuming that
PK

k=1 w(k)X(jk, ∗) ap-
proximates X(i, ∗) well, we then set S(i, i) = 1 and S(i, jk) =
−w(k) for k = 1, 2, . . . , K to capture the resulting approxima-
tion errors (which are expected to be small).

Scaling of S and T : Finally, we need to scale S and T properly
so that ||S(LRT )||F , ||(LRT )T T ||F , and ||A(LRT ) − B||F are
of similar order of magnitude — otherwise they may overshadow
each other during the optimization of (14). In our experiments,
we simply scale S and T such that ||SX̊ ||F = 0.1

√
λ ||B||F and

||X̊T T ||F =
√

λ ||B||F , where
√

λ ||B||F reflects the level of ap-
proximation error ||A(LRT )−B||F that we are willing to tolerate.
Our results show that such scaling yields good performance over a
wide range of scenarios and that the performance is not sensitive to
the choice of λ. Note that we intentionally make ||SX̊ ||F smaller
than ||X̊T T ||F because we expect the temporal model obtained
through domain knowledge is more reliable.

3.2 Combining Global and Local Methods
A quick look at the (non-hybrid) performance results that fol-

low shows that for small amounts of missing data, KNN is the best
performer (in most cases). On the other hand, for large amounts
of loss, SRMF outperforms KNN. The intuition behind this re-
sult is obvious. When only a few data points are missing, the k-
nearest neighbors of a missing data point will be close by. There
are strong temporal and spatial correlations in our data, so the near-
est neighbors provide good interpolants for the missing data. How-
ever, when there is substantial missing data, the nearest neighbors
will come from further away. As the correlations between data
points drop, the low-rank global model of the data expressed by the
matrix factorization becomes superior.

To take advantage of local structure and redundancy present in
the TM, we use the low-rank approximation obtained by SRMF as



a prior and augment it with a local interpolation procedure. In this
way, we obtain a TM estimate that is close to the low-rank prior yet
can account for constraints imposed by the local interpolation pro-
cedure. Note that such an approach generalizes the Tomo-gravity
method for TM estimation [31, 33], which uses a rank-1 approxi-
mation (i.e., gravity model) as the prior solution.

The choice of the local interpolation procedure is application
dependent. Below we present three such examples. For inter-
polation of missing values, we present SRMF+KNN and SRSVD-

base+KNN, two hybrid algorithms that both incorporate KNN. For
network tomography, we present Tomo-SRMF, a hybrid algorithm
that combines SRMF and Tomo-gravity [33].

SRMF+KNN: We first compute the SRMF interpolation of X.
Call this XSRMF. For each missing data point (i, j) we then exam-
ine its row to see if any of the elements X(i, j−3), . . . , X(i, j+3)
are present. If we cannot observe any of these neighbors, then we
simply use the value XSRMF(i, j), but if we do have any of these
values, we will use them to better approximate X(i, j).

We do so by forming a local model for the temporal process us-
ing all of the other rows of the TM. We perform a regression to
find a set of weights w(k) that best approximates XSRMF(p, j) =
P

k∈nbrs w(k)XSRMF(p, k) for all p = 1, 2, . . . , n. Then we ap-
ply a weighted linear interpolation of the nearest neighbors, using
the weights derived above, i.e.,

XSRMF+KNN(i, j) =
X

k∈nbrs

w(k)X(i, k). (16)

SRSVD-base+KNN: We will show that the above approach is su-
perior, but to understand the importance of incorporating the spatio-
temporal constraints (given by S and T ), we also consider an algo-
rithm that uses SRSVD-base as the prior in the same procedure.
We call the resulting algorithm SRSVD-base+KNN.

Tomo-SRMF: In network tomography, we need to infer TMs
based on link-load measurements (possibly in combination with
direct measurements of a subset of TM elements). The strictly
low-rank approximations obtained by SRMF may not satisfy all
the measurement equations because (i) real TMs are only approxi-
mately low-rank, and (ii) measurement errors are common. A nat-
ural solution is to combine SRMF and Tomo-gravity. Specifically,
we use SRMF (instead of the gravity model) as a prior solution. We
then follow Tomo-gravity and seek a solution that is close to this
prior solution (with respect to the Kullback-Leibler divergence) yet
satisfies all the measurement equations. We call the resulting hy-
brid algorithm Tomo-SRMF.

