
Optimizing Cost and Performance for Multihoming∗

David K. Goldenberg? Lili Qiu† Haiyong Xie? Yang Richard Yang? Yin Zhang§

AT&T Labs – Research§ Microsoft Research† Yale University?

{david.goldenberg,haiyong.xie,yang.r.yang}@yale.edu liliq@microsoft.com yzhang@research.att.com

ABSTRACT
Multihoming is often used by large enterprises and stub ISPs to
connect to the Internet. In this paper, we design a series of novel
smart routing algorithms to optimize cost and performance for mul-
tihomed users. We evaluate our algorithms through both analysis
and extensive simulations based on realistic charging models, traf-
fic demands, performance data, and network topologies. Our re-
sults suggest that these algorithms are very effective in minimizing
cost and at the same time improving performance. We further ex-
amine the equilibrium performance of smart routing in a global set-
ting and show that a smart routing user can improve its performance
without adversely affecting other users.

Categories and Subject Descriptors
C.2.6 [Computer-Communication Networks]: Internetworking—
Internet

General Terms
Algorithms, Performance

Keywords
Multihoming, Smart Routing, Optimization, Algorithms

1. INTRODUCTION
Multihoming [31] is often used by large enterprises and stub ISPs

to connect to the Internet because of its perceived benefits in re-
liability, cost, or performance. A customer or ISP network (also
called a user) with multiple external links (either to a single ISP, or
to different providers) is said to be multihomed [31]. When a user
actively controls how its traffic is distributed among its multiple
links to the Internet, we refer to it as implementing smart routing.
Smart routing is also referred to as route optimization, or intelligent
route control.

Smart routing can potentially be useful in the following ways.
First, smart routing may help to improve network performance and

∗David Goldenberg is supported in part by NSF Graduate Research
Fellowship DGE0202738. Haiyong Xie is supported in part by
NSF grant ANI-0238038. Yang Richard Yang is supported in part
by NSF grants ANI-0207399 and ANI-0238038.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’04, Aug. 30–Sept. 3, 2004, Portland, Oregon, USA.
Copyright 2004 ACM 1-58113-862-8/04/0008 ...$5.00.

reliability. Recent studies [27, 32, 33] have shown that when com-
pared with the ideal routing, network-level routing often yields sub-
optimal user performance due to routing hierarchy and BGP pol-
icy routing. Equipment failure, transient instability, and network
congestion may also affect user performance. Smart routing of-
fers a way for end users to exercise control over routes. In [1],
Akella et al. quantify the potential benefits of smart routing and
suggest that selecting the right set of providers can yield some per-
formance improvement. In [2], Akella et al. observe that the la-
tency and throughput achieved by multihoming to three ISPs are
within 5-15% of overlay routing employed in conjunction with 3-
multihoming. Second, when taking into account specific charg-
ing models, smart routing can potentially reduce users’ financial
cost. A recent economic analysis shows that smart routing has
the potential to benefit not only the end users, but also the service
providers [8].

Given the potential benefits of smart routing and the large num-
ber of multihomed users, many companies are actively developing
software to implement smart routing, e.g., [12, 19, 21, 24]. How-
ever, since these are commercial products, their technical details
are not available, and their performance and impact on the Internet
are not well understood. While there are a few research studies on
smart routing, e.g., [1, 11], the focus of these studies is on network
performance only; users’ cost, which is another major incentive to
use multihoming, is not considered. In addition, previous studies
focus on the potential performance benefits, not on the design of al-
gorithms; it remains an open question how such potential benefits
can be achieved in practice.

In this paper, we attempt to realize some of the benefits of smart
routing by developing a series of novel algorithms for optimizing
both cost and performance for multihomed users. We first demon-
strate that optimizing network performance alone can significantly
increase the cost of a user, thus rendering smart routing less at-
tractive. To address this issue, we propose novel offline and on-
line routing algorithms to minimize a user’s cost under common
usage-based charging models. Using realistic pricing data and traf-
fic demand traces from universities and enterprises, we show that
despite fluctuations in traffic, our online algorithm can significantly
reduce a user’s cost, compared with using dedicated links or apply-
ing round robin or equal split algorithms to burstable links. We
also design online and offline algorithms to optimize the network
performance of a smart routing user under cost constraints. Using
realistic pricing data, traffic demand traces, and latency traces, we
show that our online algorithm achieves performance within 10–
20% of the optimal offline algorithm.

In this paper we assume that the user is already multihomed to
a set of ISPs. Thus, we focus on how to dynamically assign traffic
among them to optimize cost and performance. The business deci-
sions of whether to use multihoming and which ISPs to choose are
by themselves very complicated and may involve many technical
and non-technical factors, which we do not attempt to address in

this paper. We also assume that cost and performance are the main
factors of interest to the user. For many real Internet services such
as Virtual Private Networks (VPNs), however, optimizing cost and
performance alone may not be enough. Other factors such as ease
of management, ease of trouble-shooting, security, and Quality-of-
Service (QoS) also play critical roles in users’ business decisions.
So our techniques are not directly applicable in such contexts. Nev-
ertheless, we believe that in order to better understand the potential
role of smart routing in the future Internet, it is important to go
beyond previous performance-centric studies by placing both cost
and performance in a common optimization framework.

Besides developing techniques for optimizing cost and perfor-
mance, we also evaluate the global effects of such optimization. We
note that smart routing becomes a selfish routing scheme when each
individual smart routing user adaptively changes its routes to opti-
mize its own metrics without considering its effects on the network.
Such adaptation changes network performance and may cause self-
interference or interference with other smart routing or regular (i.e.,
single-homed) traffic. It remains to be seen whether smart routing
can retain its performance benefits in the presence of such forms of
interference.

We use extensive simulations to study the global effects of smart
routing. We first examine the equilibrium performance of smart
routing in the presence of self-interference (i.e., when the rout-
ing decisions made by the smart routing user change the network
performance, which in turn interferes with the decisions involved
in smart routing). Our results suggest that even in the presence
of self-interference, our algorithms still achieve good equilibrium
performance. We then evaluate how smart routing traffic interacts
with other smart routing traffic as well as with single-homed traffic.
Our evaluations are based on an inter-domain network topology and
user demands from real traffic traces. Our results show that smart
routing improves performance without degrading the performance
of other traffic.

Our key contributions can be summarized as follows:

• We design offline and online algorithms to minimize cost
based on realistic usage-based charging models.

• We design offline and online algorithms to optimize network
performance under cost constraints.

• We use both analysis and simulations based on realistic traf-
fic and performance data to demonstrate that our algorithms
yield good performance and low cost.

• We evaluate the performance of smart routing when multiple
users selfishly optimize their own cost and performance. We
find that under this setting, smart routing traffic interacts well
with other traffic under traffic equilibria.

The rest of this paper is organized as follows. In Section 2, we
review related work. In Section 3, we discuss our network and
charging models. In Section 4, we motivate the importance of opti-
mizing cost and present novel cost optimization algorithms. In Sec-
tion 5, we optimize network latency under given cost constraints.
We present the methodology and results of our evaluations in Sec-
tion 6. In Section 7, we study the global effects of smart routing
and evaluate its interactions with other traffic. We conclude and
discuss future work in Section 8.

2. RELATED WORK
Several recent studies have shown that Internet routing often

yields sub-optimal user performance, e.g., [4, 27, 32, 33]. There
are a number of contributing factors, including routing hierarchy,
policy routing, and slow reaction (if any) to transient network con-
gestion or failures. BGP routing instabilities can further exacerbate
the problem. These observations have generated considerable re-
search interest in offering end-users more control in route selection.

For instance, the authors in [4, 27] propose using overlay routing
to improve user performance. Achieving a large scale deployment
with this approach is challenging, as cooperation among multiple
organizations is not easy to arrange in practice.

Multihoming is an alternative way to enable users to control
routes. Many large enterprises, stub ISPs and even small businesses
already use multihoming as a way to connect to the Internet.

Much of the previous work on multihoming focuses on how to
design protocols to implement multihoming, e.g., [5, 7, 11, 30].
For example, the authors of [5, 7, 12, 24, 30] use BGP peering as
an implementation technique. Another technique is through DNS
or NAT, which is used in [9, 21]. Our work differs from the above
in that we do not focus on the implementations, but instead on de-
signing algorithms to determine when and how much traffic a user
should assign to different ISPs to optimize both performance and
cost. Consequently, our work is complementary to the above.

There are several papers that evaluate the benefits of smart rout-
ing, including [8, 28, 29]. More recently, Akella et al. [1] quantify
the potential performance benefits of multihoming using real Inter-
net traces. Their results show that smart routing has the potential to
achieve an average performance improvement of 25% or more for
a 2-multihomed user in most cases, and that most of the benefit can
be achieved using 4 providers. Motivated by these results, we seek
to develop routing schemes to achieve such benefits in practice. In
addition, we study the effects of un-coordinated route optimization
by multiple mutually interfering smart routing users.

Finally, there are a few research studies on designing algorithms
for smart routing, e.g., [1, 15, 17]. For example, Orda and Rom [17]
investigate where to place multihomed users and show that the
problem is NP-hard. Cao et al. [6] propose using hash functions
to achieve load balancing among multiple links. In [11], the au-
thors compare several route selection schemes in a local area net-
work and show that hashing can achieve performance comparable
to load-sensitive route selection. Our work differs from these stud-
ies in that we use both cost and network performance as metrics
of interest. We also study the interactions between multiple smart
routing users, and between smart routing and single-homed users.

3. NETWORK AND CHARGING MODELS
In this section, we describe our network model, ISP charging

models, and the performance metric we use.

3.1 Network Model

ISP K

WAN
user

ISP 2

ISP 1

Figure 1: An illustration of a user with K service providers.