4. INTERPOLATION PERFORMANCE

4.1 Data
The data we use here is real TM data: two standard sets, and

one new set. The first two are the Abilene (Internet2) [1] dataset
used previously in various studies [13,14,30], and the GÉANT TM
dataset provided in [26], and previously examined in [2]. Although
these are now older datasets, we use them because they are valuable
for comparisons with other work. In addition, we use one longer
and more recent commercial TM dataset from a large Internet ser-
vice provider. The properties of the data are summarized in Table 2.

Network Date Duration Resolution Size
Abilene Apr. 2003 1 week 10 min. 121 × 1008

Commercial Oct. 2006 3 weeks 1 hour 400 × 504
GÉANT Apr. 2005 1 week 15 min. 529 × 672

Table 2: Datasets under study.

4.2 Methodology
The methodology we use here is to drop some data from existing

measurements, and then apply the interpolation algorithm. This
provides us with ground truth for comparison. The pseudo-missing
data is not used in the interpolation algorithms in any way.

The typical approach when measuring the performance of an in-
terpolation algorithm is to drop data at random. We will start our
experiments with this case. However, in real measurements of TMs
there are different mechanisms that result in missing data, and these
result in the missing data having structure. Such structure is obvi-
ously important for interpolation, so we will explore several struc-
tured models of missing data in Section 4.5 below.

We measure performance using the Normalized Mean Absolute
Error (NMAE) in the interpolated values. That is, we calculate

NMAE =

P

i,j:M(i,j)=0 |X(i, j) − X̂(i, j)|
P

i,j:M(i,j)=0 |X(i, j)| , (17)

where X̂ is the estimated matrix. Note that we only measure errors

on the missing values. So the NMAE is defined only when there is
at least one missing value. We computed three other performance
metrics (root mean squared error, normalized root mean squared
error, and the correlation-coefficient) but the results are substan-
tively the same. In each case we perform the process of randomly
dropping data and reconstructing the matrix 10 times. The results
presented show the mean NMAE.

4.3 Initial Comparisons
Figure 1 shows a comparison of algorithms for independent ran-

dom loss for data loss rates ranging from 0.02 to 0.98 (NMAE is
undefined when the loss probability is 0). We perform these al-
gorithms using the same regularization and input rank parameters
λ = 0.1 and r = 8 for each global algorithm, and k = 4 in KNN
(we defer justification of these choices to the section below).

For low loss probabilities KNN achieves better performance than
SRMF. For high loss probabilities we see that SRMF’s performance
exceeds KNN. However, the hybrid SRMF+KNN outperforms all
algorithms over the whole range of loss values. Interestingly, the
hybrid is noticeably better than either method individually.

Meanwhile, the hybrid SRSVD-base+KNN also performs well,
though not as well as SRMF+KNN. The performance gap typically
widens for large amounts of loss. This is because under indepen-
dent random loss, when the loss rate is not too high, it is likely that
the near neighbors of a missing value are directly observed, making
KNN an effective recovery strategy. However, when loss is large
or when the loss is highly structured (see Section 4.5), the perfor-
mance gap between SRSVD-base+KNN and SRMF+KNN widens.

The other methods all have worse performance. For low loss,
the baseline method is the worst (as we might expect given it is
only a rank-2 approximation). However, for high loss, the baseline
performs surprisingly well, certainly better than SRSVD, whose
performance is very bad for high loss. However, the SRSVD ap-
plied after baseline removal achieves reasonable performance over
the whole loss range, in some cases almost as good as the simple
SRMF. NMF performs poorly for all loss probabilities.

We have examined many such graphs. NMF and SRSVD (with-
out baseline removal) are uniformly poor. So we do not examine
them in further results to simplify our presentation.

4.4 Parameter Sensitivity and Settings
The algorithms we consider have several input parameters. The

performance of these algorithms in relation to these parameters is
(in most cases) dependent on the dataset in question. In practice,
when interpolating a real dataset, we would not be able to precisely
optimize λ and r for the dataset in question, so it is desirable to have
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Figure 1: Interpolation performance for random loss (note that the legend is the same for all three plots).

algorithms that are not very sensitive to their values. In fact, all
algorithms display some dependence on the parameter settings, and
no single parameter setting is optimal for all datasets. However, we
found rough parameter settings that are never too far from optimal.

The first input parameter is the rank. Given our motivation from
the compressive sensing literature, i.e., that we will aim to mini-
mize matrix sparsity or rank, it may seem strange that we input a
rank when performing the algorithm. However, although they seek
to minimize the rank of the decomposition, the algorithms work by
optimizing an L and R that have a fixed number of columns r (the
input rank). The final rank of the solution might be smaller.

In theory, as long as the input rank is greater than the real rank of
X, the various algorithms will converge to the correct matrix [5,19,
20]. However, note that the theoretical results that inform our in-
tuition here concern matrices with exact ranks, whereas our matri-
ces typically have a number of small, but non-zero singular values.
Moreover, there are measurement errors in our data, so we cannot
expect to get zero error reconstructions.

Figure 2 shows a sample of performance results with respect to
rank (note that the baseline algorithm is excluded here because it
is a fixed rank-2 approximation). We find that most of the rank-
dependent methods have better performance as the input rank in-
creases. Although this is not always the case, the deviations are mi-
nor. However, note the logarithmic x-axis, so that the results sug-
gest a decrease in the marginal improvement with increasing rank.
There is also an additional computational cost for higher ranks, and
we find that an input rank of r = 8 is a reasonable operating point
for our comparisons. Going to r = 16 yields only a very small
incremental improvement at the expense of extra computation.

The most important finding in these results, however, is the rela-
tive insensitivity of the hybrid algorithm, SRMF+KNN. In general
it is the least dependent on the input rank of all the algorithms.
There is some improvement for higher ranks, but it is typically
smaller than those of other algorithms.

KNN does not use input rank, but rather k, the size of neigh-
borhood. Figure 2 also shows the effect of k on the performance
of KNN. We choose to use k = 4 for our experiments, since it
consistently avoids the worst results.

The final parameter of importance is the regularization parame-
ter λ, which determines the tradeoff (in the optimization) between
the measurement constraints and the importance of rank. Larger λ
leads to lower rank approximations, whereas smaller values lead to
approximations that are a better fit to the data. Figure 3 presents
three examples showing the type of variability we encounter over
a range of values of λ, for three different loss rates and networks.
KNN is omitted because it does not use regularization. Once again
note the logarithmic x-axis – we are looking for order of magnitude
effects here, not fine tuning. None of the techniques is too sensitive.
Among them, SRSVD is the most sensitive (overall). Larger values

of λ typically perform better although again sometimes this trend
is reversed, and there are a number of cases where the optimal case
is around λ = 0.1. So we use this value in our experiments.

Note again that SRMF+KNN is the most insensitive algorithm
with Figure 3 (c) showing the most extreme case of parameter sen-
sitivity that we observed for this algorithm.

4.5 Comparison: Other Loss Models
As earlier noted, not all data loss is random. Losses are often

highly structured, and in this section we examine the effect this
has on the results. The boldface name denotes the label used in
our datasets, where xx is replaced by the percentage of rows (or
columns) effected.

1. PureRandLoss: This is the simple random loss model. Data
points in the matrix X are dropped independently at random
with probability q.

2. xxTimeRandLoss: This simulates a structured loss event where
we suffer data loss at certain times. For example a certain time
points our monitoring equipment might become overloaded, or
a disk might fills up. In these cases, we may loose some random
proportion of the data at a particular point in time. We simulate
this loss by choosing, at random xx% of the columns of X, and
dropping data from these at random with probability q. Note
that the case 100ElemRandLoss corresponds to PureRandLoss,
so we do not repeat this case.

3. xxElemRandLoss: This simulates a structured loss event where
a set of randomly chosen TM elements suffers from lost data.
This type of loss might occur where unreliable transport mech-
anisms are used to transport measurements back to the network
measurement station. Often the problems with such transport
depend on the locations where measurements are made (e.g.,
locations close to the management station are less likely to suf-
fer congestion based losses). We randomly select xx% of the
rows of X to be effected. Note that the case 100ElemRandLoss
corresponds to PureRandLoss, so we do not repeat this case.