A multihomed user has multiple links to the Internet for sending
and receiving traffic, as shown in Figure 1. The implementation
techniques of distributing traffic to the links are different for outgo-
ing and incoming traffic. For outgoing traffic, a border router inside
the user’s network can actively control how traffic is distributed.
For incoming traffic, a user can use NAT or DNS to control the
routes. For more detailed discussions about the implementations,
we refer the readers to [1, 5, 7, 11, 30].

Note that the implementations of multihoming are complemen-
tary to our study, as our focus is on determining when and how
much traffic should be assigned to each link. Consequently, our

algorithms can be applied to a wide variety of multihoming im-
plementations, and work for both out-going and incoming traffic.
Since our traffic traces, as described below, consist of only out-
going traffic, we evaluate traffic assignment only in the out-bound
direction in this paper.

3.2 Charging Models
Users pay ISPs for using their service. The cost incurred is usu-

ally based on the amount of traffic a user generates, i.e., cost =
c(x), where x is a variable determined by a user’s traffic (which
we will term the charging volume) and c is a non-decreasing func-
tion that maps x to cost. Various charging models differ from one
another in their choices of charging volume x and cost function c.

Usually, the cost function c is a piece-wise linear (non-decreasing)
function, which we will use for our design and evaluation. There
are several ways in which the charging volume x can be deter-
mined. Percentile-based charging and total-volume based charging
are both in common use.

• Percentile-based charging: This is a typical usage-based charg-
ing scheme currently in use by ISPs [26]. Under this scheme,
an ISP records the traffic volume a user generates during
every 5-minute interval. At the end of a complete charg-
ing period, the q-th percentile of all 5-minute traffic volumes
is used as the charging volume x for q-percentile charging.
More specifically, the ISP sorts the 5-minute traffic volumes
collected during the charging period in ascending order, and
then computes the charging volume x as the (q%×I)-th vol-
ume, where I is the number of intervals in a charging period.
For example, if 95th-percentile charging is in use and the
charging period is 30 days, then the cost is based on the traf-
fic volume sent during the 8208-th (95%×30×24×60/5 =
8208) sorted interval.

• Total-volume based charging: This is a straightforward charg-
ing model, where the charging volume x is the total volume
of traffic a user generates during the entire charging period.

In this paper, we focus primarily on percentile-based charging.
We describe how to deal with total-volume based charging in Ap-
pendix C. In our evaluations, we use two sets of pricing functions.
The first set of functions are simple pricing functions: if the charg-
ing volume is 0, the price is 0; otherwise, the price is a constant
value. We pick the values from the entries in Table 1, which is pub-
lished in [25].1 In this table, a burstable link is a link whose price
is determined by the percentile-based charging model; a full-rate
link is also called a dedicated link and has a fixed price indepen-
dent of usage. To evaluate the sensitivity of our algorithms to cost
functions, we also use another set of functions shown in Figure 2.
These functions are the more complex step functions. The prices at
24 Mbps for DS3 and at 100 Mbps for OC3 match those in Table 1.
The overall trend of the pricing curves reflects the general pricing
practice of decreasing unit cost as bandwidth increases; it is also
consistent with the pricing curves we are aware of, e.g., [3, 18].

3.3 Network Performance Metric
There are several ways to measure network performance. In our

evaluations, we use end-to-end latency as the metric. As shown
in [24], latency not only reflects network response time but also
serves as a measure of availability, as users often consider large
1Prices are based on a February 2002 Blind RFP. All prices listed
are discounted, based on a two-year, $240,000 annual commitment
with installation in a San Jose, CA facility. Prices do not include
recurring and non-recurring local access fees. Given a set of ded-
icated links available, the cost of using dedicated links is the min-
imum cost of links such that their total capacity exceeds the max-
imum traffic load. Note that the price of ISP5 is corrected from
$23,750 in the original publication to $28,750.

ISP Burstable Full-rate Burstable Full-rate
DS3 DS3 OC3 OC3

(24 Mbps) (45 Mbps) (100 Mbps) (155 Mbps)
ISP1 $12,131 $13,000 $32,500 $43,245
ISP2 $11,160 $18,652 $29,900 $46,930
ISP3 $ 9,870 $12,690 $37,088 $45,989
ISP4 $ 7,600 $10,500 $19,600 $29,000
ISP5 $ 6,300 $ 9,000 $24,700 $28,750

Table 1: The pricing data.

 0

 5000

 10000

 15000

 20000

 0 5 10 15 20 25 30 35 40 45

M
on

th
ly

 C
ha

rg
e

($
)

Mbps

(a) DS3 pricing functions

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 20 40 60 80 100 120 140 160

M
on

th
ly

 C
ha

rg
e

($
)

Mbps

(b) OC3 pricing functions

Figure 2: The more complex pricing functions.

delay or rapidly increasing latency as a sign of a potential avail-
ability problem. Our algorithms can be easily extended to work
with alternative metrics, e.g., a combination of latency and loss
rate: latency+w · log(1

1−lossRate
), where w is the relative weight

of loss rate.

4. MINIMIZING TOTAL COST
Since the previous studies focus on improving network perfor-

mance without considering cost, we first motivate the need to opti-
mize cost. We show that by optimizing network performance alone,
users may incur high cost. Since the percentile-based charging
model is in common use, we illustrate our point below using a sim-
ple example under this model. Our performance results in Section 6
will further support this point using real data.

Consider a user with K identical links to K ISPs. Suppose the
user has one unit of traffic to send at each interval, and the latency
of each link at each interval is drawn uniformly from a common
range. In each interval, to minimize latency, the user sends all of its
traffic through the link with the lowest latency while the other links
receive no traffic. Since the latency through different links are iden-
tically distributed, each link receives traffic for approximately 1/K
of the intervals. Therefore when K is less than 20, e.g., K = 4, the
95th-percentile of each link is one. This implies that by optimizing
performance, the user pays K times the cost of using a single link.
This K-fold increase in cost is clearly unacceptable to most users.

Given this potential of a large cost increase, in this section we
study how to design effective smart routing algorithms to optimize
cost. As mentioned in Section 3, we focus on the percentile-based

charging model. We present an algorithm for dealing with the total-
volume based charging model in Appendix C.

4.1 Problem Specification
We first introduce the following notation.

K The number of ISPs. We use k as the index.

ck The cost function of ISP k. Without loss of generality,
we assume that ck is a piece-wise linear non-decreasing
function.

I The number of time intervals in a charging period. We use
i as the index.

F The number of flows. We use f as the index.

v
[i]
f The traffic volume of flow f during interval i.

v[i] The total traffic volume during interval i, i.e., v[i] =
P

f v
[i]
f . Let time series V = {v[i] | 1 ≤ i ≤ I}.

t
[i]
k The volume of traffic distributed to ISP k during interval

i. Let time series Tk = {t
[i]
k | 1 ≤ i ≤ I}. Note that

V =
P

k Tk (with vector summation).

qk The charging percentile of ISP k, e.g., qk = 0.95 if an
ISP charges at 95th-percentile.

qt(X, q) The dq ∗ |X|e-th value in Xsorted (or 0 if q ≤ 0), where
Xsorted is X sorted in non-decreasing order, and |X| is
the number of elements in X.

pk The charging volume of ISP k, (i.e., pk = qt(Tk, qk)).
For example, if ISP k charges at 95th-percentile, then pk
is the 95th-percentile of the traffic assigned to ISP k.

We now formally specify the flow assignment problem: Given
cost functions ck, the flow assignment problem is to find t

[i]
k that

minimizes the total cost
PK

k=1 ck(pk).
We consider two cases: fractional flow assignment and integral

flow assignment. Under fractional flow assignment, flows are in-
finitely splittable. In contrast, integral flow assignment assumes
that during each interval each flow is assigned to only one ISP. In
the latter case, flows can be naturally defined using destination pre-
fixes when BGP is used to implement smart routing.

The traffic assignment problem, be it fractional or integral, can
be further classified into two categories: offline or online. The of-
fline version assumes that v

[i]
f are given in advance, whereas the

online version needs to predict v
[i]
f and deals with prediction er-

rors. The online integral algorithms are more practical and have
lower control overhead. The offline fractional algorithms are also
important because they provide a lower bound on cost, and further
serve as a basis for designing our online algorithms.

4.2 Offline Fractional Flow Assignment
We begin by solving the offline fractional flow assignment prob-

lem. We first present an efficient algorithm to compute an optimal
traffic assignment when ISPs do not have capacity constraints. We
then extend the algorithm to deal with capacity constraints.

4.2.1 An Optimal Algorithm for Percentile-based
Charging Without Capacity Constraints

A key to optimizing cost is to determine the charging volumes.
For example, when ISPs use the 95th-percentile charging model,
we need to determine the 95th-percentile traffic volume for each
ISP. Once we know the charging volume for each ISP, we can as-
sign traffic by ensuring that the number of intervals in which ISP
k serves more than its charging volume of traffic does not exceed
(1 − qk) ∗ I (e.g., 5% ∗ I for 95th-percentile charging).

Based on the above observation, we develop an efficient algo-
rithm that computes an optimal traffic assignment in two steps: (i)
compute the charging volume for each ISP, and (ii) assign traffic
based on the charging volumes.

4.2.2 Computing Charging Volumes
In this section, we describe how to compute the optimal charg-

ing volumes to minimize total cost. We show that the charging
volumes can be derived in two steps: (i) compute the sum of the
charging volumes, namely

P

k pk, and (ii) compute individual pk

values based on the sum.