4. xxElemSyncLoss: This simulates a structured loss event where
a group of TM elements all suffer from missing data from the
same cause. Hence, the losses on each element are synchro-
nized. We do so by selecting xx% of rows of X to be effected,
and a set of times with probability q. Lost data comes from the
intersection of the selected rows and columns.

5. RowRandLoss: Random element loss, as presented above, is
not a particular realistic model for data loss. With flow level
measurements, data are collected by a router. If that router can-
not collect data, then an entire row of each TM snapshot Z will
be missing. The effect on X is to remove a set of structurally
associated rows. We simulate this by dropping rows from the
original TM Z (before it is formed into the matrix X).
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Figure 2: Sensitivity with respect to the input rank r (or k in the case of KNN).
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Figure 3: Sensitivity with respect to λ.
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Figure 4: Comparison between algorithms for the different loss models.

6. ColRandLoss: It is perhaps less likely that a column of the
original TM Z is dropped from measurement. One can con-
struct scenarios where a software bug causes such an error, but
in fact we primarily consider the random column loss scenario
for completeness.

In this section we examine the impact of the loss model on the
performance of the interpolation algorithms. Obviously there are
many ways of viewing this data. Due to space limitations, we
present here only a few representative ones. First, Figure 4 shows
bar charts of the performance of the key algorithms for two differ-
ent loss levels, across all loss models. The key observations are
that for low- to moderate loss, SRMF+KNN performs significantly
better across all loss models. When loss is higher, there are some
cases where the performance of SRSVD-base and KNN is similar
to SRMF+KNN, and occasionally slightly better, but where losses
are highly structured (e.g., AllElemSyncLoss) SRMF+KNN is al-
ways clearly superior.

We show three of these cases in more detail in Figure 5. Fig-
ure 5(a) shows the Abilene network data, with random row loss.
The results for random column loss are similar, and both are qual-
itatively the same as those for pure random loss. The reasons are
clear when we consider the high loss case where both the baseline

(used in SRSVD-base) and the similarity metric used for KNN are
hard to calculate because entire rows or columns have no data. On
the other hand, our approach combines the spatial and temporal
components in its model.

Figure 5(b) shows the extreme of very structured loss (synchro-
nized in time). In this case, the baseline is so poor that all of the
other techniques collapse back to this baseline. Our approach still
performs reasonably. Figure 5(c) shows the case of random col-
umn damage (with about half of the rows affected). In this case,
our approach performs surprisingly well given that so much of the
structure of the matrix has been lost. This is yet another indication
of the importance of the spatio-temporal model.

Summary: These results show that SRMF+KNN is the best al-
gorithm over a wide range of loss scenarios and loss rates. In the
few cases where SRMF+KNN does not win, it is not far behind.
Meanwhile, SRSVD-base+KNN consistently performs better than
SRSVD-base, but not as well as SRMF+KNN, especially when
there is a large amount of structured loss. These results clearly
demonstrate the power of our spatio-temporal compressive sens-
ing framework to simultaneously exploit global and local structures
and leverage spatial and temporal properties. We expect more de-
tailed modeling of the spatial and temporal constraint matrices S
and T to further improve the accuracy.
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Figure 5: Comparison for different loss models.
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Figure 6: Network tomography performance. Note, loss probability=1 corresponds to the traditional network tomography problem.

4.6 Computational Times
We measure the computation times of SRMF (KNN takes a small

amount of additional time) on matrices of various sizes. The com-
putation time is linear in the number of matrix elements, and quite
reasonable. A 200×1000 matrix (with rank r = 10 used in the de-
composition) can be approximated in less than 3.5 seconds (using
Matlab on a 2.66 GHz Linux machine). Meanwhile, the computa-
tion time with respect to r is reasonably modeled by O(r2).

5. APPLICATIONS
The previous section considered the simple problem of interpo-

lation. We now consider different applications of matrix interpo-
lation, where the meaning or importance of the missing values are
determined by the application in question.