4.2.2.1 Computing the sum of charging volumes.
We first describe how to compute the sum of charging volumes to

minimize cost. This is based on the following two important obser-
vations, which we will formally prove below. Our first observation
is that the total cost has a monotonicity property with respect to the
sum of the charging volumes. This monotonicity property suggests
that to minimize the total cost

P

k ck(pk), we need to minimize
the value of

P

k pk. Our second observation is that the minimum
value of

P

k pk is equal to qt(V, 1 −
P

k(1 − qk)). As an exam-
ple, suppose we have 4 ISPs and all of them charge based on the
95th-percentile volume; then the minimum

P

k pk is equal to the
80th-percentile of the total traffic (since 1−4∗(1−95%) = 0.80).
The two observations together suggest that to minimize cost, we
need to have

P

k pk = qt(V, 1 −
P

k(1 − qk)), which is easy to
compute given V and qk.

Now we formally prove the above two observations. Define
cmin(s) = min{

P

k ck(pk) |
P

k pk = s}. We have

THEOREM 1. If s0 ≥ s1 ≥ 0, then cmin(s0) ≥ cmin(s1).

PROOF. Suppose the set pk minimizes
P

k ck(pk) subject to
P

k pk = s0. We have cmin(s0) =
P

k ck(pk) ≥
P

k ck(pk ·
s1/s0) ≥ cmin(

P

k pk ·
s1
s0

) = cmin(s1), where the first inequality
is because the cost functions ck are monotonically non-decreasing,
and the second inequality is by the definition of cmin .

The second observation, which is formalized in Theorem 2, es-
tablishes the (reachable) lower bound of

P

k pk.

THEOREM 2.
P

k pk ≥ qt(V, 1 −
P

k(1 − qk))
def
= V0.

We need the following lemma to prove the above theorem. The
proof of the lemma is in Appendix A.

LEMMA 3 (QUANTILE INEQUALITY). Given K equal-length
time series Tk = {t

[1]
k , t

[2]
k , · · · , t

[n]
k }, where n = |Tk| and 0 ≤

ak ≤ 1, we have
X

k

qt(Tk, 1 − ak) ≥ qt(
X

k

Tk, 1 −
X

k

ak).

Given the above lemma, we can prove Theorem 2 as follows.
X

k

pk =
X

k

qt(Tk, 1 − (1 − qk))

≥ qt(
X

k

Tk, 1 −
X

k

(1 − qk))

= qt(V, 1 −
X

k

(1 − qk))
def
= V0.

Note that in the above proof, we implicitly assume that all qk ∗ I
are integers, where I = |V |. When qk ∗ I is not an integer, we
can easily enforce its integrality by readjusting qk to dqk ∗ Ie/I .
Clearly such readjustment does not affect the outcome of qt(V, qk)
(i.e., qt(V, qk) = qt(V, dqk ∗ Ie/I), where I = |V |). Through-
out the rest of the paper, we assume that such readjustment has
been made for every qk in advance. For example, when we dis-
cuss 95th-percentile charging with charging period of one week
(i.e., I = 7 × 24 × 60/5 = 2016), we are really using qk =
d0.95 ∗ Ie/I = d1915.2e/2016 = 1916/2016 (as opposed to
qk = 0.95 = 1915.2/2016).

4.2.2.2 Computing individual charging volumes.
Once V0 is determined, the next step is to compute the opti-

mal charging volumes pk, which minimize
P

k ck(pk) subject to
P

k pk = V0.
Theorem 4 shows that the optimal charging volumes pk are easy

to derive when all ck are concave (proof omitted for the interest of
brevity).

THEOREM 4. If all cost functions ck are concave, then an opti-
mal solution is one in which the charging volumes are 0 for all but
one ISP. More specifically, let k0 = argmink[ck(V0)−ck(0)]. De-
fine p∗

k = V0 when k = k0 and 0 otherwise. We have
P

k ck(p∗
k) ≤

P

k ck(pk) for any pk satisfying
P

k pk = V0.

For general cost functions (e.g., non-decreasing step functions),
it is more involved to determine the optimal charging volumes pk

(which minimize
P

k ck(pk) subject to
P

k pk = V0). Below we
introduce a dynamic programming algorithm to solve this problem.
Let opt(v, k) be the optimal cost for serving traffic volume v by the
first k ISPs. We have:

opt(v, k) =

(

c1(v) k = 1
min

0≤x≤v
{opt(v − x, k − 1) + ck(x)} k > 1.

We can start from opt(v, 1) and compute opt(v, k) based on the
above recurrence relation, while keeping track of the corresponding
allocations. The value of opt(V0, K) gives the optimal cost, and its
corresponding allocation determines pk. The time complexity of
the algorithm is O(K · V 2

0); the space complexity is O(K · V0).
Note that the above algorithm assumes that the desired precision
is one. In practice, this may not be necessary, since the cut points
of the pricing curve are often very coarse-grained. It is easy to
handle any desired precision through discretization. For example,
if we want V0 and pk to be accurate up to 100, we only need to
compute opt(v, k) when v is a multiple of 100. This reduces both
time and space complexity. More precisely, with precision P , the
time and space complexity of the algorithm will be O(K·(V0/P)2)
and O(K · V0/P), respectively. In practice, we typically only need
to handle K ≤ 10 and V0/P ≤ 1000, so the complexity of the
algorithm is quite low.

4.2.3 Traffic Assignment Given Charging Volumes
Given the charging volumes, namely pk for ISP k, next we de-

scribe how to assign traffic during each time interval. The goal of
traffic assignment is to ensure that pk is the charging volume for
ISP k; that is, for qk ∗ I intervals, the traffic volumes assigned to
ISP k are less than or equal to pk, and ISP k is only allowed to
serve more than pk for the remaining (1 − qk) ∗ I intervals. This
can be achieved by dividing intervals into non-peak intervals and
peak intervals.

According to the definition of V0, during the intervals when to-
tal traffic volumes are no larger than V0, all traffic can be assigned
without having any ISP receiving traffic more than its charging vol-
ume. Therefore, we call these intervals non-peak intervals. For the
remaining intervals, at least one ISP needs to serve traffic more than
its charging volume. As a result, we call the latter intervals peak
intervals. We will use this terminology throughout this paper.

Based on the above definitions of peak and non-peak intervals,
we assign traffic in the following way. If an interval is a non-peak
interval, we assign traffic such that the traffic assigned to ISP k is
less than or equal to pk. There are multiple ways to assign traffic to
satisfy the above constraint, and all of these assignments give the
same cost. Therefore, we can pick any one of them. In Section 5,
we will take advantage of such flexibility to improve performance.
For a peak interval, we randomly select an ISP k to burst (i.e., its
assigned traffic exceeds pk). This is done by assigning each of the
remaining ISPs its charging volume pk, and then assigning all re-
maining traffic to the burst ISP. This is feasible because we assume

that ISPs do not have capacity constraints. (We will study the case
of limited capacity in the following section.)

Putting everything together, we have the algorithm shown in Fig-
ure 3 to minimize cost for splittable flows. It is easy to see that pk is
ensured as the charging volume for ISP k, since ISP k serves more
than pk for exactly (1 − qk) ∗ I intervals. Since the sum of the
achieved pk is equal to V0, according to Theorem 2, the algorithm
achieves minimum cost.

find V0
find pk by minimizing

P

k ck(pk) subject to
P

k pk = V0
for each (1 −

P

k(1 − qk)) ∗ I non-peak interval
traffic assigned to ISP k is less than or equal to pk

for each
P

k(1 − qk) ∗ I peak interval
pick ISP k that has bursted fewer than (1 − qk) ∗ I intervals
assign pk + vi − V0 to ISP k
assign pk′ to ISP k′, where k 6= k′

Figure 3: An offline optimal flow assignment algorithm for
splittable flows under the percentile-based charging model and
without capacity constraints.

4.2.4 Dealing with Capacity Constraints
The previous algorithm assumes that ISPs do not have capacity

constraints (i.e., they each can carry all traffic in an interval). This
is a reasonable assumption as multihoming is often used to provide
high reliability—even if all other ISPs fail, a user can still send out
traffic using the single remaining ISP. However, it is still possible
that a single ISP may not always have enough capacity to handle
all of the traffic.

f =
P

k(1 − qk) // initialize the fraction of peak intervals
assignable = false
while assignable is false

V0 = qt(V, 1 − f)
find pk by minimizing

P

k ck(pk) subject to
P

k pk = V0
assignable = IsPeakAssignable(V, V0, f, {pk})
reduce f by ∆ if assignable is false

assign f ∗ I peak intervals such that
each ISP k bursts in at most (1 − qk) ∗ I intervals, and
there is enough total capacity for each peak interval

Figure 4: The global fractional offline assignment (GFA-offline)
algorithm: an algorithm for percentile-based charging with
link capacity constraints. The cost function ck(x) is assumed
to be ∞ if x exceeds the capacity of ISP k. The constant ∆ con-
trols the step size when we search for f , the largest assignable
fraction of peak intervals (∆ = 0.01 in our evaluations).

We use the algorithm in Figure 4 to accommodate such capac-
ity constraints. The basic idea is to properly choose the fraction of
peak intervals, denoted as f , so that there are multiple burst ISPs
during each peak interval that together provide enough total capac-
ity to carry all of the traffic. More formally, given f and the corre-
sponding V0 and pk (computed inside the while-loop in Figure 4),
we need to know IsPeakAssignable(V, V0, f, {pk}), i.e., whether
it is possible to assign different ISPs to burst in f ∗ I peak intervals
so that (i) no ISP k bursts more than (1− qk) ∗ I intervals, and (ii)
there is enough total capacity in each peak interval.

Let g denote a set of ISPs that when bursting together can carry
traffic in any peak interval. A sufficient condition for g is

P

k∈g Ck+
P

k′ /∈g pk′ ≥ maxLoad, where Ck is the capacity of link k and
maxLoad is the maximum load of a charging period. Let tg de-
note the number of intervals during which the ISPs in group g burst.
Let G be the set of all (2K) possible ISP groups. When the fol-
lowing conditions hold, there exists a peak interval assignment and
IsPeakAssignable(V, V0, f, {pk}) returns true.

max
X

g∈G

tg ≥ f ∗ I

X

g: k∈g

tg ≤ (1 − qk) ∗ I for all k.