5.1 Tomography
A special case of the our approach is the network tomography

problem of inferring a TM from link-load measurements. In the
previous cases, the constraints come from direct measurements. In
network tomography the constraints are given by (1). However, it is
common to have some combination of these sets of measurements.
So it is desirable to combine them to obtain the best possible ap-
proximation to the TM. In this case, we can simply define A to
incorporate both (1) and (3), resulting in a combined penalty term
of the form ||A(LRT ) − Y ||2F + ||(LRT − D). ∗ M ||2F .

Due to lack of space, we do not compare all possible algorithms
for TM estimation, but concentrate on two simple and relatively
well known algorithms. Further performance improvements might
be obtained by using more recently developed algorithms (e.g.,
[9]), but the insights are still useful. The two existing algorithms
we consider are the gravity model and Tomo-gravity. The gravity
model [33] is a simple rank-1 approximation to a single TM. It is
known to be a poor estimator of real TMs, but it has been success-
fully used as the first step in the Tomo-gravity [33] algorithm. The

Abilene Commercial GÉANT
Tomo-gravity 0.197 / 0.197 0.292 / 0.292 0.441 / 0.439

Base 0.321 / 0.233 0.566 / 0.380 1.198 / 0.489
SRMF 0.280 / 0.204 0.483 / 0.285 1.185 / 0.516

Tomo-SRMF 0.227 / 0.155 0.288 / 0.203 0.433 / 0.240

Table 3: Network tomography performance: the first number
is the performance where we have no direct TM measurements,
the second shows where we measure only 0.5% of the elements.

latter is yet another regularization based on the Kullback-Leibler
divergence between the gravity model and the measurements.

The notable feature (for the purpose of this paper) of the gravity
model and Tomo-gravity is that neither involve temporal informa-
tion. They operate purely on a TM snapshot. The gravity model
is based purely on row and column sums of the TM (snapshot) and
so has no need (or method) for incorporating additional informa-
tion. However, Tomo-gravity is just a standard regularization, and
so additional measurement equations can be easily added.

In this section we compare these algorithms against three alter-
natives: the baseline approximation, SRMF, and Tomo-SRMF. In
Figure 6 we show the performance of the algorithms with respect
to the proportion of the TM elements that are missing, but note that
in addition to direct measurement of the matrices, we assume we
can measure all of the link loads on the networks. So in this figure,
100% data loss corresponds to the standard network tomography
problem. As this part of the figure is important, but relatively hard
to read, we have duplicated key performance metrics in Table 3.

First, note that the gravity model is poor enough that its results
lie off the scale. The baseline technique is the second worst in
most cases, but is still much better than the gravity model. Sec-
ond, SRMF performs poorly at the pure network tomography task
where no direct measurements are available. However, if even a
few (as few as 0.5%) of the TM elements are directly observed,
then SRMF’s performance improves dramatically, whereas Tomo-
gravity’s performance improves roughly linearly with respect to the
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Figure 7: Network prediction performance.

increase in information. Finally, by combining SRMF and Tomo-
gravity, Tomo-SRMF gets the best of both worlds and significantly
outperforms each individual method by itself. Figure 6 and Table 3
show the improvements.

Note that Soule et al. [25] also propose to incorporate flow-level
measurements in TM estimation. Compared with their “third gen-
eration” TM estimation methods, Tomo-SRMF has two key advan-
tages: (i) it does not require any expensive calibration phase in
which entire TMs are directly measured, and (ii) it is highly ac-
curate and can reduce the error of Tomo-gravity by half with only
0.5-5% observed TM elements (whereas 10-20% directly observed
TM elements are required according to [25]).

5.2 Prediction
In this section we consider the behavior of SRMF with respect to

TM prediction. We do so by dividing our data into two segments, an
initial training segment up to some time t, and then a test segment
over which we try to predict the TM.

Prediction is rather different from the general problem of inter-
polation. Several techniques (SRSVD and NMF) just fail. KNN
does not work well because there are no temporally “near” neigh-
bors, and no spatial neighbors at all. However, if we can use the
temporal pattern in the data more creatively we can make progress.
For instance, rather than using a simple nearest neighbors tech-
nique, we use seasonal nearest neighbors. TMs show strong di-
urnal patterns, and so it is not surprising that offsetting neighbors
by the 24 hours period has benefits. In essence, the seasonal nearest
neighbor approach assumes that today’s traffic has the same pattern
as yesterdays.

Likewise for SRMF, we do not need to use the spatial constraint
matrix, as an entire slab of the data is missing (the future data we
are trying to predict). However, to allow a fair comparison with
seasonal nearest neighbors, we also use seasonality in construct-
ing our T matrix. We construct a difference matrix, but where the
interval between the differences is 24 hours.

Figure 7 shows the results with respect to the proportion of data
being predicted. Note that SRMF outperforms the other techniques,
and further that SRMF’s performance degrades very slowly as the
length of data being predicted increases (and the training data gets
correspondingly smaller). This shows that typical TMs exhibit tem-
poral regularity and SRMF can effectively take advantage of it.

5.3 Anomaly Detection
A common task in network operations is finding problems. There

are specific tools for finding some problems (e.g., SNMP is com-
monly used to find link failures), and other problems such as spe-
cific attacks can be characterized by a signature, which signals
the attack. However, both of the above approaches rely on pre-
knowledge of the problems that we will encounter. There is a com-
plementary need to find unanticipated problems in networks.

Such problems cannot be characterized before-hand, and so the
method commonly used to detect such anomalies is to find sig-
nificant differences from historical observations. Most approaches
involve some transformation of the data followed by outlier detec-

tion [30]. Common examples include simple filtering of the data,
Fourier transform, wavelets, or PCA. The transform is aimed at
separating the “normal” space of historical events, from the anoma-
lous space. Techniques such as PCA do this explicitly, while oth-
ers rely on commonly observed properties. For example, Fourier
techniques rely on the normal data primarily inhabiting a low- to
mid-frequency space, so that anomalies involve high-frequencies
such as those incurred by a rapid change. Outlier detection can be
performed by taking the normal model of the data, and comparing
its values at each time point with the real data, and then seeking
points where the difference exceeds some threshold T .

In this section we will compare several approaches to anomaly
detection. To keep things simple so that we can gain an intuitive
understanding of the various properties of different approaches, we
will consider only three algorithms one temporal, one spatial, and
our spatio-temporal approach. The three approaches we use are

1. Differencing: Differencing is a standard time-series technique
to remove linear trends (typical traffic data are non-stationary,
and over periods of minutes to hours can often be reasonably
approximated as having a linear trend). Differencing also high-
lights sudden changes, such as we would see in a traffic spike

or a level shift [30]. Implicitly, differencing is using the data
from the previous time step as a model for the current time,
and so it has not received a great deal of consideration in the
networking literature, but it provides a simple temporal bench-
mark against which we can gain some intuition. We can write
the differencing operator as postmultiplication of X by T =
Toeplitz(0, 1,−1), a purely temporal operation that makes no
use of spatial correlations between TM elements.

2. PCA/SVD: PCA/SVD has received much interest for network
anomaly detection in recent years [12–14, 21, 29, 30], and is
the only common spatial technique for anomaly detection. As
noted earlier, PCA/SVD is applied by choosing the rank r of
the normal subspace (based on the power contained in the first r
singular values), and projecting the input data X into the abnor-
mal subspace, where artifacts are then tested for size. Implic-
itly, we are looking at the difference between the normal model
of the data created by the low-rank SVD approximation and the
data itself. Intuitively, the process builds a (simple) model from
the historical relationships between TM elements. New time
points are compared to see if they satisfy this relationship. If
not, they are declared to be anomalies. It is a purely spatial
technique, since reordering of the data in time (the columns of
X) has no effect on the results. Interestingly, compressive sens-
ing ideas have already appeared in the context of PCA based
anomaly detection [12], though in that context the goal was to
reduce the volume of data transmitted to a NOC, and the miss-
ing data could be controlled, whereas in our context the missing
data are out of our control.

3. SRMF: In this context we apply SRMF directly to the traffic
data including the anomalies, much as one would with SVD.
Our technique, however, is truly spatio-temporal as the model
that we create involves both the spatial and temporal properties



of the underlying TM. The low-rank approximation is then used
as a model for the normal data, and the differences between this
and the real traffic are used to signal anomalies. Once again,
we use the standard method of thresholding these differences
to detect outliers.