A few comments follow. First, K is usually small (e.g., below
10), so the number of variables is manageable. Second, the above
conditions are sufficient but not necessary, because the conditions
ensure that we have an assignment even when the traffic load dur-
ing a peak interval is always equal to the maximum load. However,
since the load during a peak interval may be smaller than the max-
imum load (e.g., the 95th-percentile load is smaller than the maxi-
mum load), it is possible to have a peak-load assignment even when
the above conditions are not satisfied. When the difference between
the maximum load and the smallest peak load is small, the condi-
tions are tight. Third, all these constraints are linear constraints,
so we can determine the existence of a peak load assignment by
solving an integer programming problem. Since the number of in-
tervals is large, in practice we first solve the problem without the
integer constraints and then use rounding to derive the results.

We refer to this assignment algorithm as global fractional offline
assignment (GFA-offline).

4.3 Online Integral Assignment Algorithms
The offline fractional assignment algorithms described in the pre-

vious sections assume that traffic patterns are known in advance and
that flows are splittable. In practice, traffic patterns are not given a
priori. Moreover, one may prefer not to split flows (to reduce con-
trol overhead, e.g., when BGP is in use).2 In this section, we present
online integral assignment algorithms to address both issues. Our
solution consists of two steps:

1. Predict the traffic and V0 in the next interval.

2. Compute an integral assignment based on predicted traffic.

We will now describe each step in detail.

4.3.1 Predicting Traffic and V0
First, as shown in Figure 5, we predict total and per-flow traffic

using an exponentially weighted moving average (EWMA). That
is, Prediction = β∗currTraffic+(1−β)∗Prediction . Note that
β = 1 corresponds to predicting traffic using only the preceding
interval. Our evaluation shows that the predictions with β < 1 and
β = 1 yield very similar performance.

There are several technical details about traffic prediction worth
mentioning. First, to avoid keeping history for too many flows,
we periodically remove the flows with the smallest predicted traffic
volumes. Second, when a flow appears for the first time, we will
directly use its traffic volume in the current interval to predict its
traffic in the next interval (since it does not have any other history
yet). Third, since the predicted total traffic may not match the sum
of the predicted traffic of the flows that we keep track of, we add a
normalization step shown in the algorithm.

Besides the traffic, we also need to predict V0 in order to decide
whether the next interval is a peak interval. Clearly, if we underesti-
mate V0, then we may end up exhausting the quota of peak intervals
too early, thus increasing the total cost due to increased charging
volumes of individual ISPs. To avoid this penalty, we update V0 in
the following conservative way. We use the V0 in the past charg-
ing period as an initial estimate of V0. We also maintain a sliding
window (with length equal to the charging period) and after each
interval we compute the V0 value for the most recent sliding win-
dow, denoted as V ′

0 . Whenever V ′
0 exceeds V0, we increase V0 to

2Avoiding splitting may cause packet losses. Our evaluations show
that these loss rates are very low.

// update traffic prediction at interval i using EWMA
PredictTraffic() {

PredictedTotal = β ∗ v[i] + (1 − β) ∗ PredictedTotal
for each flow f appearing in interval i or in PredictedFlow

if flow f does not appear in PredictedFlow

PredictedFlow(f) = v
[i]
f

else
PredictedFlow(f) = β ∗ v

[i]
f

+ (1 − β) ∗ PredictedFlow(f)
if PredictedFlow has more than 2*MAX FLOW NUM flows

keep only the MAX FLOW NUM largest flows
normalize traffic in PredictedFlow such that

P

f PredictedFlow(f) = PredictedTotal

}

Figure 5: The PredictTraffic() subroutine: predicting
total and per-flow traffic volumes.

γ · V ′
0 and recompute all the charging volumes based on the new

V0. For our traces, with γ = 1.05 we are able to track increases in
V0 quickly without overshooting too much.

When recomputing the charging volumes, we need to ensure that
for every k the new charging volume p′

k is no less than the old
charging volume pk. Otherwise, with p′

k < pk, there may be
many (possibly more than (1 − qk)I) past intervals in which we
assign more than p′

k (but less than pk) amount of traffic to ISP k,
thus making it difficult to ensure qt(Tk, qk) = p′

k. We can apply
the same dynamic programming algorithm as in Section 4.2.2.2 to
compute {p′

k}; the lower bounds {pk} can be easily enforced by
setting ck(x) = ∞ for all x < pk.

4.3.2 Performing Offline Integral Assignment
We first note that even in an offline setting with perfect knowl-

edge of traffic, the integral assignment problem is already hard.
More specifically, we have the following negative result (please see
Appendix B for its proof):

THEOREM 5. There is no polynomial-time algorithm that can
achieve a constant approximation ratio for integral assignment with
general cost functions, unless P=NP.

The above negative result makes it very natural to consider ap-
proximation algorithms. We propose the following (offline) greedy
algorithm for integral assignment. As shown in Figure 6, we first
run the offline fractional flow assignment algorithm to find the charg-
ing volumes pk. Based on pk for ISP k, we then compute the tar-
geted amount of traffic to be assigned to it; we call this value its
pseudo capacity during the interval (abbreviated as PseudoCap).
For a non-peak interval or a peak interval in which ISP k is not a
burst ISP, the pseudo capacity of ISP k is its charging volume com-
puted by the fractional assignment algorithm; for a peak interval in
which ISP k is a burst ISP, its pseudo capacity is its link capacity
Ck. Our goal is to ensure that the traffic assigned to any ISP does
not exceed its pseudo capacity.

Conceptually, this is a problem similar to bin packing, and can
therefore be solved using a greedy heuristic. Specifically, we can
initialize each ISP with its pseudo capacity, sort the flows in de-
scending order of the traffic volumes they generate, and then itera-
tively assign the flows to the ISP with the largest remaining pseudo
capacity. The actual algorithm in Figure 6 splits this conceptual
greedy assignment process into two separate steps. It first tries to
assign traffic using pk as the bin size, and then refills the bin size by
(PseudoCapk−pk) and assigns the remaining traffic. We find that
using such a two-step approach makes it more likely for there to be
ISP with large remaining bin size. This ISP can then be used in an
online setting to accommodate traffic for prefixes not seen before.

4.3.3 Accommodating Prediction Errors
The integral assignment algorithm presented in Figure 6 works

well for offline traffic demands. However, in an online setting, the

OfflineIntegral(NumPeaks , V0 , {pk}, TotalTraffic, FlowTraffic) {
// compute pseudo capacities
for each ISP k, PseudoCapk = pk

if TotalTraffic ≥ V0 and NumPeaks <
P

k
(1 − qk) · I

for each burst ISP k, PseudoCapk = Ck

NumPeaks = NumPeaks + 1

// try to assign min(V0,TotalTraffic) amount of traffic
for each k, Bink = pk

SortedFlowList = sort flows in descending order of FlowTraffic
for each flow f in SortedFlowList

find ISP k with the largest bin size Bink

if Bink ≥ FlowTraffic(f)
Assignment(f) = k
Bink = Bink − FlowTraffic(f)

// assign the remaining traffic
for each k, Bink = Bink + PseudoCapk − pk

RemainingFlowList = SortedFlowList− flows in Assignment
for each flow f in RemainingFlowList

Assignment(f) = k, where ISP k has the largest Bink

Bink = Bink − FlowTraffic(f)

// return the result
MaxISP = argmaxkBink

return Assignment ,MaxISP
}

Figure 6: The OfflineIntegral() subroutine: an offline
greedy integral flow assignment algorithm.

predicted traffic may not match the real traffic due to prediction
errors. If we are too greedy in filling up pseudo capacities of the
links, then the prediction error may cause the actual usage to ex-
ceed the target pseudo capacities, thereby significantly increasing
the actual cost. Our solution is to add some margin when comput-
ing the charging volumes and then trim them down afterward; our
adjustment algorithm is shown in Figure 7. We find that setting
margin = 0.05 ∗ V0 works well for the traces we have.

{pk} = OfflineFractional(V0 + margin ∗ K)
for each ISP k, pk = max{0, pk − margin}

Figure 7: Dealing with prediction errors by adjusting pk.

4.3.4 Final Algorithm
Putting everything together, we have the final online algorithm

shown in Figure 8. This algorithm is also referred to as global
integral online assignment (GIA-online).

// compute assignment for current interval
for each interval i

// update V0 based on most recent I intervals
V ′

0 = FindV0 (TotalTraffic[i − I..i − 1],NumPeaks)
if V ′

0 > V0

V0 = 1.05 · V ′

0
margin = 0.05 ∗ V0

{p′

k} = OfflineFractional(V0 + margin ∗ K , {pk})
for each k

pk = max(0, p′

k − margin)

// perform integral assignment using predicted traffic
(Assignment ,MaxISP) =

OfflineIntegral(NumPeaks, V0, {pk},
PredictedTotal,PredictedFlow)

// actual assignment:
for every flow appearing in interval i

if flow appears in PredictedFlow
use pre-computed Assignment

else // this is a flow not seen before
assign to MaxISP

PredictTraffic()

Figure 8: The global integral online flow assignment (GIA-
online) algorithm.

5. OPTIMIZING PERFORMANCE UNDER
COST CONSTRAINT

In the preceding section we studied how to optimize cost for a
user. To be practical, a sensible smart routing algorithm needs to
consider both cost and performance.

5.1 Problem Formulation and Overview
There are multiple ways to formulate the problem of optimizing

both performance and cost. For example, one possibility is to de-
sign a metric that is a combination of both cost and performance.
However, it may be unclear to users exactly how to determine the
relative weights between cost and performance. A more intuitive
approach, which we propose in this paper, is to optimize perfor-
mance under a given cost constraint.

As before, we design both offline and online algorithms. Both
algorithms consist of two key components. The first component is
a building block of the second one.

1. Given the pseudo capacity of each ISP during each interval,
namely an upper bound on the traffic that can be assigned to
an ISP, we assign flows in such a way that the total delay is
minimized. We call this component Flow Assignment Given
Pseudo Capacities.

2. Since a given cost constraint allows multiple pseudo capac-
ity assignments and these different assignments give differ-
ent delays, we will need to select the assignment that yields
good performance. We call this component Pseudo Capacity
Selection.

5.2 Offline Traffic Assignment
We first present an offline algorithm.

5.2.1 Flow Assignment Given Pseudo Capacities
The goal of flow assignment given pseudo capacities is to mini-

mize the total latency such that the traffic assigned to each ISP does
not exceed its pseudo capacity.

We solve the flow assignment problem as a minimum-cost multi-
commodity flow (MCMCF) problem by constructing a graph as
shown in Figure 9. In the graph, each node in the top row represents
the source of a flow and the destination of the flow is in the bottom
row. The nodes in the middle two rows are ISP nodes. The cost
perf(k, f) of the link from the source node of flow f to ISP node
k on the next row is the latency incurred by assigning flow f to ISP
k; the costs of other links are zero. The link capacity of each ISP
node on the second row to the corresponding ISP node on the third
row is the pseudo capacity of the ISP; the capacities of other links
are unlimited.

ISP

flow
F

perf(k, f)

K1

1 f

k

PseudoCap
k

Figure 9: MCMCF formulation of the flow assignment prob-
lem.

5.2.2 Pseudo Capacity Selection
Given pseudo capacities, the above algorithm computes flow as-

signment to optimize latency. Next we study how to determine the
pseudo capacities of the links during each interval.

Pseudo capacities are determined by cost constraints. Without
consideration of cost, each ISP can allocate traffic up to its link ca-
pacity, i.e., a link’s pseudo capacity is its raw capacity. However,
since our goal is to optimize performance under cost constraints,
we apply the algorithms described in Section 4, which impose con-
straints on how much traffic each link can carry. More specifically,
we obtain the charging volume pk for ISP k based on cost optimiza-
tion. Then, during a non-peak interval, each ISP’s traffic should be
no higher than pk (i.e., the pseudo capacity of ISP k is pk).

The pseudo capacities of peak intervals are not completely de-
termined by cost optimization. The only constraint from cost op-
timization is that each ISP can exceed pk for only (1 − qk) ∗ I
intervals, so we still have flexibility in picking the burst ISPs for
each individual peak interval. Below we describe the algorithms to
determine the pseudo capacities for peak intervals under the cost
constraints.

A key step in determining the pseudo capacities of a peak inter-
val is to decide which ISP or set of ISPs to burst. Selecting burst
ISPs for a given peak interval can be done in two steps. First, we
derive the best performance achieved by bursting any set of ISPs
at a given peak interval. This step can be achieved by first setting
the pseudo capacities of the chosen burst ISPs to their link capaci-
ties, the pseudo capacities of the remaining links to their charging
volumes, and then calling the algorithm developed in Section 5.2.1.

Next, we optimize performance across the entire charging period
while preserving the cost constraint (i.e., each ISP can burst up to
qk ∗ I time intervals). Let BestPerf (g , i) denote the best perfor-
mance computed by the algorithm in Section 5.2.1, when ISP set
g bursts at interval i. Then the step of determining which ISPs to
burst at each peak interval can be cast into a mixed integer pro-
gramming (MIP) problem as shown in Figure 10. The MIP can be
solved using LP software such as lp solve [14].

minimize
X

g,i

BestPerf (g, i) ∗ IsPeak (g, i)

subject to
X

g: k∈g,i

IsPeak(g, i) ≤ (1 − qk) ∗ I ∀k

X

g

IsPeak(g, i) ≥ 1 for any peak interval i

IsPeak (g, i) ∈ {0, 1}

Figure 10: MIP formulation to determine which ISPs to burst.

5.3 Online Algorithms
Next we present the online algorithms. There are two new prob-

lems that we need to address in designing an online algorithm.
First, we need to predict both traffic and performance. Second, we
need an efficient algorithm to select pseudo capacities and assign
flows to ISPs.

5.3.1 Predicting Traffic and Performance
We predict traffic patterns in the same way as shown in Figure 8.

To predict performance, we again use the exponentially weighted
moving average.

5.3.2 Performing Traffic Assignment
We use the following greedy heuristic to assign traffic online.

During a time interval i, a flow is assigned to the ISP that has the
best predicted performance among all of the ISPs with sufficient
pseudo capacities. We observe that the ordering of flow assignment
affects the performance. In particular, we find that assigning flows
in order of descending DiffPerf (f)∗v

[i]
f performs very well, where

DiffPerf (f) is the predicted performance difference between the
best performing ISP and the worst performing ISP, and v

[i]
f is flow

f ’s volume during time interval i. Similarly to Figure 6, we split
the greedy assignment process into two separate steps so that we
can better accommodate traffic that has not appeared before.

6. EVALUATIONS
In this section, we evaluate the performance of the algorithms

developed in the preceding sections. We obtain two sets of traffic
traces: Abilene traces and a large Web server trace. The Abilene
traces contain netflow data from a number of universities and en-
terprises on the Internet-2 from Oct. 8, 2003 to Jan. 6, 2004. We
select traffic traces from the organizations, shown in Table 2, for
our evaluations. To speed up our evaluations, during each 5-minute
interval, we only use the 2000 destination prefixes with the largest
volumes. We call these prefixes top prefixes. Note that in different
time intervals, the sets of top prefixes are different, but they always
account for over 90% of the total traffic in an interval.

AS Organization Traffic Rate (Mbps)
3582 University of Oregon 215.576 (202.527)

3 MIT Gateways 64.598 (64.587)
52 UCLA 52.245 (52.234)
59 Univ. of Wisconsin, Madison 33.333 (33.253)
237 NSF (MERIT-AS-14) 117.366 (108.621)

6629 NOAA Silver Springs Lab 62.340 (62.335)
70 National Library of Medicine 72.810 (72.691)

1701 NASA/GSFC
(Goddard Space Flight Center) 37.451 (37.448)

22753 Red Hat Inc. 33.241 (33.238)
Anonymized Commercial Web Server 156.231 (64.124)

Table 2: Traffic traces used in our evaluation, where the last
column shows the original traffic rates averaged over 91 days,
and the traffic rates after filtering, which are shown in paren-
theses.

For diversity, we also use the trace collected from a large com-
mercial Web server from Oct. 1, 2003 to Dec. 31, 2003. This is
one of the busiest Web sites. The trace contains IP addresses of
hosts that issue Web requests, along with time-stamps and sizes of
requested files. Note that for efficiency, a set of proxy caches are
deployed in front of the Web server. About half of the requests
seen at the Web server are re-directed from the proxies with the IP
addresses replaced by the proxies’ IP addresses. Since we are inter-
ested only in wide-area network traffic, we filter out the re-directed
requests. In addition, as with Abilene traces, we only consider the
traffic contributed by the top 2000 prefixes during each 5-minute
interval. The last column in Table 2 shows the mean traffic volume
before and after filtering. Note that the difference between filtered
traffic and original traffic of the Web server is larger than that of the
Abilene traces due to the filtering of the redirected requests.

6.1 Evaluation of Cost Optimization
We compare the performance of our cost optimization algorithms

described in Section 4 (i.e., GFA-online in Figure 4 and GIA-online
in Figure 8), with the following alternatives:

• Round robin: in each time interval, traffic is assigned to a
single ISP, and we rotate the responsible ISP in a round robin
fashion. If the chosen ISP does not have enough capacity to
carry all of the traffic, the remaining traffic is assigned to the
other ISPs in the same round robin manner.

• Equal split: in each time interval, traffic is split equally among
all ISPs. When there are capacity constraints, we first sort
links in order of ascending capacity. In this order, we as-
sign ISP k an amount of traffic which is the minimum of Ck

and rem traf/rem nisps, where rem traf is the amount
of traffic that remains to be assigned, and rem nisps is the
number of ISPs that have not yet been assigned traffic.

0

0.5

1

1.5

2

2.5

3

Red Hat MIT UCLA Wisconsin Web Server

N
o

rm
al

iz
ed

 c
o

st

GFA offline GIA online round robin equal LFA offline

(a) Charging period = 1 week

0

0.4

0.8

1.2

1.6

2

Red Hat MIT UCLA Wisconsin Web Server

N
o

rm
al

iz
ed

 c
o

st

GFA offline GIA online round robin equal LFA offline

(b) Charging period = 1 month

Figure 11: Comparison of the total cost across different traces,
where each user has 4 links to the Internet, and each link’s cost
is determined by a simple pricing function.

• Local fractional offline (LFA offline): in each interval i we
determine the traffic allocation t

[i]
k such that

P

k ck(t
[i]
k) is

minimized. This essentially minimizes the total cost assum-
ing that the cost is a function of the traffic in the current in-
terval (instead of based on qk percentile traffic volume). To
determine the optimal allocation, we apply the dynamic pro-
gramming algorithm described in Section 4.2, which takes
the total traffic in the current interval as input to derive an
allocation that leads to the minimum cost.

• Dedicated links: in today’s market there is an option to pur-
chase dedicated links besides burstable links. Dedicated links
have flat rates which are independent of usage, even when the
assigned traffic is 0.

We derive the cost of a burstable link based on the 95th-percentile
charging model throughout our evaluation. For a given trace, we
determine the cost of using dedicated links by finding the cheap-
est set of links whose total capacity can accommodate the maximal
load in the current charging period.