We will compare each of these algorithms using simulations. Ring-
berg et al. [21] explain in detail why simulation should be used for
accurate comparisons of anomaly detection techniques. In brief
their reasons are: (i) accurate and complete ground truth informa-
tion is needed to form both false-alarm and detection probability
estimates (both are needed for comparisons, as one by itself can be
entirely misleading); (ii) many more results are needed (than one
can obtain from data) to form accurate estimates of probabilities,
and (iii) simulation allows one to vary parameters (say the anomaly
size) to study their effects. Simulation is necessary, but not suffi-
cient for validation, so we expect that further work is needed on this
type of anomaly detection before it is used by network operators.

Our approach to simulation is intended to highlight the features
of the different techniques. We make no claim that the simulation
is completely realistic, only that it clearly illustrates the proper-
ties of the different anomaly detection techniques. We simulate in
two steps: we first create the normal traffic, and then inject anoma-
lies. We create the TM by an orthogonal composition of a synthetic
gravity model TM [22] in the spatial domain, and a periodic Nor-
ros model [18, 23] in the temporal domain. Both models have ar-
guments in their favor but principally we need to create a TM with
low rank, but some local spatio-temporal structure that we might
find in a real TM.

We use this model to generate 1000 instances of the TM X con-
sisting of one weeks worth of measurements at 15-minute intervals.
In each instance we inject one anomaly. The anomaly is a spike
added to the TM at a single randomly chosen time point, so that
one anomaly cannot interfere with the detection of another. The
value of the spike is a vector of Gaussian random variables (in each
element of the TM) but we normalize the total size of the spike
(measured by its L2 norm) to be a fixed size, which we vary from
0.1 to 100. Spikes of size 0.1 (in our dataset) are almost indistin-
guishable (by the naked eye) from the standard random variations
in the traffic. Spikes of size 100 are much larger than the typical
TM elements, and so are easily observed. We then apply each of
the three techniques above to create a “normal” traffic vector, and
detect anomalies by thresholding on differences between the nor-
mal and measured vector. Note that we do not have missing data in
the inputs (it is not obvious how to fairly compare the three algo-
rithms when there are missing data, given the better interpolation
performance of SRMF). However the anomalies are included in the
inputs, so that both SVD and SRMF can be compared fairly.

An important detail is the choice of thresholds for outlier detec-
tion. Non-stationarity in our data makes setting thresholds more
difficult than in some problems. When the anomalies are small,
a little fine tuning allows us to find threshold values that are sta-
tistically indistinguishable for all three methods. Figure 8 shows
a comparison between the false-alarm probabilities for the three
techniques, showing 95% confidence intervals for the estimates.
For larger anomalies it is hard to tune the false-alarm probabili-
ties for PCA/SVD. The anomaly pollutes the data used to create
the normal subspace, and so invalidates the standard statistical as-
sumptions used to determine thresholds [21]. So it is hard to obtain
thresholds that produce the same false-alarm probabilities for large
anomalies, but the differences in these cases will be inconsequen-
tial for the results. Likewise, it is hard to tune the false-alarm rate
for SRMF and large anomalies, but for the opposite reason: the
false-alarm rate drops almost to zero too quickly. Given the high
detection rate, this is not a problem in the comparison of results.

Figure 9 shows the detection probabilities for the three tech-
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Figure 8: False alarm probability.
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Figure 9: Detection probability.

niques. First, let us compare PCA/SVD and Differencing for small
anomalies. When anomalies are small (in value) and hence the dif-
ferences they create will be small, the probability of detection of
these differences will be small. Note that, even though we allow
a larger false-alarm probability as the anomalies get smaller, the
detection probability for Differencing drops dramatically. On the
other hand, PCA/SVD exploits the spatial relationships between
the data elements. It uses all the information available at a particu-
lar time point instead of processing the information from each time
sequence independently. While the performance of PCA/SVD also
declines for smaller anomalies, it is much better than Differencing.