We start our evaluation by considering simple pricing functions:
the price of an ISP link is a constant value if the charging volume is
greater than 0, and the value is one of the entries shown in Table 1.
In our first experiment, we consider a user with 4 links connected
to the Internet. We randomly pick 4 burstable links from the ten
links shown in Table 1 with the corresponding capacity constraints.
We allow duplicates, since it is possible to have multiple links of
the same type. Figure 11 shows the normalized cost achieved us-
ing different traffic assignment algorithms across 5 sets of traces.
Here normalized cost is defined as the ratio between the cost of a
burstable link based on a specific traffic assignment algorithm and
that of using the dedicated links. Note that except for GIA-online,
all of the algorithms are offline algorithms; thus they know traffic
patterns in advance.

We make the following observations. First, as expected, GFA-
offline yields the best performance. GIA-online incurs a moder-
ately higher cost than its offline version due to prediction errors.

0

0.5

1

1.5

2

2.5

3

Red Hat MIT UCLA Wisconsin Web Server

N
o

rm
al

iz
ed

 c
o

st

GFA offline GIA online round robin equal LFA offline

(a) Charging period = 1 week

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Red Hat MIT UCLA Wisconsin Web Server

N
o

rm
al

iz
ed

 c
o

st

GFA offline GIA online round robin equal LFA offline

(b) Charging period = 1 month

Figure 12: Comparison of the total cost across different traces,
where each user has 4 links to the Internet, and each link’s cost
is a piece-wise linear function of traffic volume as shown in Fig-
ure 2.

Nevertheless, it is still able to yield cost comparable to (and of-
ten slightly lower than) LFA-offline, and much lower cost than
the round robin and equal split. Second, we observe that apply-
ing GFA-offline, GIA-online or LFA-offline to burstable links can
result in lower cost than using dedicated links. On the other hand,
applying round robin or equal split to burstable links can incur sig-
nificantly higher cost than using dedicated links. Finally, we ob-
serve that the relative ranking among these algorithms remains the
same as the charging period changes from one week to one month.

We next use the more complex pricing functions, described in
Section 3, to evaluate the robustness of our algorithms to vary-
ing pricing functions. Figure 12 summarizes the results. We ob-
serve that GFA-offline continues to perform the best. Its online
version performs slightly worse due to prediction errors, but still
out-performs the other algorithms.

Next, we study the impact of varying the number of available
links. Figure 13 shows the cost as we vary the number of links
from 2 to 15. As before, GFA-offline yields the best performance,
with GIA-online closely following it. We observe that the normal-
ized cost of GFA-offline and GIA-online tend to decrease with the
number of available links. This is because they can burst ISPs at
their full capacities during peak load without incurring additional
cost. In comparison, we observe that the normalized costs of the
round robin, equal split, and LIA-offline algorithms increase with
the number of links.

Finally, we look at the dynamics of cost over time. Figure 14
plots how cost varies over a period of 13 weeks, where the charg-
ing period is one week. As shown, GFA-offline and GIA-online
perform significantly better than the other three algorithms. Since
the normalized costs of GFA-offline and GIA-online are often much
lower than 1, the cost of using these algorithms on burstable links is
significantly lower compared with using dedicated links. We also
observe that GFA-online can sometimes outperform GFA-offline,
e.g., week 4 in Figure 14 (b). This is because GFA-offline is not
guaranteed to be optimal when there are capacity constraints.

0

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16

N
or

m
al

iz
ed

 c
os

t

available links

GFA offline
GIA online
Round robin
Equal
LIA offline

(a) Red Hat Inc.

0

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16

N
or

m
al

iz
ed

 c
os

t

available links

GFA offline
GIA online
Round robin
Equal
LIA offline

(b) University of Wisconsin, Madison

0

1

2

3

4

5

6

2 4 6 8 10 12 14 16

N
or

m
al

iz
ed

 c
os

t

available links

GFA offline
GIA online
Round robin
Equal
LIA offline

(c) Web server

Figure 13: Comparison of cost among different routing schemes using piece-wise linear pricing functions shown in Figure 2.

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12

N
or

m
al

iz
ed

 c
os

t

Week

GFA offline
GIA online
Round robin
Equal
LIA offline

(a) Red Hat Inc.

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12

N
or

m
al

iz
ed

 c
os

t

Week

GFA offline
GIA online
Round robin
Equal
LIA offline

(b) University of Wisconsin, Madison

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12

N
or

m
al

iz
ed

 c
os

t

Week

GFA offline
GIA online
Round robin
Equal
LIA offline

(c) Web server

Figure 14: Time series plots of cost across different traces, where each user has 4 links to the Internet, and each link’s cost is a
piece-wise linear function of its charging volume shown in Figure 2.

Summary: Our evaluation results show that the GFA-offline al-
gorithm achieves the lowest cost, as we expect. Moreover, its on-
line version is also competitive despite fluctuations in traffic — it
is often able to out-perform the other alternatives by a significant
amount.
6.2 Evaluation of Performance Optimization

Under Cost Constraints
Next we evaluate latency optimization under cost constraints. In

this section, we mainly focus on evaluating our online algorithm in
the presence of realistic RTT variations in the Internet. In the next
section, we will further examine the performance of smart routing
when multiple users interact with each other.

To evaluate the performance benefits of smart routing for a given
traffic demand trace, we would ideally use round-trip time (RTT)
measurements between the sources and destinations in the traf-
fic traces during the period of trace collection. Due to a lack of
such measurement data, we use the measurements published by
NLANR [16] for our evaluation. The NLANR traces consist of
RTT measurements between pairs of 140 universities from Oct.
2003 to Jan. 2004. In order to get the delay for a flow in the traffic
trace, we first construct virtual ISPs in the following way. We map
ISPs from the Rocketfuel dataset [22] to a set of universities by as-
signing each of their nodes to the geographically closest university
in the NLANR trace. In addition, we map the origin of each of our
Abilene traces to the closest university in the NLANR trace. Us-
ing a database from CAIDA’s NetGeo project, we obtain physical
coordinates for each destination prefix in our Abilene traces. We
map each prefix to the closest node of each ISP. The delay through
a given ISP from origin to prefix is then assigned to be the RTT be-
tween the universities in the NLANR trace representing the origin
and the node of the ISP assigned to the prefix. We also add a last
hop delay based on the speed of light and the distance between a
prefix and its ISP node. In this way, we obtain delay traces reflect-
ing realistic Internet RTT variations and geographically correlated
performance variations across ISPs.

Note that the delay traces from NLANR are mostly between

hosts within the US, so we filter out traffic with destination prefixes
that are outside the US. Such filtering reduces traffic by 20% - 60%,
and increases traffic variability (due to smaller aggregation). This
increased variability will further stress-test our online algorithms.

Figure 15 compares the cost and performance of different routing
schemes, where the cost in Figure 15 (a) is normalized by the cost
of the offline cost optimization scheme. We make the following
observations.

First, comparing the three offline schemes, we observe that opti-
mizing performance alone increases cost by up to a factor of 2.75
compared with optimizing cost alone, whereas optimizing cost alone
increases latency by up to 33% compared with the performance op-
timal. In contrast, the offline cost-performance scheme achieves the
best of both worlds: it yields low cost and low latency.

Second, comparing the offline schemes with their corresponding
online versions, we observe that the online versions incur higher
cost due to prediction errors. Note that the cost differences between
the offline and online versions are larger than those in the previous
sections, because here we filter out a significant amount of non-
US traffic and thus increase variability. Nevertheless, the online
cost-performance optimization yields much lower cost than opti-
mizing performance alone, while achieving similar latency (within
10-20%).

Figure 16 further compares the latency of different schemes us-
ing time series plots. As it shows, in most cases the latency achieved
using the online cost-performance scheme follows that of the of-
fline performance optimization scheme. This suggests that the on-
line cost-performance algorithm can effectively track variations in
latency and traffic volume. Sometimes its latency is noticeably
higher than pure performance optimization. This is due to the cost
constraints, and indicates that there is a trade-off between optimiz-
ing cost versus optimizing performance. But the performance dif-
ference between the two is usually small (below 10%). When com-
pared with optimizing cost alone, the online cost-performance al-
gorithm often avoids delay spikes that pure cost-optimization can
produce.

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 4860 4890 4920 4950 4980 5010

A
ve

ra
ge

 la
te

nc
y

(m
s)

Time interval (5 minutes)

online cost
offline cost

online cost+perf
offline cost+perf

offline perf

(a) Red Hat Inc. (AS 22753)

 55

 60

 65

 70

 75

 80

 85

 1650 1700 1750 1800 1850

A
ve

ra
ge

 la
te

nc
y

(m
s)

Time interval (5 minutes)

online cost
offline cost

online cost+perf
offline cost+perf

offline perf

(b) UCLA (AS 52)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 3680 3700 3720 3740 3760 3780

A
ve

ra
ge

 la
te

nc
y

(m
s)

Time interval (5 minutes)

online cost
offline cost

online cost+perf
offline cost+perf

offline perf

(c) National Library of Medicine (AS 70)

Figure 16: Performance comparison of different routing schemes.

0

0.5

1

1.5

2

2.5

3

1701 22753 3 52 59 6629 70

AS

C
o

st
 n

o
rm

al
iz

ed
 b

y
o

ff
lin

e
co

st

offline cost offline cost+perf online cost online cost+perf offline perf

(a) Comparison of total cost

0

10

20

30

40

50

60

70

1701 22753 3 52 59 6629 70

AS

A
ve

ra
g

e
L

at
en

cy
 (

m
s)

offline cost offline cost+perf online cost online cost+perf offline perf

(b) Comparison of performance

Figure 15: Comparisons of the total cost and performance
across different traces during four weeks, where each user has
4 links to the Internet, and each link’s cost is a piece-wise linear
pricing function shown in Figure 2 based on a one-week charg-
ing period.

7. GLOBAL EFFECTS OF SMART
ROUTING

In the preceding sections, we have investigated how an individual
user can use smart routing to optimize cost and performance. Such
optimization is selfish, since an individual user tries to optimize its
own metrics without considering its impacts on other traffic. More-
over, the traffic of an individual user may self-interfere if traffic
assignment may change link latency. Therefore, a comprehensive
evaluation on the global effects of smart routing should address the
following issues: (i) how well the smart routing algorithms perform
when traffic assignment can affect link latency; (ii) how well dif-
ferent smart routing users co-exist; and (iii) how well smart routing
users co-exist with single-homed users whose routing is controlled
by the network. Below we investigate these issues, focusing on the
performance at traffic equilibria.

7.1 Evaluation Methodology
Our topology is constructed using the Rocketfuel inter-domain

topology data [22]. To make our simulations scalable, we select

4 ASes (to simulate ISPs) in the United States from the Rocket-
fuel data to construct a network topology of over 170 nodes and
600 edges. For each intra-domain link, we use the inferred OSPF
weight and propagation delay from the data; for each peering link,
we use the estimated propagation delay from the data. Once a user
selects an ISP, its inter-domain route is determined based on the
shortest AS hop count, and its intra-domain route follows the short-
est OSPF path. Since the Rocketfuel data do not contain link band-
width, we set the peering links to be OC3 (155 Mbps) and intra-
domain links to be OC12 (622 Mbps). We use the M/M/1 latency
function (i.e., l(x) = 1

µ−x
+ prop, where l(x) is the latency for

traffic load of x, µ is the link capacity, and prop is the propagation
delay) for all links in the network to capture the effect of traffic load
on link latency.

We evaluate smart routing by connecting users to a varying num-
ber of ASes in the topology. For each smart routing user, its first-
hop nodes in different ASes are geographically co-located. Further,
we create traffic demands for each user using one of the nine Abi-
lene traces described in Section 6. During each time interval, we
select the top 100 destination prefixes in the traces, which account
for over 90% traffic, and randomly map them to nodes in the sim-
ulation topology. The user sends traffic to the destination nodes at
the traffic rate specified by the trace.

During every 5-minute time interval, we derive the latency un-
der different routing schemes by computing the traffic equilibria
based on the current topology and traffic demands using the ap-
proach in [20].

7.2 Smart Routing with Self-Interference
We start with an evaluation on the effects of self-interference.

The online smart routing algorithm described in Section 5 assumes
that traffic assignment would not affect link latency. If this is not
the case (i.e., the latency of a link depends on traffic assignment),
the above algorithm results in selfish routing, since each flow is
routed without considering its effects on other flows. In contrast,
to optimize the total latency of all flows, a smart routing algorithm
ideally needs to explicitly take into account this self-interference,
and route traffic cooperatively to minimize the overall latency. As
shown in [13, 23], the theoretical worst case performance differ-
ence between cooperative routing and selfish routing at traffic equi-
libria3 can be quite large. Below we quantify the difference through
simulations, and show that the impact of self-interference is small.

In our evaluations, the smart routing user has 4 ISPs and the
burstable links to the ISPs are randomly selected from Table 1; the
topology and real traffic traces are described in Section 7.1. In the
interest of clarity, throughout this section we plot the results for
only a small number of time intervals. The results for other time
periods are consistent.

3A traffic equilibrium is defined as a state in which no traffic can
improve its latency by unilaterally changing its link assignment.
We adopt the approach in [20] to compute traffic equilibria.

 16

 18

 20

 22

 24

 26

 28

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 la
te

nc
y

(m
s)

Time interval

smart routing w/ cost
cooperative routing w/ cost

smart routing w/o cost
cooperative routing w/o cost

(a) Red Hat Inc.

 16

 18

 20

 22

 24

 26

 28

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 la
te

nc
y

(m
s)

Time interval

smart routing w/ cost
cooperative routing w/ cost

smart routing w/o cost
cooperative routing w/o cost

(b) University of Wisconsin, Madison
Figure 17: Evaluation of the effects of self-interference.

Figure 17 compares the latency of optimal routing versus that
of smart routing at traffic equilibria, with and without enforcing
the cost constraints. When there are no cost constraints, link ca-
pacities are always equal to their raw bandwidth; and when there
are cost constraints, link capacities are equal to their pseudo ca-
pacities during the interval. We observe that under the same cost
constraint, smart routing and optimal routing achieve similar la-
tency. This suggests that ignoring self-interference incurs little per-
formance penalty. In addition, removing the cost constraint yields
slightly lower latency. This is consistent with the results in Sec-
tion 6, which show that there is a trade-off between optimizing cost
versus optimizing performance, but the trade-off is usually small.

7.3 Evaluation of Smart Routing in a Global
Setting

Having established the robustness of our smart routing algorithms
against self-interference, we next evaluate smart routing when there
are multiple users.

7.3.1 Performance Benefits of Smart Routing
We start by studying the performance benefits of smart routing

in the presence of other traffic. In our first experiment, we have 3
users generating traffic, where user 1 is a smart routing user sub-
scribing to a varying number of ISPs, and users 2 and 3 are both
single-homed. We observe that user 1 improves its performance by
10% when it changes from using one ISP to two ISPs, and further
improves its performance by 8% when it uses four ISPs.

In our second experiment, we scale up the traffic by a factor of
3 to examine how smart routing performs in a highly utilized net-
work. Figure 18 (a) shows the latency of the smart routing user over
100 time intervals. We observe that when user 1 changes from us-
ing one ISP to two ISPs, its performance is improved by 19%; when
the number of ISPs increases to four, a further improvement of 9%
is achieved. Smart routing achieves higher performance benefits
under higher load, since it is able to route around network conges-
tion whereas single-homed traffic follows a fixed path.

In addition, as shown in Figure 18 (b), increasing the number of
ISPs also helps to reduce maximum link utilization. In particular,
we observe a 12% reduction when user 1 changes from subscribing

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 la
te

nc
y

(m
s)

Time interval

1 ISP
2 ISPs
4 ISPs

(a) User latency

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

M
ax

im
um

 u
til

iz
at

io
n

(%
)

Time interval

1 ISP
2 ISPs
4 ISPs

(b) Maximum link utilization
Figure 18: Performance benefit of smart routing when the la-
tency is a function of traffic load.

to one ISP to two ISPs, and an additional 10% reduction when the
user subscribes to four ISPs. Similar results are observed when we
use other traffic traces or vary the user’s first-hop nodes.

7.3.2 Interactions Among Multiple Smart Routing
Users

Next we examine how traffic from different smart routing users
interacts. In our experiment, we start with a single smart routing
user (called user 1) subscribing to two ISPs. We incrementally add
new smart routing users (each subscribing to two ISPs) to the net-
work to examine the interactions of smart routing traffic. We scale
up the traffic by a factor of 3 to examine how smart routing per-
forms in a highly utilized network. In the interest of clarity, we plot
only the performance of user 1 in Figure 19 (a). The results for
other users are consistent. As we can see, the performance degra-
dation of user 1 remains less than 2 ms as the number of competing
smart routing users increases. These results suggest that smart rout-
ing users can co-exist well.

Next, we repeat the above experiment, where each smart routing
user subscribes to all four ISPs. Again, in the interest of clarity, we
plot only the performance of user 1 in Figure 19 (b). We observe
that an increase in the number of competing smart routing users
has little effect on the performance of user 1. Moreover, user 1 im-
proves its performance by about 8% when the number of its ISPs
increases from two to four. The other users see a similar level of im-
provement (5–10%) when subscribing to two additional ISPs. This
result is consistent with our findings in the previous subsection.

7.3.3 Interactions between Smart Routing Users and
Single-homed Users

Finally, we study the interactions between smart routing users
and single-homed users through the following two experiments.

In our first experiment, we start with two single-homed users.
We examine the effects of adding one more ISP subscription to
user 1. Figure 20 summarizes the results. As shown in Figure 20
(a), the performance of user 1 improves with the additional ISP,
while the performance of user 2 remains almost the same after user
1 subscribes to one more ISP. This result indicates that a multi-

 23

 24

 25

 26

 27

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 la
te

nc
y

(m
s)

Time interval

1 user
2 users
3 users
4 users
5 users
6 users
7 users
8 users

(a) Latency of user 1 (all users subscribe to 2 ISPs)

 20.5

 21

 21.5

 22

 22.5

 23

 23.5

 24

 24.5

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 la
te

nc
y

(m
s)

Time interval

1 user
2 users
3 users
4 users
5 users
6 users
7 users
8 users

(b) Latency of user 1 (all users subscribe to 4 ISPs)

Figure 19: Latency of user 1 when it interact with multiple
smart routing users, where all the users subscribe to 2 ISPs in
(a), and all the users subscribe to 4 ISPs in (b).

homed user can improve its performance without adversely affect-
ing a single-homed user. Note that the average latency of user 2 is
lower than that of user 1 (with and without smart routing) in some
intervals, although user 1 outperforms user 2 most of the time.

Next, we add one more ISP to user 2 as well. Figure 20 (b) shows
that the latency of user 2 decreases without affecting user 1. In
addition, we observe that smart routing users can take advantage of
additional connections to smooth out traffic and reduce maximum
link utilization by up to 10%.

In our second experiment, we have 5 users, which include one
user that switches from single-homed to multihomed (referred to as
user 1), two smart routing users, and two single-homed users. We
compare the performance of all users before and after user 1 be-
comes multihomed. Our results show that user 1 improves its per-
formance by 18%, whereas the latency of the other users changes
within 1%.

Summary: Our evaluation results based on realistic settings show
that the effect of self-interference is very small under traffic equilib-
ria. In addition, we show that smart routing improves performance
by 10–20%. Moreover, smart routing users co-exist well with other
smart routing users and single-homed users.