For moderate sized anomalies, both techniques have perfect de-
tection records. These anomalies are not particularly hard to detect
whichever method one uses. On the other hand, when we consider
large anomalies, a different story emerges. The larger anomalies
pollute the data used to create the normal subspace in PCA/SVD,
and this has a tangible effect in that the detection probability drops
dramatically. Note that although the false-alarm probabilities of
the Differencing and PCA/SVD methods are slightly different, the
detection probability of PCA/SVD drops almost to zero, whereas
Differencing maintains its perfect detection record. So we can dis-
count the minor difference in false-alarm probability as causing this
drop. The result is consistent with those observed in data [21].

A solution might be to temporally pre-filter the data to remove
large anomalies, and then apply PCA/SVD. This introduces the
problem of interpolating data, which we have noted before. A
preferable approach would be to use an approach that deals well
with both ends of the spectrum. SRMF provides such a method.
Figures 8 and 9 show its performance. We can see that its detection
probability is statistically indistinguishable from the better of the
two other methods for each anomaly size. The false alarm prob-
ability is either indistinguishable or well below that of the other
two methods. So SRMF provides a method that deals well with the
complete range of anomalies.

SRMF does this through its use of a spatio-temporal model. In
the case where the spatial model is more effective (small anoma-
lies) this is the part of the algorithm that is “biting”, whereas when
the anomalies are large, they are being detected in the temporal do-



main, essentially by differencing. What we see here is that by im-
posing temporal smoothness constraint on LRT , the effect of con-
tamination is much smaller. Intuitively, if too much energy leaks
into the normal subspace (as in PCA), then the projection of X into
the normal subspace is no longer smooth, which would then result
in a too big penalty in the smoothness term. Thus the smoothness
term helps to limit the damage of contamination, and avoids the
problem seen in PCA/SVD.

Note that we do not argue that with the naive choices of tem-
poral operator T that we use here that SRMF is the best predic-
tion or anomaly technique for TMs. Given the wealth of methods
available for these applications (e.g., see [30]), one can undoubt-
edly do better by more careful choice of T . However, there is a
lesson to be learned here. First, our regularization approach can
be generalized to apply to any linear prediction/anomaly detection
technique through appropriate choice of T . In each case we would
hope for performance improvements as well, but the more impor-
tant aspect of this work comes from the features we have demon-
strated above: (i) our approach naturally deals with missing data,
(ii) it can flexibly include additional data sources (e.g., link data),
and (iii) anomaly detection (and exclusion) are an inherent part of
the algorithm. We argue that these are ideal features for any set of
algorithms based on TMs.

6. CONCLUSIONS AND FUTURE WORK
By drawing on recent developments in compressive sensing and

relying on readily available domain knowledge in the area of TMs,
we present in this paper a unified approach to measurement and
analysis of TMs. We achieve this by developing a novel spatio-
temporal compressive sensing framework that exploits the presence
of both global structure (e.g., low rank) and local structure (e.g.,
spatio-temporal properties) in real-world TMs. Whether applied to
TM estimation (i.e., tomography), TM prediction, or anomaly de-
tection, our algorithms consistently outperform other commonly-
used methods and do so across the whole range of missing val-
ues scenarios, from purely random ones to highly structured ones
where whole columns and/or rows of a TM are missing, and from
very low levels of missing values to very high levels (e.g., 90%
and more). The main reason for the superior performance of our
proposed technique when compared to its most widely-used com-
petitors is its reliance on truly spatio-temporal models of TMs that
capture much of the localized structure inherent in actual TMs.

There are a number of avenues for future work. First, we plan
to better tailor our approach to exploit the characteristics of real-
world TMs through more detailed modeling of the spatial and tem-
poral constraint matrices S and T . Second, many of the techniques
described here (including SRMF) naturally extend to tensors (i.e.,
multi-dimensional arrays), so that the original (unvectorized) TMs
can be analyzed directly, i.e., as true 3-d objects with traffic source,
traffic destination, and time as the three axis. Such a tensor treat-
ment of TMs has great potential and presents an opportunity to
build more sophisticated spatio-temporal descriptions of the TM.
Third, we want to more thoroughly explore the application of our
approach to enable scalable network measurement and support im-
portant network engineering tasks such as anomaly detection. Fi-
nally, we would like to formally understand the theoretical proper-
ties of our spatio-temporal compressive sensing framework.
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