8. CONCLUSIONS
In this paper, we design a series of novel smart routing algo-

rithms to optimize cost and performance for multihomed users.
Using both analysis and extensive simulations based on realistic
traces, we show that our algorithms are very effective in minimizing
cost and improving performance. We further examine the global ef-
fects of smart routing using simulations based on realistic topolo-
gies and traffic. Our results show that under traffic equilibria smart
routing can improve performance without hurting other traffic.

There are several avenues for future work. In this paper, we fo-
cus on algorithmic design and evaluation through analysis and sim-
ulation. A natural next step is to implement the algorithms and
conduct experiments in the Internet. In addition, we only study

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 la
te

nc
y

(m
s)

Time interval

reg 2 (reg 1)
reg 2 (SR 1)
reg 1 (reg 2)
SR 1 (reg 2)

(a) User 1 becomes multihomed
while user 2 remains single-homed

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 la
te

nc
y

(m
s)

Time interval

reg 2 (SR 1)
SR 2 (SR 1)
SR 1 (reg 2)
SR 1 (SR 2)

(b) User 2 becomes multihomed
while user 1 remains multihomed

Figure 20: Interaction of smart routing traffic and background
traffic. Here reg i (SR j) denotes the performance of a reg-
ular (or single-homed) user i when user j uses smart routing.

the interactions among multiple users under traffic equilibria. It
is also interesting to investigate the dynamics of such interactions.
Finally, increasingly wide deployment of smart routing poses new
challenges to ISPs by intensifying the competition among different
ISPs and making traffic less predictable. How ISPs should address
these challenges is an open issue.

Acknowledgments
Jason Bender made the Web traces available to us and was very
patient with our questions. Rick Summerhill and Mark Fullmer
provided us research access to Abilene’s traffic data. Young Hyun
at CAIDA was very helpful in providing us access to the NetGeo
database. NLANR publishes Internet performance data which ulti-
mately made it possible for us to evaluate our schemes under realis-
tic scenarios, and we are grateful to their providers. We would also
like to thank James Aspnes, Arvind Krishnamurthy, Theodore Jew-
ell, Jian Yin, and the anonymous reviewers for giving us valuable
comments.

9. REFERENCES
[1] A. Akella, B. Maggs, S. Seshan, A. Shaikh, and R. Sitaraman. A

measurement-based analysis of multihoming. In Proceedings of ACM
SIGCOMM ’03, Karlsruhe, Germany, Aug. 2003.

[2] A. Akella, J. Pang, A. Shaikh, S. Seshan, and B. Maggs. A
comparison of overlay routing and multihoming route control. In
Proceedings of ACM SIGCOMM ’04, Portland, Oregon, Aug. 2004.

[3] Amextel. http://www.amextel.com/dedicated.htm.
[4] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris.

Resilient overlay networks. In Proceedings of the 18th Annual ACM
Symposium on Operating Systems Principles, Banff, Canada, Oct.
2001.

[5] T. Bates and Y. Rekhter. Scalable Support for Multi-homed
Multi-provider Connectivity, RFC 2260, Jan. 1998.

[6] Z. Cao, Z. Wang, and E. Zegura. Performance of hashing-based
schemes for Internet load balancing. In Proceedings of IEEE
INFOCOM ’01, Anchorage, AK, Apr. 2001.

[7] Cisco Inc. Sample configurations for load sharing with BGP in single
and multihomed environments. Available at
http://www.cisco.com/warp/public/459/40.html.

[8] R. Dai, D. O. Stahl, and A. B. Whinston. The economics of smart
routing and QoS. In Proceedings of the Fifth International Workshop
on Networked Group Communications (NGC’03), 2003.

[9] F5 Networks, Inc. http://www.f5networks.com/.
[10] M. Garey and D. Johnson. Computers and Intractability. W.H.

Freeman and Co., New York, NY, 1979.
[11] F. Guo, J. Chen, W. Li, and T. Chiueh. Experiences in building a

multihoming load balancing system. In Proceedings of IEEE
INFOCOM ’04, Hong Kong, China, Apr. 2004.

[12] Internap Networks, Inc. http://www.internap.com.
[13] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In

Proceedings of the 16th Annual Symposium on Theoretical Aspects of
Computer Science, 1999.

[14] lp solve. ftp://ftp.ics.ele.tue.nl/pub/lp_solve/.
[15] A. Mihailovic, G. Leijonhufvud, and T. Suihko. Providing

multi-homing support in IP access networks. In PIMRC 2002, 2002.
[16] NLANR. Round-trip time measurements. Available at

http://watt.nlanr.net/Active/raw_data/cgi-bin/
data_form.cgi.

[17] A. Orda and R. Rom. Multihoming in computer networks: A
topology-design approach. Computer Networks and ISDN Systems,
18(2):133–141, 1989.

[18] Pacific Bell.
https://ebiznet.sbc.com/calnetinfo/RiderC.

[19] Proficient Networks, Inc.
http://www.proficientnetworks.com.

[20] L. Qiu, Y. R. Yang, Y. Zhang, and S. Shenker. On selfish routing in
Internet-like environments. In Proceedings of ACM SIGCOMM ’03,
Karlsruhe, Germany, Aug. 2003.

[21] Radware, Inc. http://www.radware.com/content/
products/pd/default.asp.

[22] Rocketfuel. PoP-level ISP maps. Data file policy-dist.tar.gz
available from http://www.cs.washington.edu/
research/networking/rocketfuel/, 2003.

[23] T. Roughgarden and E. Tardos. How bad is selfish routing? Journal
of ACM, 49(2):236–259, 2002.

[24] RouteScience Technologies, Inc.
http://www.routescience.com, June 2003.

[25] RouteScience Technologies, Inc. Reengineering ISP connectivity to
lower bandwidth costs. White Paper. Available at
http://www.routescience.com, Apr. 2002.

[26] RouteScience Technologies, Inc. Route optimization for ebusiness
applications. White Paper. Available at
http://www.routescience.com, 2003.

[27] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson. The
end-to-end effects of Internet path selection. In Proceedings of ACM
SIGCOMM ’99, Cambridge, MA, Aug. 1999.

[28] G. Schreck, C. Rustein, and M. Porth. The end of the private WAN.
Forrester Brief, Mar. 2002.

[29] P. Sevcik and J. Bartlett. Improving user experience with route
control. Technical Report NetForecast Report 5062, NetForecast,
Inc., 2002.

[30] S. Sharma, J. Chen, W. Li, K. Gopalan, and T. Chiueh. Duplex: A
reusable fault tolerance extension framework for network access
devices. In Proceedings of 2003 International Conference on
Dependable Systems and Networks (DSN 2003), June 2003.

[31] P. Smith. BGP multihoming techniques. NANOG 23.
http://www.nanog.org/mtg-0110/smith.html, Oct.
2001.

[32] N. Spring, R. Mahajan, and T. Anderson. Quantifying the causes of
path inflation. In Proceedings of ACM SIGCOMM ’03, Karlsruhe,
Germany, Aug. 2003.

[33] H. Tangmunarunkit, R. Govindan, and S. Shenker. Internet path
inflation due to policy routing. In Proceedings of SPIE ITCom,
Denver, CO, Aug. 2001.

APPENDIX

A. PROOF OF LEMMA 3

PROOF. We assume that akn is always an integer, as justified at
the end of Section 4.2.2.1. Let xk = qt(Tk, 1 − ak). Then the

left hand side (LHS) of the lemma is
P

k xk =
P

k qt(Tk, 1 −
ak). To prove LHS ≥ qt(

P

k Tk, 1 −
P

k ak), according to the

quantile definition, we need to show that |{i|
P

k t
[i]
k > LHS}| ≤

P

k akn, i.e., |{i|
P

k t
[i]
k >

P

k xk}| ≤
P

k akn.

By the definition of xk, we have |{i|t
[i]
k > xk}| ≤ akn.

Then we have

|{i|
X

k

t
[i]
k >

X

k

xk}|

≤ |{i|t
[i]
k > xk, for at least one k}|

= |
[

k

{i|t
[i]
k > xk}|

≤
X

k

|{i|t
[i]
k > xk}| (by Union Bound)

≤
X

k

akn.

B. PROOF OF THEOREM 5

PROOF. The proof is by reduction from the NP-complete set-
partition problem [10]. Specifically, the set-partition problem is to
determine whether the numbers in a given set S (with non-negative
integer values) can be partitioned into two subsets A and S − A
such that the sum of the elements in A is equal to half of the total
sum of all elements in S.

Given an instance of the set-partition problem (a set S), we con-
struct an instance of the integral assignment problem as follows.
First, the assignment problem has two ISPs, each with a cost func-
tion c(x) equal to 0 when x ≤ 1

2

P

y∈S y, and 1 when x >
1
2

P

y∈S y. We assume that both ISPs use 100th-percentile charg-
ing. Second, we map each element in S to a flow in the assignment
problem, with the size of each flow (at all intervals) being the value
of the corresponding element. Then if we have any polynomial-
time constant-approximation-ratio algorithm to the assignment prob-
lem, we can decide the original set-partition problem in polynomial-
time by checking whether the cost returned by the approximation
algorithm is equal to 0 or not.

C. MINIMIZING COST OF TOTAL
VOLUME BASED CHARGING

The problem of minimizing cost when ISPs use total-volume
based charging can be cast into the following linear program, where
ck denotes the cost function of ISP k, tk is the total traffic assigned
to ISP k during its charging period, and TotalTraffic is the total
volume of traffic during the charging period. This problem can be
readily solved using LP software such as lp solve [14].

minimize
X

k

ck(tk)

subject to
X

k

tk = TotalTraffic

Figure 21: LP formulation for total volume-based charging.

